文档库 最新最全的文档下载
当前位置:文档库 › 第七章 材料在介质与应力共同作用下的断裂

第七章 材料在介质与应力共同作用下的断裂

金属管道腐蚀防护基础知识

编号:SY-AQ-09483 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 金属管道腐蚀防护基础知识 Basic knowledge of metal pipeline corrosion protection

金属管道腐蚀防护基础知识 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 1.什么叫金属腐蚀? 金属腐蚀是金属与周围介质发生化学、电化学或物理作用成为金属化合物而受破坏的一种现象。 2.金属管道常见的腐蚀按其作用原理可分为哪几种? 金属管道常见的腐蚀按其作用原理可分为化学腐蚀和电化学腐蚀两种。 3.常用的防腐措施有哪几种? 常用的防腐措施有涂层、衬里、电法保护和缓蚀剂。 4.什么叫化学腐蚀? 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。化学腐蚀又可分为气体腐蚀和在非电解质溶液中的腐蚀。 5.什么叫电化学腐蚀? 电化学腐蚀是指金属与电解质因发生电化学反应而产生破坏的

现象。 6.缝隙腐蚀是如何产生的? 许多金属构件是由螺钉、铆、焊等方式连接的,在这些连接件或焊接接头缺陷处可能出现狭窄的缝隙,其缝宽(一般在 0.025~0.1mm)足以使电解质溶液进入,使缝内金属与缝外金属构成短路原电池,并且在缝内发生强烈的腐蚀,这种局部腐蚀称为缝隙腐蚀。 7.什么是点腐蚀? 点腐蚀是指腐蚀集中于金属表面的局部区域范围内,并深入到金属内部的孔状腐蚀形态。 8.点蚀和坑蚀各有什么特征? 点蚀:坑孔直径小于深度;坑蚀:坑孔直径大于深度。 9.什么是应力腐蚀,应力腐蚀按腐蚀机理可分为几种? 由残余或外加拉应力导致的应变和腐蚀联合作用所产生的材料破坏过程称为应力腐蚀。应力腐蚀按腐蚀机理可分为:(1)阳极溶解(2)氢致开裂。

材料力学A弯曲应力作业答案

1. 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2 kN ,F 2=5 kN ,试计算梁 内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于F 2作用点所在横截面): M max =2kNm (3) 计算应力: 最大应力:MPa W M Z 9.4661080401029 23 max max =???==-σ K 点的应力:MPa I y M Z K 2.3512 1080401021233 max =???== -σ 1 z

5. 铸铁梁的载荷及截面尺寸如图所示。许用拉应力[σl ]=40 MPa ,许用压应力[σc ]=160 MPa 。 试按正应力强度条件校核梁的强度。若载荷不变,但将T 形截面倒置成为⊥形,是否 合理?何故? 解:(1) 画梁的弯矩图 由弯矩图知:可能危险截面是B 和C 截面 (2) 计算截面几何性质 形心位置和形心惯性矩 mm A y A y i Ci i C 5.15730 20020030100 3020021520030=?+???+??=∑∑= 4 6232 310125.60200 30)1005.157(12 2003020030)5.157215(1230200m I zC -?=??-+?+??-+?=(3) 强度计算 B 截面的最大压应力 3max 6 20100.157552.4 []60.12510 B C C C zC M y MPa I σσ-??===?p B 截面的最大拉应力 3max 6 (0.23)2010(0.230.1575) 24.12 []60.12510B C t t zC M y MPa I σσ--?-===?p C 截面的最大拉应力 3max 6 10100.157526.2 []60.12510 C C t t zC M y MPa I σσ-??===?p 梁的强度足够。 (4) 讨论:当梁的截面倒置时,梁内的最大拉应力发生在B 截面上。 3max 6 20100.157552.4 []60.12510 B C t t ZC M y MPa I σσ-??===?f 梁的强度不够。 x

