文档库 最新最全的文档下载
当前位置:文档库 › 先导式减压阀的静动态特性仿真分析

先导式减压阀的静动态特性仿真分析

先导式减压阀的静动态特性仿真分析

书山有路勤为径,学海无涯苦作舟

先导式减压阀的静动态特性仿真分析

先导式减压阀在中高压气液动系统中得到广泛应用,由于其静态和动态特性对整个回路的工作状态有明显影响,因此,需对减压阀的工作特性进行研究。针对典型结构的先导式减压阀,建立其数学模型和仿真模型,根据仿真结果对其输出压力、流量等静态和动态特性进行分析,可对减压阀的工作状态和内部机制有更深刻的理解。仿真结果表明: 利用AMESim 进行仿真具有建模简便、模型精确、运算快捷的优点,能够有效节省试验和设计成本。

减压阀是一种利用气液流经阀口节流作用产生压力损失从而使出口压力( 二次压力) 小于入口压力( 一次压力) 的压力调节阀,内部通常利用结构元件作用和压力差的平衡从而保持稳定输出压力。定压输出减压阀从结构上可以分为直动式减压阀和先导式减压阀。先导式减压阀虽然结构复杂,但在静态特性和稳定性上优于直动式减压阀,在中高压气液动系统中得到广泛应用。减压阀的静态和动态特性对于整个回路系统的工作状态有明显影响,因此,在液动系统设计中,有必要对减压阀的工作特性进行研究分析。

1、减压阀的基本结构

先导式减压阀主要由压力调整机构( 先导控制阀) 和流量控制机构( 主阀) 两部分组成,如当二次压力小于最小设定输出压力时,先导阀的阀芯关闭,主阀芯在平衡弹簧作用下处于最低位置,此时主阀芯与阀套的节流缝隙最大,控制窗口处于全开状态,主阀芯阻尼孔中无油液流动,进出容腔短接,减压阀处于非工作状态。当二次压力升高时,先导阀前腔压力高于调节弹簧力,则先导阀打开,产生先导流量,主阀阀芯底腔压力升高,在压力差的作用下克服平衡弹簧力向上移动,主阀芯与阀套的节流缝隙减小,即控制窗口减小,

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

可调先导式减压阀组

先导可调式减压阀组简介 减压阀组是使管道中介质出口压力低于进口压力, 并保持出口压力近于恒定的压力控制阀。通常减压阀组由自动阀、量程阀、快开阀、遥控阀等4个阀门组成,每个阀门在管道上起着不同的作用。自动阀:在减压阀组控制顶压时实现自动调节。量程阀:在自动阀自动控制时起辅助调节作用。快开阀:用于TRT故障时与减压阀组快速切换,在高炉减压阀组控制顶压时,作手动阀用。遥控阀:用于中控时应急手动控制顶压及高炉顶压超高限时紧急连锁,防止损坏炉顶设备。 先导可调式减压阀组工作原理: 减压阀是一种自动降低管路工作压力的专门装置,减压阀组可将阀前管路较高的水压减少至阀后管路所需的水平。 1)能减动压和静压,并将阀前介质传递至阀后,且阀后压力在一定范围内可以自由调节的阀门。按结构型式可分为直接驱动的直接式减压阀和设有先导装置的先导式减压阀。 (2)可调式减压阀的组成(沿水流方向) A、控制阀; B、过滤器; C、阀前后的压力表; D、可调式减压阀; E、可曲挠橡胶接头或管道伸缩器; F、控制阀门。 注:A、当可调式减压阀主阀体带有压力表时,减压阀组可不设置压力表。 B、当可调式减压阀主阀体自身带有过滤装置时,减压阀组可不设过滤器。 C、安装现场应有拆卸过滤装置的空间。 (3)生活、生产、消防给水和热水供应系统,在需要减静压的场所,并符合下列情况时,应装设给水减压阀: (4)减压阀宜设置两组,其中一组备用。 (5)减压阀的设置诮便于管理、操作、安装和维修;减压阀不宜设置在吊顶和住宅户门内;当减压阀设置在管道井内时应留出足够的空间 。

先导可调式减压阀组应用: 减压阀组适用于高层建筑、城市给水管网水压过高的区域、矿井及其他场合,以保证给水系统中各用水点获得适当的服务水压和流量,并广泛用于化工、石化、石油、造纸、采矿、电力、液化气、食品、制药、给排水、市政、机械设备配套、电子工业,城建等领域 先导可调式减压阀组使用注意: 使用减压阀组时,严禁乱拧乱动、自行拆卸。否则减压阀的严密性能和降压性能都会遭到破坏。这不但影响正常供气,而且会造成以高压气体直接送气或漏气发生火灾的危险。减压阀不但起降压作用而且起稳压作用。因此,使用时,禁止将减压阀的出气孔堵住。 先导可调式减压阀组基本性能: 调压范围:调压范围是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 压力特性:压力特性是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。输出压力必须低于输入压力—定值才基本上不随输入压力变化而变化。 流量特性:流量特性是指输入压力—定时,输出压力随输出流量g的变化而变化的持性。当流量g发生变化时,输出压力的变化越小越好。一般输出压力越低,它随输出流量的变化波动就越小。 选用:根据使用要求选定减压阀的类型和调压精度,再根据所需最大输出流量选择其通径。决定阀的气源压力时,应使其大于最高输出压力0.1MPa。减压阀一般安装在分水滤气器之后,油雾

