文档库 最新最全的文档下载
当前位置:文档库 › 溶剂萃取分离法

溶剂萃取分离法

溶剂萃取分离法

萃取分离法包括液相-液相、固相-液相和气相-液相等几种方法,但应用最广泛的为液-液萃取分离法(亦称溶剂萃取分离法)。该法常用一种与水不相溶的有机溶剂与试液一起混合振荡,然后搁置分层,这时便有一种或几种组分转入有机相中,而另一些组分则仍留在试液中,从而达到分离的目的。

溶剂萃取分离法既可用于常量元素的分离又适用于痕量元素的分离与富集,而且方法简单、快速。如果萃取的组分是有色化合物,便可直接进行比色测定,称为萃取比色法。这种方法具有较高的灵敏度和选择性。

一、萃取分离的基本原理

(一)萃取过程的本质

根据相似相溶规则,将物质由亲水性转化为疏水性。

极性化合物易溶于极性的溶剂中,而非极性化合物易溶于非极性的溶剂中,这一规律称为“相似相溶原则”。例如I2是一种非极性化合物、CCl4是非极性溶剂,水是极性溶剂,所以I2易溶于CCl4而难溶于水。当用等体积的CCl4从I2的水溶液中提取I2时,萃取百分率可达98.8%。又如用水可以从丙醇和溴丙烷的混合液,萃取极性的丙醇。常用的非极性溶剂有:酮类、醚类、苯、CCl4和CHCl3等。

无机化合物在水溶液中受水分子极性的作用,电离成为带电荷的亲水性离子,并进一步结合成为水合离子,而易溶于水中。如果要从水溶液中萃取水合离子,显然是比较困难的。为了从水溶液中萃取某种金属离子,就必须设法脱去水合离子周围的水分子,并中和所带的电荷,使之变成极性很弱的可溶于有机溶剂的化合物,就是说将亲水性的离子变成疏水性的化合物。为此,常加入某种试剂使之与被萃取的金属离子作用,生成一种不带电荷的易溶于有机溶剂的分子,然后用有机溶剂萃取。例如Ni2+在水溶液中是亲水性的,以水合离子Ni(H2O)62+的状态存在。如果在氨性溶液中,加人丁二酮肟试剂,生成疏水性的丁二酮肟镍螯合物分子,它不带电荷并由硫水基团取许代了水合离子中的水分子,成为亲有机溶剂的硫水性化合物,即可用CHCl3萃取。

(二)分配系数

设物质A在萃取过程中分配在不互溶的水相和有机相中:

A有= A水

在一定温度下,当分配达到平衡时,物质A在两种溶剂中的活度(或活度)比保持恒定,即分配定律可用下式表示:

K D=[A]有/[A]水

式中K D称为分配系数。分配系数大的物质,绝大部分进入有机相,分配系数小的物质,仍留在水相中,因而将物质彼此分离。此式称为分配定律,它是溶剂萃取的基本原理。

(三)分配比

分配系数K D仅适用于溶质在萃取过程中没有发生任何化学反应的情况。例如I2在CCl4和水中均以I2的形式存在。而在许多情况下,溶质在水和有机相中以多种形态存在。例如用CCl4萃取OsO4时,在水相中存在OsO4、OsO52-和HOsO5-等三种形式,在有机相中存在OsO4和(OsO4)4两种形式,此种情况如果用分配系数K D=[OsO4]有/[OsO4]水便不能表示萃取的多少。用溶质在两相中的总浓度之比来表示分配情况。

D = C A(有)/ C A(水)

D称为分配比。D的大小与溶质的本性、萃取体系和萃取条件有关。

(四)萃取率

对于某种物质的萃取效率大小,常用萃取率(E)来表示。即:

E = (A在有机相中的总量/A在两相中的总量)×100%

设某物质在有机相中的总浓度为C有,在水相中的总浓度为C水,两相的体积分别为V有和V 水,则萃取率等于:

E = C有V有/(C有V有+ C水V水)×100%

= D/(D + V水/V有)×100%

可以看出,分配比越大则萃取百分率越大,萃取效率越高,并可以通过分配比计算萃取百分率。

(五)分离系数

在萃取工作中,不仅要了解对某种物质的萃取程度如何,更重要的是必须掌握当溶液中同时含有两种以上组分时,通过萃取之后它们之间的分离情况如何。例如A、B两种物质的分离程度可用两者的分配比D A、D B的比值来表示。