金属的应力腐蚀和氢脆断裂

第六章金属的应力腐蚀和氢脆断裂 §6.1应力腐蚀 一、应力腐蚀及其产生条件 1、定义与特点 (1)定义 (2)特点 特定介质(表6-1) 低碳钢、低合金钢——碱脆、硝脆 不锈钢——氯脆 铜合金——氨脆 2、产生条件 应力:外应力、残余应力; 化学介质:一定材料对应一定的化学介质; 金属材料:化学成分、显微组织、强化程度等。 二、应力腐蚀 1、机理(图6-1) 滑移——溶解理论(钝化膜破坏理论)

a)应力作用下,滑移台阶露头且钝化膜破裂(在表面或裂纹面); b)电化学腐蚀(有钝化膜的金属为阴极,新鲜金属为阳极); c)应力集中,使阳极电极电位降低,加大腐蚀;d)若应力集中始终存在,则微电池反应不断进行,钝化膜不能恢复。则裂纹逐步向纵深扩展。(该理论只能很好地解释沿晶断裂的应力腐蚀)2、断口特征 宏观:有亚稳扩展区,最后瞬断区(与疲劳裂纹相似);断口呈黑色或灰色。 微观:显微裂纹呈枯树枝状;腐蚀坑;沿晶断裂和穿晶断裂。(见图6-2,和p2) 三、力学性能指标 1、临界应力场强度因子K ISCC 恒定载荷,特定介质,测K I~t f曲线。 将不发生应力腐蚀断裂的最大应力场强度因子,称为应力腐蚀临界应力场强度因子。 2、裂纹扩展速度da/dt K I>K ISCC,裂纹扩展,速率da/dt Da/dt~ K I|曲线上的三个阶段(初始、稳定、失稳)由(图6-7,P152)可以估算机件的剩余寿命。 四、防止应力腐蚀的措施 1、合理选材; 2、减少拉应力; 3、改善化学介

质;4、采用电化学保护,使金属远离电化学腐蚀区域。 §6-2 氢脆 由于氢和应力的共同作用,而导致金属材料产生脆性断裂的现象,称为氢脆断裂(简称氢脆) 一、氢在金属中存在的形式 内含的(冶炼和加工中带入的氢);外来的(工作中,吸H)。 间隙原子状,固溶在金属中; 分子状,气泡中; 化学物(氢化物)。 二、氢脆类型及其特征 1、氢蚀(或称气蚀) 高压气泡(对H,CH4) 宏观断口:呈氧化色,颗粒状(沿晶); 微观断口:晶界明显加宽,沿晶断裂。 2)白点(发裂) 氢的溶解度↓,形成气泡体积↑,将金属的局部胀裂。 宏观:断面呈圆形或椭圆形,颜色为银白色。甚至有白线。 3)氢化物 形成氢化物(凝固、热加工时形成);或(应力作用下,元素扩散而形成)。 氢化物很硬、脆,与基体结合不牢。

材料力学习题解答弯曲应力

6.1. 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa ,试确 定此梁横截面的尺寸。 解:(1) 画梁的弯矩图 由弯矩图知: 2max 2 ql M = (2) 计算抗弯截面系数 32 323669 h bh h W === (3) 强度计算 2 2max max 33912[]29 416 277ql M ql h W h h mm b mm σσ= ==?≤∴≥==≥ 6.2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160 MPa ,试求许可载荷。 解:(1) 画梁的弯矩图 由弯矩图知: No20a x ql 2x

max 23 P M = (2) 查表得抗弯截面系数 6323710W m -=? (3) 强度计算 max max 66 22 3[] 33[]3237101601056.8822 P M P W W W W P kN σσσ-===?≤????∴≤== 取许可载荷 []57P kN = 6.3. 图示圆轴的外伸部分系空心轴。试作轴弯矩图,并求轴内最大正应力。 解:(1) 画梁的弯矩图 由弯矩图知:可能危险截面是C 和B 截面 (2) 计算危险截面上的最大正应力值 C 截面: 3max 33 32 1.341063.20.0632 C C C C C M M MPa d W σππ??====? B 截面: 3max 34 3444 0.91062.10.060.045(1)(1)32320.06B B B B B B B M M MPa D d W D σππ?====?-- (3) 轴内的最大正应力值 MPa C 2.63max max ==σσ x