系统动态特性分析

系统动态特性分析。 (1)时域响应解析算法――部分分式展开法。 用拉氏变换法求系统的单位阶跃响应,可直接得出输出c(t)随时间t 变化的规律,对于高阶系统,输出的拉氏变换象函数为: s den num s s G s C 11)()(?=? = (21) 对函数c(s)进行部分分式展开,我们可以用num,[den,0]来表示c(s)的分子和分母。 例 15 给定系统的传递函数: 24 50351024 247)(23423+++++++=s s s s s s s s G 用以下命令对 s s G ) (进行部分分式展开。 >> num=[1,7,24,24] den=[1,10,35,50,24] [r,p,k]=residue(num,[den,0]) 输出结果为 r= p= k= -1.0000 -4.0000 [ ] 2.0000 -3.0000 -1.0000 -2.0000 -1.0000 -1.0000 1.0000 0 输出函数c(s)为: 01 11213241)(+++-+-+++-= s s s s s s C 拉氏变换得: 12)(234+--+-=----t t t t e e e e t c (2)单位阶跃响应的求法: 控制系统工具箱中给出了一个函数step()来直接求取线性系统的阶跃响应,如果已知传递函数为: den num s G = )( 则该函数可有以下几种调用格式: step(num,den) (22) step(num,den,t) (23) 或 step(G) (24) step(G,t) (25) 该函数将绘制出系统在单位阶跃输入条件下的动态响应图,同时给出稳态值。对于式23和25,t 为图像显示的时间长度,是用户指定的时间向量。式22和24的显示时间由系统根据输出曲线的形状自行设定。

先导式减压阀

先导式减压阀 目录 YD43H先导式超大膜片高灵敏度减压阀 先导活塞式气体减压阀 Y43H先导活塞式蒸汽减压阀 先导薄膜式蒸汽减压阀-25P先导薄膜式蒸汽减压阀

减压阀>>薄膜式减压阀>> 先导薄膜式蒸汽减压阀产品名称:先导薄膜式蒸汽减压阀 产品型号:25P 产品口径:DN25-200 产品压力:1.6-6.4Mpa 产品材质:铸钢、不锈钢、合金钢等 产品概括:生产标准:国家标准GB 、机械标准JB 、化工标准 HG 、美标API 、ANSI 、德标DIN 、日本JIS 、JPI 、 英标BS 生产。阀体材质:铜、铸铁、铸钢、碳钢、 WCB 、WC6、WC9、20#、25#、锻钢、A105、F11、 F22、不锈钢、304、304L 、316、316L 、铬钼钢、 低温钢、钛合金钢等。工作压力1.0Mpa-50.0Mpa 。 工作温度:-196℃-650℃。连接方式:内螺纹、外螺 纹、法兰、焊接、对焊、承插焊、卡套、卡箍。驱 动方式:手动、气动、液动、电动。 产品详细信息

25P先导薄膜式蒸汽减压阀概述: 本系列减压阀是本公司参考国外先进产品而研制开发成功的新型先导式超大膜片减压阀,本产品在普通减压阀的基础上做了很大的改进.膜片采用了新型材料,并大大加式了式作面积,因此阀门上游压力或下游负荷细微的变化都能及时准确的反馈到主阀膜片,来调节主阀的开度,确保下游压力的稳定。 本产品的另一个突出的特点为:同一个阀体上可安装和互换多个导阀在稳压的同时,实现温度控制、上游压力的控制、远程的开关控制等。 先导薄膜式蒸汽减压阀主要技术参数: 公称压力(MPa) 2.5 壳体试验压力(MPa) 3.75 密封试验压力(MPa) 2.5 最高进口压力(MPa) 2.5 出口压力范围(MPa)0.02-1.6 压力特性偏差(MPa)GB12246-1989 流量特性偏差(MPa)GB12246-1989 渗漏量GB12245-1989 先导薄膜式蒸汽减压阀主要零件材料: 零件名称零件材料 阀体、阀盖WCB 阀座2Cr13 阀瓣2Cr13 阀杆2Cr13 膜片1Cr18Ni9Ti 调节弹簧60Si2Mn 1.最大减压比高达20:1,过去的两段减压现在用一段即可实现。 2.由于膜片大,又采用外部检测构造,可以控制稳定的二次侧压力。 3.由于Cv值大,流量及控制能力的飞跃提高,比通常的公称通径小1~2个号码的产品也可使用。 4.由于阀门为单球形,其密封性提高,渗漏量极小。 5.可管理0.02Mpa以下的低压。 阀体:铸钢/不锈钢.阀内件:不锈钢.膜片:不锈钢。 *二次侧压力的检测方法: 一般为外部测方法,也生产其他规格的内部检测方法的产品,但其Cv值要小。 *最大减压比:20:1。 *二次侧调整压力:一次侧压力(表压)的85%以下。 *最小压差:0.05Mpa(0.5kgf/cm2)。 *阀座渗漏量:额定流量的0.01%以下。

