文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯理论综述

石墨烯理论综述

石墨烯理论综述
石墨烯理论综述

石墨烯理论(上)

Author:

二维石墨烯

石墨烯是由碳原子排列成六边形结构而形成,可以看作每个晶胞中有一个以两个原子为基础的三角结构。晶格向量可以写成

*石墨烯晶体简化结构,石墨烯一个原胞中包含两个不等价的碳原子,。其中为

原胞基矢;

是晶格常数。下边给出晶格的倒格矢

石墨烯特别重要的物理性质是,两个点在石墨烯Brillouin区()顶点处。这些点之所以会被命名为Dirac点的原因,后面将会给予解释。它们在动量空间中位置(倒格矢)

为石墨烯第一Brillouin区示意图,其中为倒格矢量,,和是高对称点。

实空间中三个最邻近矢量

六个次邻近点距离矢量为

对石墨烯的周期六角格点系统采用电子紧束缚模型,只考虑到最近邻原子之间的相互作用,电子可以跳到的最邻近原子。在二次量子化的哈密顿量,有如下形式

这里我们以最低准粒子激发能量为能量参照点扣除掉它归入本底,即选取。此外

我们假定近邻原子轨道波函数之间不存在重叠,也就是说(紧束缚近似)。格点模型哈密顿量便写为

Nambu表象下可写出BdG矩阵:

在晶格A上处有自旋,()将会湮灭(产生)一个电子(对于点B 处等价定义也适用),是最邻近跃迁能量(不同晶格之间的跃迁),表

示只对邻近格点原子求和。实际上哈密顿量中,根据上图所示近邻原子之间的相对坐标,计算相邻两个原子的波函数对哈密顿量的重叠积分

可得到:

则动量表象中哈密顿量为

由此可以算出色散关系为:

加号对应较高频能谱(),减号对应较低频能谱()。从能谱可以明确看到石墨烯沿着高

对称点的色散关系。我们可以看到导带和价带是对称的并且导带和价带在布里渊区的顶角处是简并的。由于每一个晶胞中有两个碳原子,每一个碳原子都贡献一个电子,因此石墨烯的价带刚好填满同时导带全空,也就是说Fermi面刚好要处在导带和价带之间,由

于导带底和价带顶刚好交于点,Fermi面应穿过点,因此我们可以认为石墨烯是一个

零带隙的半导体。这主要是对称性的要求,因为晶格格点处和都占据着碳原子,有相同的轨道能级。如果零温,在零能周围能谱是对称的;对于有限温度,电子-空穴对称性被破坏,和带变得不对称。要了解这个高度对称的附近电子行为,我们不妨靠近

一个Dirac点去观察能带结构(在Brillouin区,点)。也就是说将色散关系围绕点

展开:在和附近,且

其中是相对于Dirac点的动量,是Fermi速度,

。这与通常情况,的区别在于(m是电子质量)石墨烯中的Fermi速度不取决于能量或动量;而通常情况下我们有

,即速度的变化取决于能量。这些特点与介质中的光子或者是声子类似,在这些高度对称的点处附近载流子的有效静质量为零,Fermi速度可以和光速相比较,呈现出相对论特性,需要通过Dirac方程来处理(此内容作为重点稍后介绍)。因此我们把这些高度对称的点称之为Dirac点。

同理,假如要考虑次近邻原子的相互作用,定义以原子为中心的六个最近邻的原子的

坐标为,通过上述类似方法计入次邻近跃迁

代入的能量本征方程,我们可以得到能带色散关系

我们发现次近邻原子的引入,破坏了能带结构的对称,此时导带和价带不再对称,主要是因为次近邻原子的引入相当于引入了晶格格点轨道能级,因此近邻格点的引入使得Dirac点发生移动。

从色散关系我们能够看到次近邻原子的引入改变了Dirac点位置,破坏了电子空穴对称。另

外我们发现,能量简并度与动量在动量空间的夹角有关(注意,展开直到阶,色散关系都取决于动量空间的方向),引入次近邻格点后,Dirac点附近形成三重简并,这就是所谓电子光谱的三角形变。从图中可以看到,次近邻格点的引入并没有破坏Dirac点,也就是说在这些Dirac点处导带低和价带顶仍然简并。很明显考虑次近邻原子相互作用之后Dirac点有向下移动的趋势,即Dirac点处存在能量上的转移,这是因为我们认为次近邻原子之间电子的跃迁能量是负的原因。一如前面的条件,将方程绕着Dirac点展开,精确到二级项,Dirac点K附近处能带色散关系为

其中是动量分量间夹角。

无质量Dirac费米子

时电子算符作Fourier级数展开如下:

其中是单元晶格的数量。我们把由和点电子算符Fourier级数线性组合表示。这产生了一个的近似表示,写作:

这些新的区域是在假设晶胞绝热变化的情况下,其中指标是指和点。

简明起见,我们先根据之前在动量表象下的哈密顿量来推导,在点附近小动量展开

去除一个无关紧要的相位因子即可得到Dirac电子的有效哈密顿量。在紧束缚时,有效哈密顿量为:

二维Pauli矩阵向量,同样抹除无关相位因子就得到标准形式:

有效哈密顿量由两个无质量Dirac粒子(一个在附近带动量,另一个则是附近动量

)的哈密顿量组成。

二分量旋量电子波函数在点附近,遵守二维Dirac方程

在动量空间中,附近的动量的波函数具有如下形式

,表示对应的本征能量,分别为和带。

附近动量波函数则有如下形式

,和点处波函数与时间反演对称性有关:如果

我们把坐标原点定在的点处,时间反演变为一个沿着轴的反射,就是

。还需要注意的是,如果相位的旋转周期是(Berry相位)。相在下的旋转是旋量的特性,事实上,波函数是二分量自旋波函数。一个用来描述本征函数的相关量是他们沿旋转方向的螺旋度,定义为动量算符的投影。量子力学的螺旋度算符有

如下形式:

现在对于的定义很明确了,因为也是的本征态,

;的本征方程也类似。

双层石墨烯

由紧束缚近似方法可将单层石墨烯推广到多层石墨烯系统,乃至叠堆成三维石墨结构。最简单的是双层石墨烯结构,这种结构可以在导带和价带间打开一个能隙。

紧束缚近似哈密顿量写为

表示在平面层晶格()中处消灭一个自旋为的电子。

跃迁参数为:是面内跃迁能量,是原子间的跃

迁能量,是原子间的跃迁能量,连接。

在扩大Brillouin区中考察动量接近点,并忽略,获得有效哈密顿量。

其中;这里引入外场,大小是两层间化学势位移的一半(相当于在两层

之间加一个偏置势场),Nambu四分量旋量为

求解可得到对称能谱图

若,,则可以消除高能微扰得到有效哈密顿量

哈密顿量中时,有与处比较,为两个抛物线能带

,能谱是电子-空穴对称的。有两个额外的能带在处。此处态密度近似恒定,双层石墨

烯表现出金属性。由于引入了三角失真,能谱在低能处发生质的变化(注意这个三角失真并不像前面介绍的产生在低能处的较大的动量)。电子-空穴的对称性是保留的,但是我

们获得了三条类似Dirac线性能带(并非是处两个交叉的能带)。一个Dirac点在

和处,其他三个点也在处,以有限的动量排列在三个等价点。在稳定点处,用拓扑数来看,能带交叉是可以理解的。在一个平面上,一个点周围的封闭曲线的圈数是一个整数,代表总的次数,曲线围绕着这个点逆时针旋转,所以波函数保持不变。

在两个抛物线能带接近处(),这个点的缠绕数为;在,缠绕数为

处和三个Dirac点在,缠绕数为处,三角扭曲量分割成一个Dirac点。一个平

面内的旋转或者单层内与其他有关的小旋转,当缠绕数为时,分割了并且简并

入两个Dirac点。外场打破了双层的等价、反演对称。这种情形下,色散关系变为

所引起的色散关系如前面的能谱图,和打开的能隙接近,但是并不直接在点。对于较小

的动量,,导带可以扩大

将换成可以获得价带色散,双层的在处有能隙。

量子Hall效应

1.石墨烯中的整数量子Hall效应

人们最开始着研究的量子Hall效应有效能带理论,是从石墨烯晶格开始。对于IQHE,Haldane于1988年发表的PRL中构造的模型是石墨烯晶格加上均匀磁场。石墨烯是个二维晶格,经过上面的介绍,我们知道了石墨烯能带是Dirac锥,可以产生无能隙激发——无质量Dirac费米子。在低能有效理论中,哈密顿量是Dirac形的,解出两条能带:价带和导带,它在Dirac点接触,能谱是线性的。我们在这里对Dirac哈密顿量用另一种形式重新表述——Bloch矢量;因为我们知道对于二能级系统,其Bloch矢可以画出一个Bloch球面(类比于自旋系统,这种矢量可以称为“赝自旋”)。这里Dirac点附近二能带模型的Bloch也可以类似地用这种办法写出来:

其中Pauli矩阵,Bloch矢,由于不加外场时石墨烯具有时间反演对称性:以及结构反演对称性:,因此。我们熟悉这个情况下的准粒子激发态是无

能隙的,也就是有效质量为零。而在加入磁场项时候,时间反演对称破坏,,产生非零的质量项。

哈密顿量为

有效质量项使得能谱打开能隙:

这时候无限大晶格系统从导体变成绝缘体,这是参数引起的相变。当进一步考虑有限晶格系统时候,我们会计算得到边缘态(表面态)。为此我们考察半无限晶格系统,在方向上

半有界(晶格),使得边缘或表面为了反映晶格系统内部与真空的势能差异,我们

简单地设定质量项为的函数

从Dirac方程可以得到波函数旋量解:

方向的能谱,易见此态几乎限制在边界附近,在边界左右两边都呈指数衰减,因此是边缘态。

而且此边缘态具有手征性,这一点可以计算其沿着边界上的群速度

知道边缘态模是单向(右手)运动。还发现它是无能隙模,过Fermi 面,也就是在Dirac点处。

根据TKNN四人的工作,量子Hall电导可以通过计算第一陈类得到,拓扑能带理论的核心

在于Brillouin区上的Berry相位。Bloch态在规范变换下不变,Berry相来源于波函数内禀的相位任意性,是反映系统拓扑性质的一种几何相位。类比于电

磁场规范变换理论,可以定义Berry联络:

我们需要对动量空间的几何性质进行考察,二维方形晶格晶格系统,周期性边界条件为:;所以二维Brillouin区可以同胚映射成环面,这是一种拓扑紧致化手段。这样,Brillouin区亏格为1。

Berry相位就是Berry联络在动量空间上作闭回路的积分;由Stokes定理,它又是Berry曲率对整个Brillouin区作积分:

那么Berry曲率为,这一套联络都和电磁场理论相似。现在来对这个二维Brillouin区(为了简便设晶格常数为一)的Berry相位(第一陈数):

周期性晶格势场中Bloch态在一个倒格矢周期上最多只差一个相因子,因此边界关系为:

石墨烯Brillouin区是六边形,或以倒格子原胞看是菱形四边形,情况类似。

联络分量为

Berry相位为

由Brillouin区边界上波函数的相位关系:

可最终得到:

由波函数的单值性,则相位差取值只能是的整数倍,

此即Berry相位取值,这就解释了能带填满时候Hall电导出现整数量子化现象。在无磁场

时候没有Hall效应,相因子相同,故;加入磁场后相当于Brillouin区环面的洞中有

磁通形成“环形电流”,由此跨过一个Brillouin区将得到规范相位(Peierls substraction),当穿过每个Brillouin区的磁通为一个磁通量子大小时,陈数。

前面提过由于Bloch态具有规范,因而Berry相位在作规范变换时候不变,因此也是个规范不变量。以微分几何语言描述就是一个以流形的Brillouin区为底空间的U(1)丛的第一陈数,是个具有拓扑不变性的整数。此时其规范相因子相当于纤维的

坐标。

在有磁场时形成的量子Hall相之后,多出了一条无能隙边缘态连接导带和价带使得Brillouin 流形重构。

这时候Brillouin区的几何流形是M?bius带,陈数就从原来普通环面的零变成了一,这也就是量子Hall电导的填充数。

用陈类对量子Hall态分类的思想对应于数学上用Euler示性类对二维紧致定向流形分类:Berry曲率对应于Gauss曲率,第一陈类对应于Euler示性类,那么流形上的积分就对应于Gauss-Bonnet定理

这里是无边界二维流形的Gauss曲率,就是Euler示性数,

是亏格。

现在我们用另一个角度描述Berry相位。我们记得这节开头之所以用Bloch矢量来表示哈密顿量,其实就是作铺垫为了现在来以更几何、物理的角度看待描述Berry相位这个拓

扑不变量。我们需要从动量空间的Brillouin区映射到赝自旋Bloch球面生成的参数空间(又称为靶空间)。这时我们从上面讨论能带计算的结果知道石墨烯系统哈密顿量特征值是

,Bloch矢就是刻画的靶空间里面从单位球中心指向球面的单位矢量,而靶空间就是所谓底空间。而Berry相位则是这个单位矢量在球面上所画的闭路劲围出的面积所对应的一半立体角(Bargmann不变量),这也是流形上的

和乐群元,这就是Berry相位被称几何相位的原因。我们可以更浅显地描述:上的切矢

经球面上闭合曲线平行移动后回到原处,这时我们看到由于曲面的曲率而使得切矢改变方向形成一定夹角。这样我们就需要定义平移产生的联络,以1-形式写出来就是Berry联络

,其是由靶空间诱导出来。几何相位起源于靶空间的拓扑非平庸性——南北极是球面上的奇点。这就是造成流形区别于拓扑平庸的平面流形的原因:这两种流形之间不存在同胚映射(即不可能把球的南北极都画在一张纸上)。

在平面中,闭合路径意味着转角度,Berry相位为;而上面的几何角度来看,Berry 曲率就是靶空间的边界曲面的曲率,由靶空间中单位面积的立体角度给出,也就是角度微元一半(由几何定义不难得出角度微元等于面积微元)在方向上投影

在动量空间中Berry曲率在整个二维闭合Brillouin区上积分,得到的结果相当于包围着靶空间中闭合Bloch面转过的圈数(缠绕数)倍,其值完全取决于参数空间的拓扑

性质,这也就是第一陈类:

通过陈数也就给出Hall电导量子化的结果,这种机制是Dirac磁单极子量子化。

石墨烯一个Brillouin区有两个Dirac点,电子在石墨烯低能输运时就考察这两点的情况。在无磁场时,哈密顿量无质量项,这时,这两点特征值,为零。在加

了磁场后,破坏时间反演对称,Dirac点打开能隙;产生了质量项,依据它们正负号遍历Bloch球面的南北极。假设这个磁场是和晶格具有一样的周期性正负号变化,从而使得时间反演对称性破坏,而总平均磁场为零,而位于Brillouin