金属材料的应力腐蚀

金属材料的应力腐蚀 金属材料的应力腐蚀开裂,是指在静拉伸力和腐蚀介质的共同作用下导致腐蚀开裂的现象。它与单纯由应力造成的破坏不同,这种腐蚀在极低的应力条件下也能发生;它与单纯由腐蚀引起的破坏也不同,腐蚀性极弱的介质也能引起腐蚀开裂。它往往是没有先兆的进展迅速的突然断裂,容易造成严重的事故。因此它是一种危害性极大的破坏形式。 按照裂纹发展过程的电化学反应,可以把应力腐蚀分为两个基本类别:阳极反应敏感型和阴极反应敏感型。 阳极反应敏感型应力腐蚀,是指这类应力腐蚀裂纹的形成和发展过程是以裂纹处金属的阳极溶解为基础的,裂纹的成长速度也由金属阳极溶解速度决定。 阴极反应敏感型应力腐蚀,是指这类应反应过程中由于阴极吸氢而造成的脆性破坏,它也称为氢脆型应力腐蚀,也称氢脆。 通常说的应力腐蚀,指的是阳极反应敏感型应力腐蚀。金属材料发生应力腐蚀的特征,可从四个方面说明 1、应力 产生应力俯视的应力主要是其中的静态部分,它可以是外加载荷或装配力(例如拧螺栓的力、胀接力等)引起的应力,也可以是构件在加工、热处理、焊接等过程中产生的内应力。不管来源如何,导致应力腐蚀开裂的应力必须有拉伸应力的成分,压缩应力是不会引起应力腐蚀开裂的。此外,这种应力通常是比较轻微的。如果不是在腐蚀

环境中,这样小的应力是不会使构件发生机械性的破坏。构成破坏的应力值要根据材料、腐蚀介质等具体情况来确定。 2、腐蚀介质 产生应力腐蚀的材料和介质并不是任意的,只有二者是某种组合时才会发生应力腐蚀。引起普通钢应力腐蚀的腐蚀介质有:氢氧化物溶液;含有硝酸盐、碳酸盐、硫化氢的水溶液;海水,硫酸-硝酸混合液;融化的锌、锂;热的三氯化铁溶液;液氨。引起奥氏体不锈钢应力腐蚀的介质有:酸性和中性的氯化物溶液;海水;熔融氯化物;热的氟化物溶液;日的氢氧化物溶液。 3、材料 一般认为极纯的金属不产生应力腐蚀破坏,只有在合金或含有杂质的金属中才会发生。 4、破坏过程 a.孕育阶段。这是在应力腐蚀裂纹产生前的一段时间,为裂纹的成核作准备。 b.裂纹稳定扩展阶段。在应力和腐蚀介质的联合作用下,裂纹缓慢扩展 c.裂纹失稳扩展阶段。这是最后的机械性破坏。 另外,金属材料的应力腐蚀破裂还有一个特点是金属的开裂与金属本身厚度无关。常见的厚度大腐蚀也慢(均匀腐蚀)的情况在这里不适用。因此,靠增加金属厚度来延缓应力腐蚀破裂几乎是无效的。

应力状态——材料力学

土体应力计算 补充一、力学基础知识 材料力学研究物体受力后的内在表现,即变形规律和破坏特征。 一、材料力学的研究对象 材料力学以“梁、杆”为主要研究对象。

二、材料力学的任务 材料力学的任务:在满足强度、刚度、稳定性的要求下,以最经济的代价,为构件确定合理的形状和尺寸,选择适宜的材料,而提供必要的理论基础和计算方法。 强度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。刚度:杆件在外载作用下,抵抗弹性变形的能力。 稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。 如:自行车结构也有强度、刚度和稳定问题; 大型桥梁的强度、刚度、稳定问题 强度、刚度、稳定性

三、基本假设 1、连续性假设:物质密实地充满物体所在空间,毫无空隙。(可用微积分数学工具) 2、均匀性假设:物体内,各处的力学性质完全相同。 3、各向同性假设:组成物体的材料沿各方向的力学性质完全相同。(这样的材料称为各项同性材料;沿各方向的力学性质不同的材料称为各项异性材料。) 4、小变形假设:材料力学所研究的构件在载荷作用下的变形与原始尺寸相比甚小,故对构件进行受力分析时可忽略其变形。 假设

四、杆件变形的基本形式

五、内力?截面法?轴力 1、内力 指由外力作用所引起的、物体内相邻部分之间分布内力系的合成(附加内力)。 2、截面法 内力的计算是分析构件强度、刚度、稳定性等问题的基础。求内力的一般方法是截面法。