仪表的特性有静态特性和动态特性

仪表的特性有静态特性和动态特性 仪表的特性有静态特性和动态特性之分,它们所描述的是仪表的输出变量与输入变呈之间的对应关系。当输人变量处于稳定状态时,仪表的输出与翰人之间的关系称为睁态特性。这里仅介绍几个主要的静态特性指标。至于仪表的动态特性,因篇幅所限不予介绍,感兴趣的读者请参阅有关专著。 1.灵敏度 灵饭度是指仪表或装置在到达稳态后,输出增量与输人增量之比,即K=△Y/△X式中K —灵教度,△Y—输出变量y的增量,△X—输人变量x的增量。 对于带有指针和标度盘的仪表,灵敏度亦可直观地理解为单位输入变量所引起的指针偏转角度或位移盈。 当仪表的“输出一输入”关系为线性时,其灵放度K为一常数。反之,当仪表具有非线性特性时,其灵敏度将随着输入变量的变化而改变。 2线性度 一般说来,总是希望侧贴式液位开关具有线性特性,亦即其特性曲线最好为直线。但是,在对仪表进行校准时人们常常发现,那些理论上应具有线性特性的仪表,由于各种因素的影响,其实际特性曲线往往偏离了理论上的规定特性曲线(直线)。在高频红外碳硫分析仪检测技术中,采用线性度这一概念来描述仪表的校准曲线与规定直线之问的吻合程度。校准曲线与规定直线之间最大偏差的绝对值称为线性度误差,它表征线性度的大小。 3.回差 在外界条件不变的情况下,当输入变量上升(从小增大)和下降(从大减小)时,仪表对于同一输入所给出的两相应输出值不相等,二者(在全行程范围内)的最大差值即为回差,通常以输出量程的百分数表示回差是由于仪表内有吸收能量的元件(如弹性元件、磁化元件等)、机械结构中有间隙以及运动系统的魔擦等原因所造成的。 4.漂移 所谓漂移,指的是在一段时间内,仪表的输人一愉出关系所出现的非所期望的逐渐变化,这种变化不是由于外界影响而产生的,通常是由于在线微波水分仪弹性元件的时效、电子元件的老化等原因所造成的。 在规定的参比工作条件下,对一个恒定的输入在规定时间内的输出变化,称为“点漂”。 发生在仪表测量范围下限值七的点漂,称为始点漂移。当下限值为零时的始点漂移又称为零点漂移,简称零漂。 5重复性 在同一工作条件下,对同一输入值按同一方向连续多次测量时,所得输出值之间的相互一致程度称为重复性。 仪器仪表的重复性用全测量范围内的各输入值所测得的最大重复性误差来确定。所谓重复性误差,指的是对于高频红外碳硫分析仪全范围行程、在同一工作条件下、从同方向对同一输人值进行多次连续测量时,所获得的输出值的两个极限值之间的代数差或均方根误差。重复性误差通常以量程的百分数表示,它应不包括回差或漂移。

先导式减压阀的性能测试与改进

先导式减压阀的性能测试与改进 在液压测试系统上进行实验,通过分析先导式减压阀流量特性,压力特性与压力阶跃响应特性曲线,改进先导式减压阀各项参数,起到提高先导式减压阀性能的目的。 标签:先导式减压阀;静态特性;动态特性 现在技术界通过优化先导式减压阀的各项参数来提高液压与气压系统的安全性,准确性和节能性等,例如由于蒸汽系统的负荷波动较大,不恰当的气压系统的选型对系统节能与设备安全均可能带来非常不利的影响,所以工业上对于减压阀的设计就是至关重要的。优化先导式减压阀的各项参数就可以解决工业生产中的很多问题。 1 先导式减压阀静态的特性 1.1 流量特性与压力特性介绍 先导式减压阀入口流量q不变的前提下,减压阀的出口压力p2随进口压力p1的变化情况,称为其压力特性。减压阀入口压力p1不变的前提下,减压阀的出口压力p2随进口流量q的变化情况,称为其流量特性。 1.2 静态特性的分析如下 由式1可以表明,出口压力受先导阀弹簧变化量x ,主阀弹簧变化量y,和稳态液动力影响三方面因素的影响。而它们都与流入主阀的流量有关,则出口压力受流经主阀的流量变化的影响,为了保证流经减压阀的流量变化时,出口压力基本不变。我们使y>cd2πdsin(2φ),并且还需要适当增大主阀阀芯的直径D。适当的增大主阀阀芯的直径的原因是:当进口压力增大时,采用上述方法则第三项稳态液动力出口压力的影响较大。从而会出现当进口压力p1持续增大的时侯,出口压力p2会出现略有所下降的现象。 在忽略它的阀芯的自重和摩擦力和稳态液动力之后流量特性的平衡方程为: 2 先导式减压阀动态特性 2.1 先导式减压阀动态特性介绍 减压阀动态特性的主要测试就是减压阀压力阶跃响应特性。减压阀的阶跃特性是指减压阀开始工作时其减压阀的出口压力迅速升高并一直上升到超过其调定的压力值,在逐渐衰减稳定到它的调定压力值的过程。 2.2 先导式减压阀动态曲线的测试结果