区两顶点上,因此,由结构反演对称性,;这时纵向电导符号

相反,石墨烯有能隙无边缘态,那么电导合贡献为零,整个体系处于绝缘体相。处于量子Hall相时,磁场方向大小恒定,每个Dirac点上有一条手征边缘态,贡献的Hall

电导加起来得到,这就产生整数量子化Hall电导。

石墨烯理论(中)

值得注意,Dirac点必须是偶数个,这时Hall电导才会呈整数量子化;如果有奇数个Dirac 点,则会出现半整数量子化,而具有时间反演对称性的晶格系统保证了Dirac点是成对出现(Nielssen提出的“费米子加倍定理”)。

*费米子加倍定理:一个局域自由费米子晶格系统,若其作用量具有手征性以及平移对称性

则费米子数会加倍。

我们不妨先考察量子场论中自由费米子作用量

现在将d维空间连续费米子场引入到离散晶格系统(表示晶格格点),作用量变为

为晶格常数,为晶格键方向上的单位矢量。计算动量空间上系统的Green函数

动量限制在Brillouin区中离散化,在离散取值附近展开Green函数,Green函数的极点代表粒子激发,我们会发现只有在Brillouin区顶点上的位置时Green函

数才会得到与连续时候一致,并且这时候发现Brillouin区并不只包含一个费米子极点,计算每个顶点上对应的每个动量分量都会得到一个费米子传播函数,譬如一维晶格Brillouin区上有两个顶点上的费米子(注意这时符号改变,正好会消除手

征反常);四维晶格格点中,动量分量取值

,共十六个费米子。对于d维空间晶格,则有个费米子。因此在理想离散晶格中费米子数目成倍增加。

2.石墨烯中的量子自旋Hall效应

最初量子自旋Hall效应的构造是C.L.Kane和Mele的从石墨烯结构引入了次邻近格点间电子的内禀自旋轨道耦合,和的Dirac点因为自旋轨道耦合会打开体能隙,此时体态就变成了绝缘体;假设自旋守恒,Kane-Mele模型为

不难发现这个模型正是前面讨论过的Haldane模型的叠加,其中自旋向上和自旋向下的电

子分别处于一个Haldane模型晶格中,跃迁矩阵元互为共轭。以为基,则哈密顿量是两个自旋部分的直和

计算半有限系统会出现两条手征边缘态,穿过费米能级的四条边缘态,分别代表两个边缘上的上下自旋。

石墨烯系统里的自旋轨道耦合作用是个复杂的事情,一方面碳原子质量数小,因此自旋耦合轨道作用比较弱。另一方面,多体格点系统里面,价电子自旋可以和本格点(on-site)碳原子,邻近原子间的价键轨道乃至次邻近的价键轨道动量进行耦合。一般我们关心的是轨道上价电子输运性质,尤其是在Dirac点处低能电子受到这种弱的自旋轨道耦合作用影响产生的不同的电子结构性质;在Dirac点处的零能态因为时间反演对称性是Krames二重简并的。在

石墨烯平面系统中,价层原子轨道是形成的轨道,形成碳骨架的键是杂化轨道。成分与三个成分之间有能量(键能),还有价键轨道的能量。紧束缚模型的哈密顿量里面的电子跃迁能量自然也需要考虑这些不同原子轨道、价键轨道间的跃迁能量。从Thomas自旋轨道耦合项

出发,由于自旋轨道耦合比较弱,我们可以将自旋耦合轨道作用项视为微扰项

,可以在一个Brillouin区中考察Wannie表象下基态波函数完备集,两个顶

点处也即Ferimi面附近的四重(包含了自旋简并)零能简并的轨道波函数

(即A,B两个碳原子上的原子轨道组合成)与其他不与轨道简并的波函数()进行简并微扰计算,到二级近似,

当然也可以用Bloch表象波函数进行近似展开,那就是Dresselhaus计算石墨系统自

旋耦合作用所采用的办法。算出来在点的微扰矩阵元为:

写出系统的低能有效自旋轨道耦合作用的哈密顿量

这是个很有意思的结果,第一项是平庸的对角项耦合能量,可以忽略;微扰的一级项是较为常见的Rashba自旋轨道耦合项,来源于电子自旋与相应原子轨道动量耦合,在无外场时候这个项不重要;微扰二级项是所谓内禀自旋耦合,由晶格对称性与碳原子轨道几何性质决定。三个类似“自旋”的Pauli矩阵算符分别代表着电子真实自旋、石墨烯晶格结构(与A和B