βA/B =D A/D B

式中β称为分离系数。D A与D B之间相差越大,则两种物质之间的分离效果越好,如果D A和D R很接近,则β接近于1,两种物质便难以分离。因此为了扩大分配比之间的差值,必须了解各种物质在两相中的溶解机理,以便采取措施,改变条件,使欲分离的物质溶于一相,而使其他物质溶于另一相,以达到分离的目的。

二、重要萃取体系

(一)金属螯合物

金属离子与螯合剂(亦称萃取络合剂)的阴离子结合而形成中性螯合物分子。这类金属螯合物难溶于水,而易溶于有机溶剂,因而能被有机溶剂所萃取:如丁二酮肟镍即属于这种类型。Fe3+与铜铁试剂所形成的螯合物也属于此种类型。

常用的螯合剂还有8-羟基喹啉、双硫踪(二苯硫踪、二苯基硫卡巴腙)、乙酰丙酮和噻吩甲酰三氟丙酮(TTA)等。

1.金属螯合物的萃取平衡

以双硫腙萃取水溶液中的金属离子M2+,为例来说明。双硫踪与M2+的反应为:

M2+ + 2H2D z = M(HD z)2 + 2H+

双硫腙为二元弱酸,可以用H2Dz表示。它难溶于水,而溶于CCl4(0.0021mol/L)和CHCl3(约0.08 mol/L)。若K为反应平衡常数。其大小与螯合剂的电离度、螯合剂的分配比、螯合物的稳定常数和螯合物的分配比有关。当萃取溶剂和螯合剂一定时,则萃取效率的高低,可以通过M2+的分配比来判断。

2. 萃取条件的选择

(1) 螯合剂的选择所选挥的螯合剂与被萃取的金属离子生成的螯合物越稳定,则萃取效率越高。此外螯合剂必须具有一定的亲水基团,易溶于水,才能与金属离子生成螯合物;但亲水基团过多了,生成的螯合物反而不易被萃取到有机相中。因此要求螯合剂的亲水基团要少,

疏水基团要多。亲水基团有-OH、-NH2、-COOH、-SO3H,疏水基团有脂肪基(-CH3、-C2H5等)、芳香基(苯和萘基)等。

EDTA虽然能与许多种金属离子生成螯合物,但这些螯合物多带有电荷,不易被有机溶剂所萃取,故不能用作萃取螯合剂。

(2) 溶液酸度的控制

溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取。但酸度过低则可能引起金属离子的水解或其他干扰反应发生。因此应根据不同的金属离子控制适宜的酸度。

例如,用双硫腙作螯合剂,用CCl4从不同酸度的溶液中萃取Zn2+时,萃取Zn2+ pH值必须大于6.5,才能完全萃取,但是当pH值大于10以上,萃取效率反而降低,这是因为生成难络合的ZnO22+所致,所以萃取Zn2+最适宜的pH范围为6.5-10之间。

(3)萃取溶剂的选择

被萃取的螯合物在萃取溶剂中的溶解度越大,则萃取效率越高。萃取溶剂与水的比重差别要大,粘度要小,这样便于分层,有利于操作的进行。挥发性、毒性要小,而且不易燃烧。

(4)干扰离子的消除

可以通过控制酸度进行选择性萃取,将待测组分与干扰组分离。如果通过控制酸度尚不能消除干扰时,还可以加入掩蔽剂,使干扰离子生成亲水性化合物而不被萃取。例如测量铅合金中的银时,用双硫腙-CCl4萃取,为了避免大量Pb2+和其他元素离子的干扰,可以采取控制pH与加入EDTA等掩蔽剂的办法,把Pb2+及共他少量干扰元素掩蔽起来。常用的掩蔽剂有氰化物、EDTA、酒石酸盐、柠檬酸盐和草酸盐等。

(二)离子缔合物萃取体系

由金属络离子与异电性离子借静电引力的作用结合成不带电的化合物,称为离子缔合物,此缔合物具有疏水性而能被有机溶剂萃取。通常离子的体积越大,电荷越低,越容易形成疏水性的离子缔合物。