什么是汽轮机调节系统的静态特性和动态特性

1.什么是汽轮机调节系统的静态特性和动态特性? 答:调节系统的工作特性有两种,即动态特性和静态特性。在稳定工况下,汽轮机的功率和转速之间的关系即为调节系统的静态特性。从一个稳定工况过渡到另一个稳定工况的过渡过程的特性叫做调节系统的动态特性,是指在过渡过程中机组的功率、转速、调节汽门的开度等参数随时间的变化规律。 2.汽封的作用是什么?轴封的作用是什么? 答:为了避免动、静部件之间的碰撞,必须留有适当的间隙,这些间隙的存在势必导致漏汽,为此必须加装密封装置----汽封。根据汽封在汽轮机中所处位置可分为:轴端汽封(简称轴封)、隔板汽封和围带汽封(通流部分汽封)三类。 轴封是汽封的一种。汽轮机轴封的作用是阻止汽缸内的蒸汽向外漏泄,低压缸排汽侧轴封是防止外界空气漏入汽缸。 3.低油压保护装置的作用是什么? 答:润滑油油压过低,将导致润滑油膜破坏,不但要损坏轴瓦。而且能造成动静之间摩擦等恶性事故,因此,在汽轮机的油系统中都装有润滑油低油压保护装置。 低油压保护装置一般具备以下作用: ⑴润滑油压低于正常要求数值时,首先发出信号,提醒运行人员注意并及时采取措施。 ⑵油压继续下降至某数值时,自动投入辅助油泵(交流、直流油泵),以提高油压。 ⑶辅助油泵起动后,油压仍继续下跌到某一数值应掉闸停机,再低时并停止盘车。 当汽轮机主油泵出口油压过低时,将危及调节及保护系统的工作,一般当该油压低至某一数值时,高压辅助油泵(调速油泵)自起动投入运行,以维持汽轮机的正常运行。 4.直流锅炉有何优缺点? 答:直流锅炉与自然循环锅炉相比主要优点是: (1)原则上它可适用于任何压力,但从水动力稳定性考虑,一般在高压以上(更多是超高压以上)才采用。 (2)节省钢材。它没有汽包、并可采用小直径蒸发管,使钢材消耗量明显下降。 (3)锅炉启、停时间短。它没有厚壁的汽包,在启、停时,需要加热、冷却的时间短.从而缩短了启、停时间。 (4)制造、运输、安装方便。 (5)受热面布置灵活。工质在管内强制流动.有利于传热及适合炉膛形状而灵活布置。

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

基于ANSYS的某型压力容器静态与动态特性分析

第33卷第3期2 0 18年8月青岛大学学报(工程技术版)JOURNAL OF QINGDAO UNIVERSITY (E&T) Vol. 33 No. 3 Aug. 2 0 18文章编号 # 1006 - 9798(2018)03 -0120 - 05; DO * 10.13306/1 1006 - 9798.2018.03.022 基于ANSYS 的某型压力容器静态与动态特性分析 黄妮,戴作强 (青岛大学机电工程学院,山东青岛266071) 摘要:针对压力容器容易发生强度失效和稳定失效等问题,本文基于A N S Y S 软件对某型压力容 器的静态与动态特性进行研究,获取了其应力集中危险位置。在三维建模软件S o lid W o rk s 中,建 立压力容器的三维几何模型,使用自由边划分中面进行网格划分,并给出了载荷及边界条件,将前 处理完成的压力容器模型以c d b 格式导人A N S Y S 软件中进行求解,并在空罐状态下对压力容器 进行动力学特性分析。分析结果表明,该压力容器的静强度具有一定的余量,不会发生强度失效; 在空罐状态下,压力容器筒体和封头容易发生共振,可以在筒体位置适当增加阻尼和约朿,以加强 其稳定性,或者在振型最大处增大厚度以提高刚度,防止和避免共振带来的危害。该研究保障了压 力容器在操作工况下安全可靠。 关键词:压力容器;A N S Y S #静强度分析;模态分析 中图分类号:T H 49 文献标识码:A 压力容器是化工生产中极为重要的一类储运设备[1],随着存储介质质量和种类的变化,压力容器产生失效事 故的可能性在不断增加,所以对压力容器进行静态和动态特性研究,分析其结构可靠性具有重要意义。近年来, 对压力容器可靠性的研究有许多。郑云虎等人)]采用静强度和模态分析结合的方法,对立式圆柱薄壁容器的振 动特性进行了研究,获得了压力容器的强度和刚度薄弱位置;张自斌等人)]对压力容器的宏观力学响应进行了分 析,并作出应力安全评定,同时运用子模型技术对压力容器接管区域进行了更为精确的应力分析;赵积鹏等人)] 采用特征值屈曲分析方法,得出了压力容器屈曲模态形状和临界外压,提出了压力容器安全使用的临界条件;朱 国樑)]应用A N S Y S 分析了立式厚壁压力容器筒体与封头的应力分布特点,提出了优化措施;马言等人)]针对压 力容器分层缺陷的扩展问题,从动力学角度对压力容器进行模态分析,找到了分层缺陷扩展的原因。基于此,本 文从静态和动态两方面研究某型压力容器的静强度薄弱环节和抗振性能不足之处,根据有限元分析结果,对其进 行安全性能评价及动力学特性分析,保障压力容器在操作工况下安全可靠。该研究对分析压力容器的结构可靠 性具有重要意义,具有一定的实际应用价值。 1三维模型的建立 液体干燥器的容积约为51 m 3,由筒体、封头和裙座等组成。压力容器总长约为15 900 mm ,其中,筒体高度 10 BOOmm ,筒体前段厚度为26 mm ,筒体后段厚度为34 m m ,封头为标准椭圆形,其内径A =2 B O O mm ,两端封头厚度 为29. 62 m m ,裙座厚度为20 m m ,个地脚螺栓对称分布于裙座底端。压力容器材料为Q 345R ,材料性能如表1所示。 在三维建模软件S o lid W o rk s 中,建立压力容器三维几何模 型,压力容器三维图如图1所示。在有限元分析中,微小的结构 可能导致建模时间和计算量大幅增加,因此应抓住模型主要影 响因素,忽略其次要影响因素,对其进行简化处理78]。对该压力 容器焊缝、温度计热电偶口、露点仪口、放空口、公用工程口及小倒角等进行简化,压力容器简化模型如图2所示。2 有限元前处理2.1中面处理及网格划分 H y p e rM e sh 是一个高质量高效率的有限元前处理器,其强大的几何清理功能大大简化了对复杂几何进行仿收稿日期# 2017-12-10;修回日期# 2018 - 02 - 20 基金项目:黄妮(1994 -),女,湖南常德人,硕士研究生,主要研究方向为电动汽车智能化动力集成技术。 作者筒介:戴作强(1962 -),男,硕士,教授,主要研究方向为锂离子电池材料与系统。Email: daizuoqiangqdu@https://www.wendangku.net/doc/ee12923617.html, 表1材料性能杨氏弹性密度/屈服极材泊松比模量/Pa k g /m 3限/ M P a Q 345R 2. 1X 1011 0.37 890345