原子轨道之间的耦合轨道运动自由度相关)的晶格赝自旋以及二重简并的谷自由度赝

自旋(Brillouin区中包含和两个对称性不等价的简并能谷——二重谷简并)。石

墨烯中的这两个谷由时间反演对称性相联系,这与电子自旋十分类似,所以石墨烯的谷自由度可视为赝自旋)以及真实的电子自旋,从构造上可以明显看出这个作用由晶格对称性和碳原子轨道几何性质所决定;这个项的出现在物理上的原因是轨道轨道之间混合的结果,换言之单纯的原子轨道混合对此没什么贡献,轨道混合才有净贡献,这一点也从Haldane模型的对这个内禀自旋轨道耦合项写法中间接体现出来:跃迁格点间的两个

键的单位矢量(从格点指向相邻的格点)叉乘后再和轨道上的电子自旋矢量点乘

我们说过这个内禀自旋轨道耦合将打开大小的能隙,这个能隙有多大?具体是需要去

像上面那样微扰计算。简便地估算我们可以选择简化的波函数。前面第一节在二次量子化中对A,B原子的轨道进行叠加得到波函数,我们采用Nambu表象:

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯的制备及评价综述

石墨烯的制备及评价综述 摘要:近年来, 石墨烯以其独特的结构和优异的电学性能和热学性能, 在化学、物理和材料学界引起了广泛的研究兴趣。人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。通过大量引用参考文献, 简要了解石墨烯的应用方面,并综述石墨烯的几种制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法)[1]。通过分析比较各种制备方法的优缺点, 对几种方法进行评价,并指出了自己的看法。 关键词:石墨烯制备方法综述 中图分类号:O613 文献标识码:A Preparation and Application of Graphene Abstract: Graphene has attracted much interest in recent years due to its unique and outstanding properties. Different routes to prepare graphene have been developed and achieved. Brief introduction of application of graphene is given in this article. Preparation methods of graphene used in recent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gasphase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. And their advantages and shortcomings are further discussed in detail. I have also given my own opinion by the end of this article. Key words: graphene; preparation; overview 正文 2010年10月5日,英国曼彻斯特大学科学家安德烈·盖姆与康斯坦丁·诺沃肖洛夫因在二维空间材料石墨烯的突破性实验获得2010年诺贝尔物理学奖。一时间,石墨烯成为科学家们关注的焦点。石墨烯以其独特的结构,以及其优越的电学性能和导热性能,在物理、化学以及材料学界引起了广泛的研究兴趣。 石墨烯或称纳米石墨片,是指一种从石墨材料中剥离出的单层碳原子薄膜,它是由单层六角元胞碳原子组成的蜂窝状二维晶体。简单地说,它是单原子层的石墨晶体薄膜,其晶格是由碳原子构成的二维六角蜂窝结构。其厚度为0.34nm,是二维纳米结构。它是其他石墨材料的基本组成。当包裹起来的时候,就组成富勒烯。同时,他也是另一种重要材料――碳纳米管的组成,碳纳米管就是由这种结构卷曲构成的。三维的石墨则是有许多的石墨烯层叠而成。[2]

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯转移综述

黄曼1,郭云龙2*,武斌2,刘云圻2,付朝阳1*,王帅1* 1. 华中科技大学化学与化工学院,湖北武汉 430074 2. 中国科学院化学研究所有机固体重点实验室,北京100190 摘要目前化学气相沉积(CVD)法合成石墨烯得到了人们的广泛研究。其中如何将生长的石墨烯材料转移到与各种器件匹配的基底上是十分重要的科学问题。文章通过总结与分析目前CVD法石墨烯的几种主要转移技术,从方法、特点和结果等方面综述了转移技术的研究进展,并对转移技术的未来做出了展望。 关键词化学气相沉积法;石墨烯;转移 Research Progress in transfer techniques of graphene by chemical vapor deposition Huang Man1, Guo Yunlong2*, Wu Bin2, Liu Yunqi2, Fu Chaoyang1*, Wang Shuai1* 1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China Abstract The growth of graphene by chemical vapour deposition (CVD) is being widely studied. The transfer of CVD-grown graphene onto a substrate for making devices is a very important area of research. In this paper, six main transfer techniques of CVD-grown graphene are analyzed. Also, the recent advances in the methods, characteristics and results of the transfer techniques of CVD-grown graphene are discussed. Finally, the future of transfer techniques is briefly introduced. Keywords:Chemical vapor deposition; Graphene; transfer _______________________________________ 作者:黄曼(1988-),女,硕士,从事石墨烯的制备、表征及性能研究;*通讯作者:付朝阳(1968-),男,副教授,博士,电话-704,(电子信箱);王帅(1974-),男,教授,博士,(手机),(电子信箱),国家自然科学基金项目(),跨世纪优秀人才和国家青年千人项目资助;郭云龙(1982-),男,助研,博士,(手机),(电子信箱).