(1)截面法的基本步骤: ①截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面上的未知内力(此时截开面上的内力对所留部分而言是外力) 截面法

金属材料应力腐蚀裂纹的探讨

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

腐蚀的分类及特点

[分享] 腐蚀的分类及特点 特点, 腐蚀, 分类 - 腐蚀的分类及特点腐蚀的分类及特点 1 点蚀 点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经唱法生在表面有钝化膜或保护膜的金属上。 由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl-)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。 在石油、化工的腐蚀失效类型统计中,点蚀约占20%~25%。流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。粗糙的表面比光滑的表面更容易发生点蚀。 PH值降低、温度升高都会增加点蚀的倾向。氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。但某些含氧阴离子(如氢氧化物、铬酸盐、硝酸盐和硫酸盐等)能防止点蚀。 点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。 2 缝隙腐蚀 在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。对钛及钛合金来说,缝隙腐蚀是最应关注的腐蚀现象。介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小,阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧阴离子的增加会减小缝隙腐蚀量。 3 应力腐蚀 材料在特定的腐蚀介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力,以及裂缝锈蚀产物的楔入应力等)下,所出现的低于强度极限的脆性开裂现象,称为应力腐蚀开裂。 应力腐蚀开裂是先在金属的腐蚀敏感部位形成微小凹坑,产生细长的裂缝,且裂缝扩展很快,能在短时间内发生严重的破坏。应力腐蚀开裂在石油、化工腐蚀失效类型中所占比例最高,可达50%。 应力腐蚀的产生有两个基本条件:一是材料对介质具有一定的应力腐蚀开裂敏感性;二是存在足够高的拉应力。导致应力腐蚀开裂的应力可以来自工作应力,也可以来自制造过程中产生的残余应力。据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80%以上,而由工作应力引起的则不足20%。 应力腐蚀过程一般可分为三个阶段。第一阶段为孕育期,在这一阶段内,因腐蚀过程局部化

材料力学应力状态

材料力学应力状态

关键词:单元体的取法,莫尔应力圆的前提 有那么一个单元体后(单元体其中的一对截面上主应力=0(平面)或平衡(空间),也就是单元体的一对截面为主平面),才有这么 一个隔离体,才有那么一个莫尔应力圆和表达式 也就是:取的单元体不同,则单元体的应力特点不一样,从而用截面法求任意截面上的应力取隔离体列平衡方程时,隔离体的受力特点不同,从而球出来的表达式也不同,只有这种表达式才适合 莫尔应力圆。 因此拿到一个单元体后,不要急着应用莫尔应力圆,要先看它的特点适合不适合莫尔应力圆,也就是σα和τα的表达式球出来以后还是 不是下面的这个公式。

特别还要记住,这个公式里的夹角α是斜截面的外法线与σx 作用平

σy的形式。比如,面的外法线之间的夹角,这样公式中才是σx— 当α表示的是斜截面的外法线与σ1所在平面的夹角,那么公式就是σ1—σ2的形式;不论是谁减谁,应力圆的性状都不变; 1.首先,先有主平面和主应力的概念,剪应力为0的平面为主平面,主平面上的正应力为主应力; 2.然后,由于构件受力情况的不同,各点的应力状态也不一样,可以按三个主应力中有几个不等于零而将一点处的应力状态划分为三类: ?单向应力状态:只有一个主应力不等于零,如受轴向拉伸和压缩的直杆及纯弯曲的直杆内各点的应力状态。 ?二向应力状态(平面应力状态):有两个主应力不等于零,如受扭的圆轴,低压容器器壁各点的应力状态。 ?三向应力状态:三个主应力都不等于零,如高压容器器壁内各点的应力状态。 3.然后,根据受力宏观判断是单轴应力状态还是平面应力状态还是三轴应力状态,取单元体关键,单元体取的不同,单元体上的应力也不同,做莫尔圆的繁简程度也不同,对于平面应力状态,当然要用主应力=0的那个截面参与单元体截取;