先导式减压阀

先导式减压阀的结构: 按结构形式可分为膜片式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可人为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式 自力式减压阀的工作由阀后压力进行控制。当压力感应器检测到阀门压力指示升高时,减压阀阀门开度减小;当检测到减压阀后压力减小,减压阀阀门开度增大,以满足控制要求。 先导式减压阀——该阀门的减压比必须在一定程度上高于系统值;即使在最大或者最小流量时它也应该能够对正作用或者反作用控制信号做出响应。这些阀门应该针对有用控制范围选择,即最大流量的20%到80%。正常为等比型或者具有等比特性。这些类型的阀门本身具有比例控制所要求的最佳流量特性及流量范围。 减压阀的种类很多,常见的有:先导活塞式减压阀、薄膜式减压阀、波纹管式减压阀、比例式减压阀、自力式减压阀、直接作用自力式减压阀、背压调节阀等等。它们分别适用于不同的工作介质。 不同的形式有不同的具体工作原理。但总的原理还是:减压阀是通过启闭件的节流,将进口压力减至某一需要的出口压力,并使出口压力保持稳定。但一般减压阀都要求进出口压差必须≥0.2Mpa。 A,先导式减压阀产品介绍: 用途和主要性能:本阀适用于水、蒸汽、空气介质管路上,通过调节使进口压力降低至某一需要的出口压力,当进口压力与流量有变化时,靠介质本身的能量自动保持出口压力在一定范围内,但进口压力和出口压力之差必须 ≥0.2MPA/CM 编辑本段 先导式减压阀的工作原理 减压阀出厂时,调节弹簧处于未压缩状态,此时主阀瓣和付阀瓣处于关闭状态,使用时按顺时针转动调节螺钉,压缩调节弹簧,使膜瓣移顶开付阀瓣,介质由a孔通过付阀座到b孔进入活塞上方,活塞在介质压力的作用下,向下移动推动主阀瓣离开主阀座,使介质流向阀后.同时由c孔进入膜片下方,当阀后压力超过调定压力时,推动膜片上移压缩调节弹簧,付阀瓣随之向关闭方向移动,使流入活塞上方的介质减小,压力也随之下降,此时的主阀瓣在主阀瓣弹簧力的推动上下移,使主阀瓣与主阀座的间隙减小,介质流量也随之减小,使阀后压力也随之下降到

先导式减压阀

BYJ 先导式减压型比例阀 本阀是由比例直动式溢流阀、限压阀和减压阀组成,根据输入电流的大小比例控制系统内压力。 Proportional pilot-operated pressure reducing valve 技术参数Technical specification Comprised of pr oportional directly-operated relief valv e,pressure lim iting valve an d reducing valve,this pro duct controls a sec ondary pressure from the according to value of input current. system pressure BYJ 先导式减压型比例阀 Proportional pilot-operated reducing valve (Testing Condition ) -6 2 -6 2 νν

外形尺寸Outside size 底板尺寸Plate size Proportional pilot-operated pressure reducing valve BYJ 先导式减压型比例阀 BYLZ /BYL 型比例电液压力流量控制阀 本阀是用两路电信号分别控制液压系统的压力和流量的比例阀;本阀以很小的压差追踪负载压力,控制泵压力,是一种节能型阀。 Proportional electro-hydraulic control P-Q valve 技术参数Technical specification This proportional valv e adopts two electrical loops to control pr essure and flow of hydraulic system .Using very sm all pressure drop to track pressur e and control the pump pr ess ure,it is an energy-saving valve. respectively load

螺栓联接的静动态特性

实验一 受轴向载荷螺栓联接的静态特性 螺栓联接是广泛应用于各种机械设备中的一种重要联接形式,受预紧力和轴向工作载荷的螺栓联接中,最常见的应用实例是气缸盖与气缸体的联接,如图1-1所示。螺栓受到的总拉力F 0除了与预紧力F '和工作载荷F 有关外,还受到螺栓刚度C 1和C 2被联接件刚度等因素的影响。图6-2为一螺栓和被联接件的受力与变形示意图。 图1-1 气缸盖与气缸体的联接 图1-2 螺栓和被联接件受力、变形情况 (a)螺母未拧紧 (b)螺母已拧紧 (c)螺栓承受工作载荷 图1-2(a)所示为螺栓刚好拧好到与被联接件相接触的的状态,此时螺栓和被联接件均未受力,因此无变形发生。 图1-2(b)所示为螺母已拧紧,但联接未受工作载荷的状态,此时螺栓受预紧力F '的拉伸作用,其伸长量为1δ;而被联接件则在力F '的作用下被压缩,其压缩量为2δ。 图1-2(c)所示为联接承受工作载荷F 时的情况,此时螺栓所受的拉力由F '增大至F 0 (螺栓的总拉力),螺栓的伸长量由1δ增大至11δδ?+;与此同时,被联接件则因螺栓伸长而被 放松,其压缩变形减少了2δ?,减小到2δ''(222δδδ?-='',2δ''为剩余变形量);被联接 件的压力由F '减少至F ''(剩余预紧力)。根据联结的变形协调条件,压缩变形的减少量2δ?应等于螺栓拉伸变形的增加量1δ?,即21δδ?=?。 一、 实验目的 本实验通过计算和测量螺栓受力情况及静动态特性参数达到以下目的: 1. 了解螺栓联接在拧紧过程中各部分的受力情况; 2. 计算螺栓相对刚度并绘制螺栓连接的受力变形图; 3. 验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响; 4. 通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、 实验设备及工作原理 1. 单螺栓连接实验台(如图1-3所示)