石墨烯及其材料综述

关于石墨烯和石墨烯复合材料的综述 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。自从2004年发现以来,研究者对这种材料在未来技术革命方面提出了大量的建设性创意,石墨烯被认为是未来能够取代硅的一种新型电子材料。石墨烯是只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性等特性,其优异的电学、热学和力学性能,在纳米电子器件、储能材料、光电材料等方面的潜在应用价值引起了科学界新一轮的“碳”热潮。 它不仅是已知材料中最薄的一种,还非常牢固坚硬,仅仅是一个原子的厚度,并形成了高质量的晶体格栅,石墨烯的结构,是由碳原子六角结构紧密排列构成的二维单层石墨,是构造其他维度碳质材料的基本单元。它可以包裹形成0维富勒烯,也可以卷起来形成一维的碳纳米管,同样,它也可以层层堆叠构成三维的石墨。 石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。 这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 大量制备尺寸、厚度可控的石墨烯材料对石墨烯基材料的应用具有重要的意义。制备石墨烯可以归结为两个基本的思路:一是以石墨为原料,通过削弱以及破坏石墨层间的范德华力来剥开石墨层从而得到石墨烯:二是基于活性碳原子的定向组装,“限制”碳原子沿平面方向生长。基于上述思想,化学剥离法、SiC 表面石墨化法和金属表面外延法等一些新的方法相继被报道。本人通过大量的归纳总结,共总结出以下七种方法。 机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨(Highly

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

硅石墨烯负极材料最近文献综述

硅石墨烯最近文献综述(2013-至今) Minsu Gu, Seunghee Ko, Seungmin Yoo等[1]提出了一种同轴核壳硅-石墨烯纤维结构,该纤维结构的制备采用双喷嘴设备进行湿纺组装。其中,核由银包覆的纳米硅颗粒与氧化石墨烯混合液组成,壳是氧化石墨烯分散液,分别由两个喷丝头进入,然后用水合肼将氧化石墨烯还原为石墨烯,从而制备出Si@Ag/TRGO复合材料。具体制备示意图如图1所示: 图1 同轴Ag修饰Si-石墨烯纤维湿法纺丝过程示意图通过该方法制备的Si@Ag/TRGO 复合材料电极无需导电剂,在0.2C倍率下,首次充 900 放电容量分别为1204 mAh/g和960 mAh/g,首次库仑效率为79.7%,100个循环后的充电容量为766 mAh/g,容量保持率为79.8%。 Jaegyeong Kim, Changil Oh, Changju Chae等[2]采用水性溶胶凝胶法制备出出了Si/C-IWGN(internally wired with graphene networks)复合材料。其中,溶胶凝胶系统由硅纳米颗粒、间苯二酚-甲醛和氧化石墨烯组成。大致步骤为:首先将纳米硅颗粒在水中超声分散,同时加入氧化石墨烯溶液,接着超声分散均匀,然后加入间苯二酚、甲醛(碳源前驱体)以及碳酸钠(催化剂)进行缩聚反应,最后将得到的复合凝胶在850℃下高温碳化处理即可制备出目标产物。具体制备示意图如图2上半部分所示: 图2 Si/C-IWGNs和涉及的Si/C复合材料制备示意图作者发现,Si/C-IWGNs中少量的石墨烯(1-10wt%)能够有效的提高复合材料的循环稳定性,这主要归功于以下因素:1)石墨烯网络在复合材料中的形成;2)石墨烯网络能够提供足够的空间来容纳硅的体积膨胀。此外,Si/C-IWGNs显示出比商用石墨高141%的体积容量。作者最后还制备了Si-Gr(由Si/C-IWGN和石墨组成)复合材料,在100 mA/g 的电流密度下,首次库仑效率为80.0%,容量高达800-900 mAh/g,体积容量高于石墨的161%,100个循环后的容量保持率为89.1%。 Hai Li, Chunxiang Lu, Baoping Zhang等[3]通过对纳米硅颗粒、蔗糖和氧化石墨烯混合物进行冷冻干燥后进行热处理,制备出了Si@C/G复合材料,该方法在实现了纳米硅颗粒的碳包覆的同时,也解决了石墨烯基片在复合材料的分散问题,如图3所示: 图3 Si@C/G制备路线示意图: Si纳米颗粒、蔗糖和GO水溶液的混合物1)冷冻干燥;2)在氮气氛围内1000℃下热处理

石墨烯综述

1.1石墨烯概述 1.1.1石墨烯结构石墨烯(Graphene)作为一种平面无机 纳米材料,在物理、化学、科技、数码方面的发展都 是极具前景的。它的出现为科学界带来极大的贡献, 机械强度高,导热和导电功能极具优势,原材料来源 即石墨也相当丰富,是制造聚合复合物的最佳无机纳 米技术。由于石墨烯的运用很广泛,导致在工业界的 发展存在很严重的一个问题就是其制作过程规模浩大,所以应该将其合理地分散到相应的聚合物内部,达到 均匀分布的效果,同时平衡聚合物之间的作用力。 石墨烯的内部结构是以碳原子以sp2 杂化而成的,是一种单原 子结构的平面晶体,其以碳原子为核心的蜂窝状结构。一个碳 原子相应的只与非σ键以外的三个碳原子按照相应的顺序连接,而其他的π则相应的与其他的的碳原子的π电子有机地组成构 成离域大π键,在这个离域范围内,电子的移动不受限制,因 为此特性使得石墨烯导电性能优异。另一方面,这样的蜂窝状 结构也是其他碳材料的基础构成元素。如图1-1 所示,单原子层的最外层石墨烯覆盖组成零维的富勒烯,任何形状的石墨烯 均可以变化形成壁垒状的管状[1]。因为在力学规律上,受限于 二维晶体的波动性,所以任何状态的石墨烯都不是平整存在的,而是稍有褶皱,不论是沉积在最底层的还是不收区域限制的。, 如图1-2 所示,蒙特卡洛模拟(KMC)做出了相应的验证[3]。 上面所提的褶皱范围在横向和纵向上都存在差异,这种微观褶 皱的存在会在一定程度上引起静电,所以单层的会很容易聚集 起来。同时,褶皱的程度也会相应的影响其光电性能[3-6]