材料力学习题弯曲应力

弯 曲 应 力 基 本 概 念 题 一、择题(如果题目有5个备选答案,选出2~5个正确答案,有4个备选答案选出一个正确答案。) 1. 弯曲正应力的计算公式y I M z = σ的适用条件是( ) 。 A . 粱材料是均匀连续、各向同性的 B .粱内最大应力不超过材料的比例极限 C .粱必须是纯弯曲变形 D .粱的变形是平面弯曲 E .中性轴必须是截面的对称轴 2. 在梁的正应力公式y I M z = σ中,I z 为粱的横截面对( )轴的惯性矩。 A . 形心轴 B .对称轴 C .中性轴 D .形心主惯性轴 3. 梁的截面为空心圆截面,如图所示,则梁的抗弯截面模量W 为( )。 A . 32 3 D π B . )1(32 4 3 απ-D C . 32 3 d π D . 32 32 3 3 d D ππ- E .2 6464 44 D d D ππ- 题3图 题4图 4. 欲求图示工字形截面梁上A 点剪应力τ,那么在剪应力公式z z S bI S F *=τ中,S *z 表示 的是( )对中性轴的静矩。 A .面积I B .面积Ⅱ C .面积I 和Ⅱ D .面积Ⅱ和Ⅲ E .整个截面面积 -21-

5.欲求题4图所示工字形截面梁上A 点剪应力τ,那么在剪应力公式z z S bI S F *=τ中,b 应取( )。 A .上翼缘宽度 B .下翼缘宽度 C .腹板宽度 D .上翼缘和腹板宽度的平均值 6.图为梁的横截面形状。那么,梁的抗弯截面模量W z =( )。 A . 6 2 bh B .32632d bh π- C .2641243h d bh ? ??? ??-π D .??? ? ?-???? ??-22641243d h d bh π 7.两根矩形截面的木梁叠合在一起(拼接面上无粘胶无摩擦),如图所示。那么该组合梁的抗弯截面模量W 为( ) A . 62bh B .??? ? ??622 bh C .)2(612 h b D .h bh 21222???? ?? 8.T 形截面的简支梁受集中力作用(如图),若材料的[σ]- >[σ]+,则梁截面位置的合理放置为( )。 -22-

金属设备的应力腐蚀及预防措施

金属/设备的应力腐蚀及预防措施 一、应力腐蚀的机理和特点 1.应力腐蚀----金属/设备在拉应力和腐蚀介质同时作用下产生脆性破裂,叫应力腐蚀破裂。 2.应力腐蚀破裂的裂缝形态----主要有二种: a.沿晶界发展,称晶间破裂。 b.裂缝穿过晶粒,称穿晶破裂。 也有混合型,主逢为晶间型,支缝或尖端为穿晶型。 3.应力腐蚀的特征---- a.必须存在拉应力(外加载核、热应力、冷/热加工或焊接后的残余应力等),若存在压应力则可抑制这种腐蚀。 b.发生应力腐蚀开裂(SCC)必须同时满足材料、环境、应力三者的特定条件。也就是说一般只发生在一定的体系,如奥氏体不锈钢/CI-体系,碳钢/NO-3体系,铜合金/NH+4体系等。根据介质主要成分为氯化物、氢氧化物、硝酸盐、氨、含氧水及硫化物等,而分别称为氯裂(氯脆)、碱裂(碱脆)、硝裂(硝脆)、氨裂(氨脆)、氧裂(氧脆),还有硫化物应力开裂等。 c. 应力腐蚀开裂与单纯由机械应力造成的开裂不同,它在极低的负荷应力下也能产生开裂。 d. 应力腐蚀开裂与单纯由腐蚀引起的开裂也不同,腐蚀性极弱的介质也能引起应力腐蚀开裂。其全面腐蚀常常很轻,而且没有变形预兆,即发生突然断裂,应力腐蚀是工业生产中危害性最大的一种恶性