机械动力学与动态特性分析

课程名称:机械动力学与动态特性分析 任课老师:蒙艳玫 学院:机械工程学院 专业:机械制造及其自动化 姓名:韦荣发 学号: 1211301011

1、用机械网络分析一下系统的简化模型: 碎石机(用双重动力减震器) 画出上述系统的机械网络图,设计和分析减振效果 解:(1)由上图可得其机械网络图,如图1-1所示。 图1-1 (2)设计与分析 由图1-1机械网络图可知,整个系统会因偏心质量而发生振动,已知偏心质量m ,偏心距为e ,因此,激振力为: 由以上条件,根据基尔霍夫 节点定律列出位移响应方程: pcos wt (1)

导纳阵为: 所以,若要消除m2、K2系统的振动,即在m2点激振时,其位移响应等于零, 则其自导纳H22=0,所以,。所以: 即,,此频率就是反共振频率,当激振力的频率等于该频率时,m2 和m3的位移等于零.因此在设计减振器时,只要合理的选择减振器的质量、刚度,使它在单独振动时的固有频率等于激振力的频率,就能够消碎石机的振动。 2、结合实际研究课题,以一实际结构或机器为对象, (1)作FRFS测试分析,试述: 1)目的 结合甘蔗实地种植情况和蔗地地形, 利用ADAMS View建立一个轮式小型甘蔗收割机的样机模型, 对其行走转向性能进行仿真分析, 并在平路面基础上建立了田间常见障碍物模型,进一步对收割机越障性能进行仿真研究; 通过虚拟仿真和物理试验相结合的方法,分析比较了不同轴承及间距对刀轴刚性及甘蔗断面切割质盆的影响,并在此基础上提出了一种高刚性的轴承布局方法,为设计低破头率的小型甘蔗联合收获机切割器提供了依据. 2)方法、原理 ①选用多体动力学仿真软件ADAMS View作为仿真分析的软件平台 ②将切割器的结构在Pro/E软件中建立三维实体模型,然后将模型导入到ANSYS软件中,将轴承利用弹性单元进行模拟 3)实验装置,过程 选用多体动力学仿真软件ADAMS View作为仿真分析的软件平台, 对轮胎、悬架转向盘和地面进行。简化建模。模型中所用到的是全局坐标系: 坐标原点在两前轮中心连线中点, 收割机前进方向为X轴负向, 垂直水平面向上为Y轴正向, Z轴正向由右手定则确定, 其质量和转动惯量与实际底盘相同。根据甘蔗种植情

先导薄膜式减压阀集导阀和主阀于一体,导阀的设计与直接

先导薄膜式减压阀集导阀和主阀于一体,导阀的设计与直接作用式减压阀类似,是一种高性能、外部取压、大流量的减压阀,无论上游压力的变化或下游负荷的波动,薄膜式减压阀均能实现稳定的压力控制。适用于常温介质的软密封和高温介质的硬密封两种密封形式,采用德国先进技术标准制造生产 操作方式:自动设计特色最大减压比可达20:1 主阀和导阀的膜片增大 采用外部取压检测结构 控制精度可达±3% 密封为单球形结构,密封性能高,泄露量小 公称通径:DN15~DN250 公称压力:1.6~2.5MPa 材质:铸铁、304、316、304L、316L、WCB、CF3、CF8、铸钢、碳钢、不锈钢。 适用介质:气体、液体、蒸汽 Y42X直接作用弹簧薄膜式减压阀主要由调节弹簧、膜片、活塞、阀座、阀瓣等零件组成。利用膜片直接传感下游压力驱动阀瓣,弹簧薄膜式减压阀控制阀瓣开度完成减压阀稳定功能。在城市建筑、高层建筑的冷热供水系统中,可取代常规分区水管,节省设备。也可在通常的冷热水管网中,起减压稳定作用。适用于工作温度0~90C的水、空气和非腐蚀液体管路上。在高层建筑的冷热水供水和消防供水系统中,可取代常规分区水管,简化和节省系统的设备,降低工程造价,采用德国先进技术标准制造生产。调压、稳定动作平稳,是使用于水和非腐蚀性液体介质的管路。公称压力:PN1.6~2.5MPa 公称通径:DN15~500 材质:铸铁、304、316、304L、316L、WCB、CF3、CF8、铸钢、碳钢、不锈钢。 连接方式:法兰、螺纹 Y43H蒸汽减压阀由主阀和导阀两部分组成,主阀主要由阀座、主阀盘、活塞、缸套、弹簧等零件组成。蒸汽减压阀导阀主要由阀座、阀瓣、膜片、弹簧、调节弹簧等零件组成。通过调节调节弹簧压力设定出口压力、利用膜片传感出口压力变化,通过导阀启闭驱动活塞调节主阀节流部位过流面积的大小,实现减压稳压功能。主要用于蒸汽管路,起减压稳压作用,采用德国先进技术标准制造生产。 公称压力:PN1.6~16.0MPa 公称通径:DN15~500 材质:铸铁、304、316、304L、316L、WCB、CF3、CF8、铸钢、碳钢、不锈钢。 连接方式:法兰、螺纹 Fig.Y45H杠杆式蒸汽减压阀主要由阀体、阀座、阀瓣等零件组成,采用双阀座、双缀体阀瓣的结构。杠杆式蒸汽减压阀采用压力平衡式阀瓣、升降调节。其调节机构采用杠杆式,杠杆式蒸汽减压阀可配用DKJ型或其他型角行程电动执行器,实现遥控和自动控制,杠杆式减压阀采用德国先进技术标准制造生产。 杠杆式蒸汽减压阀的减压阀比用到0.6较为合适。主要用于蒸汽管路,调节压力。杠杆式蒸汽减压阀广泛应用在热电联产、轻纺、印染、石化、制糖等行业。