图1-1. 石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维碳纳米管,也可堆叠形成三维的石墨[7]。 Figure 1-1. Graphene: the building material for other graphitic carbon materials. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite[7].

石墨烯的研究进展概述

龙源期刊网 https://www.wendangku.net/doc/ec4244641.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用 摘要:纳米科学技术是当今社会科学中一个重要的研究话题。它是现代科学技术的重要内容,也是未来技术的主流。是基础研究与应用探索紧密联系的新兴高尖端科学技术。石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。 关键词;复合材料纳米材料石墨烯 正文; 一,石墨烯复合材料的制备 石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。 石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又 采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。 采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。研究表明PS微球通过公家方式连接到石墨烯的表面。通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

综述石墨烯传感器

石墨烯传感器 I介绍 石墨烯是一种二维结构的纳米材料,每个碳原子以杂化的方式形成六边形结构。这是一种稳定的材料,有良好的机械拉伸性与电子属性。基于石墨烯的纳米结构在传感器领域有极前景。这是由于每个原子与感应环境相接触,且石墨烯的电学属性可以通过这种接触而改变。石墨烯有着独特的物理属性,从而使得在很多传感领域有应用。如光传感器,电磁传感器,应力与质量传感器以及化学与电化学传感器。 最初,高质量单晶石墨烯是通过机械剥离技术获取。该技术仍旧在实验室精度的实验中提供最好质量的单晶石墨烯。通过这种方法,在独立形式下样品的迁移率可达,尽管在表面捕获的迁移率在 。 II石墨烯制备方法 A机械剥离法 机械剥离法即为用物理的方法破坏石墨层与层之间的结构,从而得到石墨稀。物理意义上的石墨晶体,其实是由大量的石墨层通过德瓦尔斯力连接在一起,层与层之间的作用力巨大。从外界施加物理作用力破坏石墨层之间的作用力。这种方法首先高粘性胶从大块石墨样品上剥离出薄层,然后进一步剥离以减小薄层的厚度,直到可以被表面俘获。如今使用这种方法可以获得毫米级别厚度的薄层。图1是300nm表面获取的单层石墨烯薄层。

图1.在300nm表面机械剥离出的单层石墨烯层通过拉曼光谱中单层石墨烯的特征峰可以快速判定获得的薄层中所石墨烯的层数。图2.是单层石墨烯、双层石墨烯以及数层石墨烯薄层的拉曼特征谱线。由图可以看出单层石墨烯的2D峰很尖锐,辐值较大,而G峰较低。通过2D峰 和G峰的强度比可以判断出层数。还可以通过每个石墨烯层的量子化光吸收。

图2.基板上单层、双层与数层石墨烯的拉曼光谱图 B 化学剥离法 化学剥离法最简单的方式就是使用合适的溶剂例如N-甲基-吡咯烷酮。在液体中使用声波降解法使得溶剂进入石墨层中,从而生成单层,多层的石墨烯,所得的单层石墨烯比例约为1wt%~12wt%。 还有有一些其他的剥墨的尝试,使用了不同的溶剂,取得了一些成功。如层控制剥离法。使用互卤化物嵌入物,随后溶解于表面活化剂中,可以生产出优秀的双层、三层石墨烯,有独特的属性。然后可以使用密度梯度新发获取单层石墨烯,单层的比例可达80%。 还可以使用GO的亲水性进行层剥离,产生悬浊液,然后使用水合肼减少石墨烯上的GO。此步骤后得到的石墨烯不够纯净。 目前研究的方向在于如何控制石墨烯层数与减少其上的缺陷。 C化学气相沉积法(CVD)