1.缔合物的分类根据采用的萃取剂不同,形成不同的缔合物,常遇到的有以下几类。(1)金属阳离子的离子缔合物

金属阳离子与大体积的络合剂作用,形成没有或很少配位水分子的络阳离子,然后与适当的阴离子缔合,形成疏水性的离子缔合物。

(2) 金属络阴离子的离子缔合物

金属离子与溶液中简单配位阴离子形成络阴离子,然后与大体积的有机阳离子形成疏水性的离子缔合物。

(3) 形成洋盐的缔合物

含氧的有机萃取剂如醚类、醇类、酮类和烷类等它们的氧原于具有孤对电子,因而能够与H+或其他阳离于结合而形成洋离子。它可以与金属络离子结合形成易溶于有机溶剂的洋盐而被萃取。例如在盐酸介质中,用乙醚萃取Fe3+,这里乙醚既是萃取剂又是有机溶剂。实践证明,含氧有机溶剂形成洋盐的能力按下列次序增强。

R2O<ROH<RCOOH<RCOOR<RCOR

(4) 其它离子缔合物

如含砷的有机萃取剂萃取铼,是基于铼酸根与氯化四苯砷反应,生成可被苯或甲苯萃取的离子缔合物。

近年来含磷的有机萃取剂发展很快,如磷酸三丁酯萃取铀的化合物等。它具有不易挥发、选择性高、化学性质稳定等优点。

(三)无机共价化合物萃取体系

某些无机共价化合物如I2、C12、Br2、GeCl4和OsO4等,可以直接用CCl4、苯等惰性溶剂萃取。

三、萃取操作方法

在分析中应用较广泛的萃取方法为间歇法(亦称单效萃取法)。这种方法是取一定体积的被萃取溶液,加入适当的萃取剂,调节至应控制的酸度。然后移入分液漏斗中,加入一定体积的溶剂,充分振荡至达到平衡为止。静置待两相分层后,轻轻转动分液漏斗的活塞、使水溶液层或有机溶剂层流人另一容器中,使两相彼此分离。如果被萃取物质的分配比足够大时,则一次萃取即可达到定量分离的要求。如果被萃取物质的分配比不够大,经第一次分离之后,再加入新鲜溶剂,重复操作,进行二次或三次萃取。但萃取次数太多、不仅操作费时,而且容易带人杂质或损失萃取的组分。

静置分层时,有时在两相交界处会出现一层乳浊液,其原因很多。

在萃取过程中,如果在被萃取离子进入有机相的同时还有少量干扰离子亦转入有机相时,可以采用洗涤的方法以除去杂质离子。洗涤液的组成与试液基本相同,但不含试样。洗涤的方法与萃取操作相同。通常洗涤1-2次即可达到除去杂质的目的。

分离以后, 如果需要特被萃取的物质再转到水相中进行测定, 可改变条件进行反萃取。例如Fe3+在盐酸介质中形成FeCl4-与甲基异丁酮结合成洋盐而被萃取到有机机再用水反萃取到水溶液中(由于酸度降低)即可进行测定。