腐蚀类型。 4.应力腐蚀的机理----应力腐蚀的机理很复杂,按照左景伊提出的理论,破裂的发生和发展可区分为三个阶段: a.金属表面生成钝化膜或保护膜。 b. 钝化膜或保护膜局部破裂,产生孔蚀或裂缝源。 c.裂缝内发生加速腐蚀,在拉应力作用下,以垂直于应力的方向深入金属内部。裂缝多半有分枝,裂缝端部尖锐,端部的扩张速度很快,断口具有脆性断裂的特征。 二、应力腐蚀试验方法 根据应力的加载方法不同,应力腐蚀试验方法主要可分为以下四类: 恒变形法----给予试样一定的变形,对其在试验环境中的开裂敏感性进行评定 恒载荷法(SSCC)----方法有拉伸试验、弯梁试验、C形环试验、双悬臂梁试验,常用拉伸试验,即把单轴拉伸型的试样进行H2S水溶液应力腐蚀试验,试验介质为%HAc+5%NaCl+饱和H2S水溶液,试验在恒负荷拉伸应力腐蚀试验机上进行。试验时按不同的应力级别(取材料屈服强度的百分比)分别对试样加载,经过一定时间后发生应力腐蚀开裂,记录其断裂时间。最长试验周期为720小时,把试样在720小时不发生断裂视为合格。通过试验达到二个目的:(1)检测材料在一定的应力级别下是否很好地抵抗应力腐蚀开裂;(2)可以测定材料的“临界拉伸应力σth”,对同样的材料分别施加不同的应力级别,试

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力 一、是非判断题 1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。 ( × ) 2、中性轴是梁的横截面与中性层的交线。梁发生平面弯曲时,其横截面绕中性轴旋转。 ( √ ) 3、 在非均质材料的等截面梁中,最大正应力max σ 不一定出现在max M 的截面上。( × ) 4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。 ( √ ) 5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。 ( × ) 6、控制梁弯曲强度的主要因素是最大弯矩值。 ( × ) 7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。 ( √ ) 二、填空题 1、应用公式y I M z = σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。 2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。 3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力 =S F bh F 23 。 4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为 226 1 61bH BH -、 H Bh BH 66132- 和 H bh BH 66132 - 。 x

三、选择题 1、如图所示,铸铁梁有A,B,C和D四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。 2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。则当F 增大时,破坏的情况是( C )。 A 同时破坏; B (a)梁先坏; C (b)梁先坏 3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D ) A B C D A B D x

浅谈金属材料的应力腐蚀问题

龙源期刊网 https://www.wendangku.net/doc/ee2669635.html, 浅谈金属材料的应力腐蚀问题 作者:陶勇 来源:《学习导刊》2013年第11期 【摘要】金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行了探究。 【关键词】金属材料;应力腐蚀 1.应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。 1.1 金属材料应力腐蚀裂纹 金属材料在一定的腐蚀环境中,被应力作用,因金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。 1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明如下:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定。2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 2.金属材料发生应力腐蚀的特征 我们通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,我们可从以下四个方面来加以说明。 2.1 金属材料发生应力腐蚀裂纹必须是拉应力

材料力学基本概念

材料力学 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应 变沿横截面均匀分布N F A σ= 2、 材料力学应力分析的基本方法:①几何方程:const ε=即变形关系②物理方程:E σε=即应力应变 关系③静力学方程:N A F σ?=即内力构成关系 3、 N F A σ= 适用范围:①等截面直杆受轴向载荷(一般也适用于锥角小于5度的变截面杆)②若轴向载荷沿横截面非均匀分布,则所取截面应远离载荷作用区域 4、 圣维南原理(局部效应原理):力作用于杆端的分布方式,只影响杆端局部范围的应力分布,影响区的 轴向范围约离杆端1—2个杆的横向尺寸 5、 拉压杆斜截面上的应力:0c o s /c o s N N F F p A A αασαα= ==;2 0cos cos p αασασα==, sin sin 22 p αασταα==;0o α=, max 0σσ=;45o α=,0 max 2 στ= 第二节 材料拉伸时的力学性能 1、 材料拉伸时经过的四个阶段:线弹性阶段,屈服阶段,硬化阶段,缩颈阶段 2、 线(弹)性阶段:E σε=;变形很小,弹性;p σ为比例极限,e σ为弹 性极限 3、 屈服阶段:应力几乎不变,变形急剧增大,含弹性、塑性形变;现象是出 α p α α τα

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

材料力学答案

弯曲应力 6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。 题 6-1图 解:(a )m KN M m m ?=-5.2 m KN M ?=75.3max 488 44 108.49064 1010 64 m d J x --?=??= = ππ MPa A 37.20108.490104105.28 2 3=????=--σ (压)