推进式堵水开关静动态特性分析

2012年12月第40卷第23期 机床与液压 MACHINE TOOL &HYDRAULICS Dec.2012Vol.40No.23 DOI :10.3969/j.issn.1001-3881.2012.23.013 收稿日期:2011-11-16 基金项目:中原石油勘探局资助项目(2011202) 作者简介:张俊亮(1976—),男,工程师,中原油田博士后工作站在站博士后,从事井下工具的研究工作。Email :zhangdzu @https://www.wendangku.net/doc/ee12923617.html, 。 推进式堵水开关静动态特性分析 张俊亮,韩进,张强德,曹海燕,李丽云 (中原油田采油工程技术研究院,河南濮阳457001) 摘要:推进式堵水开关是一种井下智能堵水工具。开关在打开和关闭状态下,活塞轴向受力平衡,在打开和关闭瞬间,因地层和油套环空压差造成活塞受轴向冲击。分析了活塞开、关时的液压冲击力,并结合AMESim 软件对活塞受冲击状况进行仿真,结果表明:增加活塞环空长度、降低电机转速、增加螺杆轴向限位轴肩等可减小瞬态液动力对开关的活塞产生的轴向冲击。为堵水开关结构优化提供设计了依据。 关键词:堵水开关;静动态分析;冲击;仿真中图分类号:TE931文献标识码:A 文章编号:1001-3881(2012)23-051-3 Static and Dynamic Characteristics Analysis of Push Type Switch for Water Blocking ZHANG Junliang ,HAN Jin ,ZHANG Qiangde ,CAO Haiyan ,LI Liyun (Petroleum Engineering Institute of ZYOF ,Puyang Henan 457001,China ) Abstract :Push type switch for water blocking is a type of intelligent blocking tool used in oil well.In the state of open or close ,the piston of the switch bearing balanced axial force ,but on the moment of opening and closing ,for the differential space pressure of annular of oil and stratum ,there was the axial impact to the piston.The hydraulic impact was analyzed at opening or closing of the pis-ton ,and AMESim software was used to simulate the impact states.The results show that lengthening the piston annular ,lowering motor speed and increasing axial limit shaft shoulder of screw rod ,the axial impact to the piston by moment hydra-dynamic force on opening and closing of the piston can be lightened.It provides design basis for optimal structure of the water blocking switch. Keywords :Water blocking switch ;Static and dynamic analysis ;Impact ;Simulation 推进式堵水开关是用于高含水油井堵水作业的井下工具,与封隔器等配套使用,每个油层对应一个开关,主要功能是关闭高含水层,打开低含水层,以实现提高采收率的目的。推进式堵水开关克服以往机械式堵水开关受地层压差影响的弊端,在打开和关闭状态下实现轴向压力平衡,但在开-关或关-开瞬间, 因地层压力与套压不同而产生瞬态液动力 [1-2] 。瞬态液动力对开关的活塞产生轴向冲击,影响开关的打开或关闭,严重时可能破坏开关的机械结构。因此通过分析开关静动态特性,以确定合理机械结构,确保推进式堵水开关可靠工作。 1推进式堵水开关结构 推进式堵水开关结构如图1所示,主要由上接头、传感器、控制电路、驱动电机、驱动螺杆、外套筒、活塞、活塞套、下接头等组成,电机安装在活塞套上端部,驱动螺杆一端与电机轴配合,另一端通过螺纹与活塞连接。传感器接收井口环空压力脉冲信号,控制电路根据信号情况控制驱动电机正反转,电机通过驱动螺杆将转动变为活塞的上下移动。电机正转推动活塞下行至下限位置打开该地层,电机反转推动活塞上行至活塞上限位置关闭该地层。推进式堵水开关采用侧进液模式,活塞装有密封圈,阻止液体流入活塞底部或顶部空间,使液体仅在活塞环形空间内流动,图1为开关处于打开状态,进液口与出液口连通 。 图1推进式堵水开关结构图

先导式减压阀(YK43X F)