生物分离工程第四章综合测试

第四章萃取 一、名词解释 萃取:是利用液体或超临界流体为溶剂提取原料中目标产物的分离纯化操作。 反萃取:通过调节水相条件,将目标产物从有机相转入水相的萃取操作成为反萃取。 分配系数:在恒温恒压条件下,溶质在互不相容的两相中达到分配平衡时,其在两相中的浓度之比为一常数,该常数称为分配系数。即K=溶质在萃取相中的浓度/溶质在萃余相中的浓度=C2/C1。 分离因子:萃取剂对溶质A和B的选择或分离能力可以用分离因子表示。即α=(C2A/CIA)/(C2B/C1B)=KA/KB (C:浓度;下标1,2分别表示萃余相和萃取相;A、B:溶质;α越大,A和B越容易分离,分离效果越好) 超临界流体:物质均具有其固有的临界温度和临界压强,在P-T相图上称为临界点,在临界点以上物质处于即非液体也非气体的超临界状态,这时的物质称为超临界流体。 化学萃取:化学萃取是指利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性复合因子实现水溶性溶质向有机相的分配,主要用于一些氨基酸和极性较大的抗生素的萃取。 双水相体系:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相水分均占有很大比例,即形成双水相系统。 \ 萃取因子:即萃取平衡后萃取相和萃余相中质量之比。用E表示。 盐效应:由于同一双水相系统中添加不同的盐产生的相间电位不同,故分配系数与静电荷数的关系因无机盐而异,这称为盐效应。 二、选择 1.萃取利用的是物质在两相之间的___B___不同来实现分离或纯化。 2. A.溶解度比 B.分配系数 C.分离系数 D.稳定常数 3.下列搭配中不适合双水相萃取的是____C__。 4. A.聚乙二醇/磷酸盐 B.葡聚糖/甲基纤维素 5. C.聚乙二醇/丙三醇 D. 聚乙二醇/葡聚糖 6.荷电溶质分配系数的对数与溶质的净电荷数成___A___关系,称为______。 7. A.正比/盐效应 B.指数/塞曼效应 8. C.非线性/道南效应 D.反比/法拉第效应 9.对于超临界流体萃取,溶解萃取物时通常__C____;分离萃取物时通常______。 10. A.降压降温/加压加温 B.降压加温/加压降温 11. C.加压降温/降压加温 D.加压降温/降压加温 5. 对于液液萃取时的两相,下列名词中搭配正确的是_A B D_____。 A.上相/下相 B.萃取相/萃余相 C.萃取相/料液相 D.溶剂相/物料相

新型分离技术在化工生产中的应用

新型分离技术在化工生产中的应用 摘要:本文主要介绍了膜分离技术、超临界萃取技术、分子蒸馏技术、耦合分离的技术原理及应用 关键词:化工分离、分离工程、膜分离、萃取、吸附分离 引言:化工分离技术是化学工程的一个重要分支, 任何化工生产过程都离不开这种技术,原料的精制、中间产物以及产品的分离提纯、废气废水的处理等等,都离不开化工分离技术。化工分离技术应用领域广泛、分离要求多种多样,这就决定了分离技术的多样性。精馏、萃取、吸收、吸附等都是传统的化工分离技术,无论是技术还是应用方面都发展得很成熟。然而,随着基础工业和高科技的发展,分离技术越来越面临着新的挑战:石油、天然气、煤炭等资源的不可再生要求分离过程必须充分得利用资源,降低能耗;迅速发展的生物医药工程对产品纯度、活性等指标的限制对分离技术提出了更高的要求;由环境保护意识的增强提出的各种废弃物排放限制越来越严格也给分离技术带来了难题;此外新材料的开发、食品工业和天然资源综合利用等领域的迅速发展也对分离技术提出了更高的要求。所有这些需求都推动了人们对新型化工分离技术的探索。 正文: 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,这就决定了分离技术的多样性。按机理划分,可大致分为五类,即:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 1超临界流体萃取技术及其应用 超临界流体萃取是一种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术,其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。 超临界流体具有一系列重要的性质: 1)超临界流体相当粘稠,其密度接近于液体,具有较大的溶解能力; 2)超临界流体的扩散系数比液体大23个数量级,其粘度类似于气体,远小于液体。这对于分离过程的传质极为有利,缩短了相平衡所需时间,大大提高了分离效率,是高效传质的理

分离工程

生物分离工程复习题 第一章导论 一解释名词 生物下游加工过程(生物分离工程), 二简答题 1 生物产品与普通化工产品分离过程有何不同?(生物下游加工过程特点是什么?生物分离工程的特点是什么?) 2 生物分离工程在生物技术中的地位? 3 分离效率评价的主要标准有哪些?各有什么意义? 4 生物分离工程可分为几大部分,分别包括哪些单元操作?(简述或图示分离工程一般流程及基本操作单元) 5 在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠? 6 下游加工过程的发展趋势有哪些方面? 7 纯化生物产品的得率是如何计算的?若每一步纯化产物得率为90%,共6步纯化得到符合要求产品,其总收率是多少? 第二章发酵液预处理 一解释名词 凝聚,絮凝,凝聚剂,过滤,离心,细胞破碎,包含体 二简答题 1 为什么要进行发酵液的预处理?常用处理方法有哪几种? 2 凝集与絮凝过程有何区别?如何将两者结合使用?常用的絮凝剂有哪些? 3 发酵液预处理中凝聚剂主要起什么作用?絮凝机理是什么? 4 细胞破碎的方法包括哪几类?工业上常用的方法有哪些?为什么? 5 沉降与离心的异同? 6 离心设备可分为哪两大类?按分离因子Fr不同,离心机一般分为哪几类? 7 常用的离心沉降设备有哪些?常用的过滤设备有哪些? 8 固-液分离主要包括哪些方法和设备? 9 试比较固液分离中过滤和离心分离技术的特点。 10 高压匀浆与高速珠磨破碎法各有哪些优缺点? 11 比较工业常用的过滤设备优缺点。离心与过滤各有什么优缺点?