MPa 2.3810 8.4901051075.38 23max =????=--σ (b )m KN M m m ?=-60 m KN M ?=5.67max 488 331058321210181212m bh J x --?=??== MPa A 73.6110583210610608 2 3=????= --σ (压) MPa 2.10410 5832109105.678 23max =????=--σ (c )m KN M m m ?=-1 m KN M ?=1max 4 8106.25m J x -?= 3 6108.7m W x -?= cm y A 99.053.052.1=-= MPa A 67.38106.251099.01018 2 3=????= --σ (压) MPa 2.12810 6.251018 3 max =??=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32 43 1απ-= D W x ??? ? ? -???= -463 )64(11032 6π 3 6 1002.17m -?= 346 33 21021.2132 10632 m D W x --?=??= = ππ MPa 88.521002.17109.06 3 1=??=-σ MPa 26.551021.2110172.16 3 1=??= -σ MPa 26.55max =σ 6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。试求梁内最大拉应力与最大压应力。已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。 解:A 截面: Mpa 95.371065.910 101701040283 1 max =????=--σ (拉)

金属设备的应力腐蚀及预防措施样本

金属/设备应力腐蚀及防止办法 一、应力腐蚀机理和特点 1.应力腐蚀----金属/设备在拉应力和腐蚀介质同步作用下产生脆性破裂,叫应力腐蚀破裂。 2.应力腐蚀破裂裂缝形态----重要有二种: a.沿晶界发展,称晶间破裂。 b.裂缝穿过晶粒,称穿晶破裂。 也有混合型,主逢为晶间型,支缝或尖端为穿晶型。 3.应力腐蚀特性---- a.必要存在拉应力(外加载核、热应力、冷/热加工或焊接 后残存应力等),若存在压应力则可抑制这种腐蚀。 b.发生应力腐蚀开裂(SCC)必要同步满足材料、环境、应 力三者特定条件。也就是说普通只发生在一定体系,如 奥氏体不锈钢/CI-体系,碳钢/NO-3体系,铜合金/NH+4 体系等。依照介质重要成分为氯化物、氢氧化物、硝酸 盐、氨、含氧水及硫化物等,而分别称为氯裂(氯脆)、 碱裂(碱脆)、硝裂(硝脆)、氨裂(氨脆)、氧裂(氧脆), 尚有硫化物应力开裂等。 c. 应力腐蚀开裂与单纯由机械应力导致开裂不同,它在 极低负荷应力下也能产生开裂。 d. 应力腐蚀开裂与单纯由腐蚀引起开裂也不同,腐蚀性 极弱介质也能引起应力腐蚀开裂。其全面腐蚀经常很轻,

并且没有变形预兆,即发生突然断裂,应力腐蚀是工业 生产中危害性最大一种恶性腐蚀类型。 4.应力腐蚀机理----应力腐蚀机理很复杂,按照左景伊提出理论,破裂发生和发展可区别为三个阶段: a.金属表面生成钝化膜或保护膜。 b. 钝化膜或保护膜局部破裂,产生孔蚀或裂缝源。 c.裂缝内发生加速腐蚀,在拉应力作用下,以垂直于应 力方向进一步金属内部。裂缝多半有分枝,裂缝端部尖 锐,端部扩张速度不久,断口具备脆性断裂特性。 二、应力腐蚀实验办法 依照应力加载办法不同,应力腐蚀实验办法重要可分为如下四类: 1.恒变形法----予以试样一定变形,对其在实验环境中开裂敏感性进行评估 2.恒载荷法(SSCC)----办法有拉伸实验、弯梁实验、C形环实验、双悬臂梁实验,惯用拉伸实验,即把单轴拉伸型 试样进行H2S水溶液应力腐蚀实验,实验介质为 0.5%HAc+5%NaCl+饱和H2S水溶液,实验在恒负荷拉 伸应力腐蚀实验机上进行。实验时按不同应力级别(取 材料屈服强度比例)分别对试样加载,通过一定期间后 发生应力腐蚀开裂,记录其断裂时间。最长实验周期为 720小时,把试样在720小时不发生断裂视为合格。通

相关文档
相关文档 最新文档