查阅:减压阀 先导式减压阀(YK43X/F ) 简介、结构、原理、性能、尺寸、安装、调压 简介 Yk43X/F 系先导式减压阀适用于工作温度≤80/150℃的空气﹑煤气、液化气﹑氨气、氧气等管路上。本阀通过启闭件的节流,将使进口压力降至某一需要的出口压力,并借助介质本身的能量,使阀后压力自动满足预定要求,适应工况的要求。本阀进口压力与出口压力之差必须≥0.15MPa 。 结构 先导式减压阀由主阀和导阀二大部分组成,主阀体下部有下盖﹑主阀弹簧﹑主阀瓣,主阀瓣由主阀弹簧支撑,使主阀处于密封状态。主阀体上部有活塞﹑缸套等。当活塞受介质压力后, 靠缸套导向推动主阀瓣,使阀门开启;导阀体内有导阀弹簧﹑导阀瓣﹑膜片等,导阀弹簧支承导阀瓣,使导阀处于密封状态;导阀上盖内有调节弹簧﹑调节螺栓,便于调节所需的工作压力。 原理 本阀出厂时,主阀与导阀是关闭的。使用时,顺时针方向旋转调节螺栓,顶开导阀瓣,介质由“a”道通入导阀腔进入“S”道,靠介质压力推动活塞,使主阀瓣

开启,介质流向阀后,同时由“B”道进入膜片下腔。当阀后压力超过调定压力 时,推动膜片压缩调节弹簧,导阀渐渐关闭,流入活塞上部介质减少,活塞上 升使主阀瓣在主阀弹簧的作用下也渐渐关闭,A腔流向B腔介质较少,阀后 压力下降,阀后压力的微小变化,影响膜片和调节弹簧的平衡使膜片上下移动, 推动导阀和活塞工作,使主阀上下移动控制介质流量,所以阀后压力保持稳定。性能 尺寸 查阅:减压阀

安装 1、本阀安装前应仔细核对使用情况是否与标牌规定相符; 2、本阀安装在水平管道上,阀体所示箭头与介质流向应一致; 3、减压阀前后应有一段直管,阀前0.6×DN以上,阀后10×DN以上。 4、安装时应进行以下工作: (1)将阀门两端封盖取下; (2)检查连接螺栓,无松动; (3)阀前管道必须冲洗干净。 5、本阀在管路上只作减压用,不作截止用,使用介质必须经过过滤器过滤; 6、使用时,将调节螺钉顺时针方向缓慢旋转,使出口压力升至所需压力,调 整后,将螺钉锁紧。 调压 1、关闭减压阀前的闸阀,开启减压阀后的闸阀,制造下游低压环境; 2、将调节螺钉按逆时针旋转至最上位置(相对最低出口压力),然后关闭减 压阀后闸阀; 3、慢慢开启减压阀前的闸阀至全开; 4、顺时针慢慢旋转调节螺钉,将出口压力调至所需要的压力(以阀后表压为 准);调整好后,将锁紧螺母锁紧,打开减压阀后闸阀; 5、如在调整时出口压力高于设定压力,须从第一步开始重新调整,即只能从 低压向高压调。 查阅:减压阀

轻卡货箱静动态性能分析

10.16638/https://www.wendangku.net/doc/ee12923617.html,ki.1671-7988.2018.20.037 轻卡货箱静动态性能分析 游道亮 (江铃汽车股份有限公司产品开发技术中心,江西南昌330052) 摘要:为了获取某轻卡货箱的静动态性能,采用有限元方法和Hypermesh软件对货箱的四种典型工况进行强度分析,强度性能分析结果表明其最大应力低于其材料许用应力,能够满足强度设计要求。自由模态分析结果表明其一阶扭转频率和一阶弯曲频率分别为8.8Hz和33.6Hz,有效地避开了发动机怠速频率,满足模态设计要求。刚度分析结果表明其扭转刚度值为 2.48E+4N*m/rad,大于目标要求值,能够刚度设计要求,因此其静动态性能均满足要求。 关键词:货箱;强度;模态;刚度 中图分类号:TH242 文献标识码:A 文章编号:1671-7988(2018)20-100-03 Static and Dynamic Performance Analysis of a Light Truck Packing Box You Daoliang (Product Development & Technology Center, Jiangling Motors Corporation Limited, Jiangxi Nanchang 330052) Abstract: Aiming at obtaining static and dynamic performance of a light truck packing box, the four typical conditions of the packing box was strength analysis by adopting finite element method and Hypermesh software, the strength analysis results showed that the maximum stress was less than the allowable stress of the material, it meet the strength design requirements. The modal analysis results showed that the first order torsional frequency and first order bending frequency were 8.8Hz and 33.6Hz, it could avoid engine idle frequency, so it meet the modal requirements. The stiffness analysis results showed that the torsional stiffness value was 2.48E+4N*m/rad, it could meet the stiffness requirements, so the packing box could meet the static and dynamic performance requirements. Keywords: packing box; strength; modal; stiffness CLC NO.: TH242 Document Code: A Article ID: 1671-7988(2018)20-100-03 引言 货厢是轻卡的主要组成部分,其主要用来装载货物,其主要由货厢底片、货厢横梁、货厢边板等组成。轻卡货厢是比较关键的高负荷部件,其性能的优劣直接影响整车的质量,其设计时应当同时考虑其强度性能、模态性能和刚度性能,因此采用有限元方法对某新型轻卡货箱进行典型工况的强度分析、自由模态分析和扭转刚度分析,获取其静动态性能,验证其是否满足设计要求。 1 货箱强度性能分析 1.1 建立货箱有限元模型 将该轻卡货箱及其车架的3D模型导入有限元前处理软件Hypermesh [1,2]中,并且对其钣金件进行抽中面处理,该货箱强度分析模型如图1所示,其中焊缝采用SEAM单元模拟,其中SEAM单元个数为620个,螺栓也采用CBEAM与RBE2 作者简介:游道亮,(1978.6-),男,江西瑞昌人,学士,中级工程师,就职于江铃汽车股份有限公司,主要研究方向为汽车设计。 100

相关文档