第三章沉淀与结晶 一解释名词 沉淀,结晶,盐析,盐溶,盐析结晶,盐析沉淀,硫酸铵饱和度,晶种,晶核,晶型, 饱和溶液,过饱和溶液,饱和度 二简答题 1 根据加入沉淀剂的不同沉淀分离主要包括哪几类?) 2 常用的蛋白质沉淀方法有哪些?有机溶剂沉淀蛋白质的机理什么?用乙醇沉淀蛋白质时应注意哪些事项? 3 影响盐析的主要因素有哪些?在工艺设计中如何应用? 4 如何确定盐析过程中需要加入硫酸铵的量? 5 简述有机溶剂沉淀的原理。 6沉淀与结晶有何不同? 7 结晶操作的原理是什么?常用结晶器包括哪两种类型?如何选择结晶设备? 8 粒子大小与溶解度有何关系? 9 有哪些方法造成溶液过饱和? 10 绘制饱和温度曲线和过饱和温度曲线,并标明稳定区、亚稳定区和不稳定区。并简述其意义 11 影响硫酸铵盐析效果的主要因素有哪些?公式Ig S=β- Ks I 中β、Ks各与什么因素有关? 第四章萃取 一解释名词 萃取,反萃取,分配系数,有机溶剂萃取,分离因子,乳化,胶团,反胶团,反胶团萃取,临界胶束浓度,溶解度参数,介电常数,HLB 值,萃取因素,带溶剂,超临界流体,超临界流体萃取,双水相萃取,液膜萃取,多级逆流萃取 二简答题 1 生物物质的萃取与传统的萃取相比有哪些不同点? 2 溶剂萃取按参与溶质分配的两相不同而分为哪5类?有机溶剂萃取中产生乳化后使有机相和水相分层困 难,一般会出现哪两种夹带?各产生什么后果? 3 萃取过程(方式)设计分为哪几种类型? 4 pH 对弱电解质的萃取效率有何影响? 5 发酵液乳化现象是如何产生的?对分离纯化产生何影响? 影响乳浊液稳定的因素主要有哪些?如何有 效消除乳化现象?

第二章----提取分离和结构鉴定

第二章 提取---是指根据天然产物中各种化学成分的溶解性能,选择对有效成分溶解度大而对其他成分 溶解度小的溶剂,用适当的方法将所需要的化学成分尽可能完全地从药材组织中溶解提出的过程。溶剂提取法:利用天然产物化学成分在特定溶剂中溶解的性质,将其从原材中提取出来。多数情况下采用溶剂法。 溶剂提取法的原理:溶剂在渗透、扩散作用下,溶剂渗入药材组织细胞的细胞膜进入细胞内部,溶解可溶性的溶质,形成细胞内外溶质的浓度差,从而带动溶质做不断往返的运动,将溶质渗出细胞膜,直到细胞内外溶液中被溶解的化学成分的浓度达到平衡,达到提取所需化学成分的目的。溶剂选择的依据-----“相似者相溶”原则 常用溶剂按照极性大小分为三类:水溶性(糖类、氨基酸、蛋白质、盐类)、亲水性(苷类如:黄酮、三萜、甾体与糖的结合体)、亲脂性(未成盐的生物碱,未成苷的黄酮、蒽醌、萜类、甾体)。优缺点,能溶生么物质。 水:极性最强:优点:安全,经济易得缺点:水提取液(尤其是含糖及蛋白质者)易霉变,难以保存,且不易浓缩和滤过。 亲水性有机溶剂:指甲醇、乙醇、丙酮等极性较大且能与水相互混溶的有机溶剂。(故不能萃取)优点:提取范围较广,效率较高,提取液易于保存,滤过和回收。缺点:易燃,价格较贵,有些溶剂毒性较大。 亲脂性有机溶剂:与水不相混溶,具较强选择性,如石油醚、苯、乙醚、氯仿、乙酸乙酯等。优点:提取液易浓缩回收缺点:穿透力较强,需长时间反复提取,毒性大,易燃,价格较贵,设备要求高。 影响提取效果的因素 :溶剂提取的效果主要取决于选择合适的溶剂和提取方法。此外,原料的粉碎程度,提取温度, 浓度差,提取时间,操作压力,原料与溶剂的相对运动等因素也不同程度地影响提取效果。 原料的粉碎程度:原料经粉碎后粒度变小,浸出速度加快,但粉碎度过高,并不利于浸出,一般而言粒度以20-60目为适。浸出温度:扩散速度加快有利于浸提,并且温度适当升高,可 使原料中的蛋白质凝固、酶破坏而增加浸提液的稳定性,但温度过高,会破坏不赖热的成分,并且导致浸提液的品质劣变。一般浸出温度控制在60-100℃。浓度差:浓度差越大,扩散推动力越大,越有利于提高浸出效率。浸提时间:原料中的成分随提取时间延长,提取的得率增加,一般而言,热提1~3h,乙醇加热回流提取1~2h。