石墨烯综述

综述 一、项目背景及意义 我国近几十年以来一直在进行大规模的土木工程建设,部分寿命已长达几十年的桥梁建筑等结构产生病变并不断引发灾难,引发行业反思。建筑结构发展的现状迫切需要结构方面的监测以进行桥梁状况判断,对建筑结构的运行状况做及时的了解和预测,对于预防桥梁损毁事故显得尤为重要。当前建筑结构的健康监测主要是通过对结构的各种变形数据的监测来进一步的掌握健康状况。一般而言,建筑结构的健康监测系统由四个主要部分组成:传感器、数据采集与传输系统、数据处理与分析系统、安全评估系统,分别实现从桥梁运行实时数据的采集、传输、处理和评估。传感器能否承受结构的超大变形成为实现结构健康实时监测的前提。 二、石墨烯简介 石墨烯是由碳六元环组成的两维周期蜂窝状点阵结构, 它可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆成三维的石墨, 因此石墨烯是构成其他石墨材料的基本单元。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。 电子在石墨烯中传输的阻力很小,因此具有很好的电子传输性质;力学性能好、韧性好,有实验表明,它们每100nm距离上承受的最大压力可达2.9N。可否借助石墨烯及其衍生品的在超大变形下结构不发生破坏并保持很高的导电性这一性质,研制开发超大变形感知元件及其相应的智能结构部品,以突破这项技术领域的瓶颈难题,成为很多研究工作者的研究方向。 三、国外石墨烯制备及应用研究进展

石墨烯的制备方法主要有机械法和化学法2种。微机械分离法是直接将石墨烯薄片从较大的晶体上剪裁下来,可获得高品质石墨烯,且成本低,但缺点是石墨烯薄片尺寸不易控制,无法可靠地制造出长度足供应用的石墨薄片样本,不适合量产。取向附生法是利用生长基质原子结构“种”出石墨烯,石墨烯性能令人满意,但往往厚度不均匀。化学还原法能够低成本制备,但很难制备没有晶界的高品质石墨烯薄片。化学气相沉积法提供了一种可控制备石墨烯的有效方法,其最大优点在于可制备出面积较大的石墨烯片,缺点是必须在高温下完成,且在制作过程中,石墨烯膜有可能形成缺陷,不适于量产。 目前,利用化学气相沉积法在制备大尺寸、高质量石墨烯薄膜方面取得了重大突破,生产出高纯度大面积石墨烯薄膜,铜箔、PET薄膜、碳化硅都可以作为石墨烯薄膜的基底。 我国的研究人员正在石墨烯领域开展积极的探索。例如,中国科学院长春应用化学研究所在石墨烯研究方面获得系列进展,他们针对石墨烯的制备、化学修饰、性能研究等开展了系列研究工作,并积极探索了石墨烯在众多领域的应用,取得系列创新性的研究进展,还研制开发出多种高强度、高韧性树脂材料等;此外,该所在石墨烯透明电极、生物传感等方面探索获得的关研究结果,引起国内外同行的广泛关注。 韩国一个小组最早用CVD方法在柔性基底PDMS上气象沉积石墨烯。然后对该石墨烯片进行拉伸试验。实验发现,应变直至10%,电阻也无明显变化。如图2 所示。 北大物理学院在2011年将石墨烯气相沉积在PDMS基底上,测试了其电阻变化率与应变之间的关系。从图上可以看出应变小于3%电阻无明显变化,3%后电阻出现明显变化,线性较好。如图3所示。

石墨烯综述

石墨烯概述 石墨烯(Graphene)作为一种平面无机纳米材料,在物理、化学、科技、数码方面的发展都是极具前景的。它的出现为科学界带来极大的贡献,机械强度高,导热和导电功能极具优势,原材料来源即石墨也相当丰富,是制造聚合复合物的最佳无机纳米技术。由于石墨烯的运用很广泛,导致在工业界的发展存在很严重的一个问题就是其制作过 程规模浩大,所以应该将其合理地分散到相应的聚合物内部,达到均匀分布的效果,同时平衡聚合物之间的作用力。 石墨烯的内部结构是以碳原子以sp2 杂化而成的,是一种单原子结构的平面晶体,其以碳原子为核心的蜂窝状结构。一个碳原子相应的只与非σ键以外的三个碳原子按照相应的顺序连接,而其他的π则相应的与其他的的碳原子的π电子有机地组成构成离域大π键,在这个离域范围内,电子的移动不受限制,因为此特性使得石墨烯导电性能优异。另一方面,这样的蜂窝状结构也是其他碳材料的基础构成元素。如图 1-1 所示,单原子层的最外层石墨烯覆盖组成 零维的富勒烯,任何形状的石墨烯均可以变化形成壁垒状的管状[1]。因为在力学规律上,受限于二维晶体的波动性,所以任何状态的石墨烯都不是平整存在的,而是稍有褶皱,不论是沉积在最底层的还是不收区域限制的。,如图 1-2 所示,蒙特卡洛模拟(KMC)做出了相应的验证 [3]。上面所提的褶皱范围在横向和纵向上都存在差异,这种微观褶皱的存在会在一定程度上引起静电,所以单层的会很容易聚集起来。同时,褶皱的程度也会相应的影响其光电性能 [3-6] 图 1-1. 石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维 富勒烯,卷曲形成一维碳纳米管,也可堆叠形成三维的石墨[7]。? Figure 1-1. Graphene: the building material for other graphitic carbon materials. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite[7].

相关文档