液-液萃取分离法

液-液萃取分离法 【摘要】液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。如果被萃取组分是有色化合物,则可以取有机相宜接进行光度测定,这种方法称为萃取光度法。萃取光度法具有较高的灵敏度和选择性。 【关键字】液—液萃取分离法、亲水性、分配系数、螯合剂 液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。 一. 萃取分离法的基本原理及重要参数 1.萃取过程的本质:根据物质对水的亲疏性不同,通过适当的处理将物质从水相中萃取到有机相,最终达到分离。 亲水性物质:易溶于水而难溶于有机溶剂的物质。如:无机盐类,含有一些亲水基团有机化合物常见的亲水基团有一OH,一SO3H,一NH2,=NH 等.疏水性或亲油性物质:具有难溶于水而易溶于有机溶剂的物质。如:有机化合物常见的疏水基团有烷基如一CH3,一C2H3,卤代烷基,苯基、萘基等物质含疏水基团越多,相对分子质量越大,其疏水性越强2.分配系数和分配比 (1)分配系数 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD为一常数。在稀溶液中可以用浓度代替活度。 (2)分配比 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比. 示例:CCl4——水萃取体系萃取OsO4在水相中Os(VIII)以OsO4,OsO52-和HOsO5-三种形式存在在有机相中以OsO4和(OsO4)4两种形式存在。 (3)分配系数与分配比 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如: CCl4——水萃取体

《分离工程》思考题及习题(整理)(1)

《生化分离工程》思考题及习题 第一章绪论 2、生化分离工程有那些特点? 3、简述生化分离过程的一般流程? 第二章预处理与固-液分离法 1、发酵液预处理的目的是什么?主要有那几种方法? 2、何谓絮凝?何谓凝聚?各自作用机理是什么? 3、发酵液中去除杂蛋白的原因是什么?方法主要有那些? 7、何谓密度梯度离心?其工作原理是什么? 第三章细胞破碎法 1、革兰氏阳性菌和阴性菌在细胞壁在组成上有何区别? 2、细胞破碎主要有那几种方法? 3、机械法细胞破碎方法非机械破碎方法相比有何特点? 4、何谓化学破碎法?其原理是什么?包括那几种? 5、何谓酶法破碎法?有何特点?常用那几种酶类? 第四章萃取分离法 1、何谓溶媒萃取?其分配定律的适用条件是什么? 2、在溶媒萃取过程中pH值是如何影响弱电解质的提取? 3、何谓乳化液?乳化液稳定的条件是什么?常用去乳化方法有那些? 5、某澄清的发酵液中含260mg/l放线菌D, 现用醋酸丁酯进行多级萃取。已知平衡常数K=57.0,料液流量450升/时,有机相流量20升/时。为达到此抗生素收率为98%的要求,需要多少级的萃取过程?(计算题) 8、何谓双水相萃取?双水相体系可分为那几类?目前常用的体系有那两种? 9、为什么说双水相萃取适用于生物活性大分子物质分离? 第五章沉淀分离法 1)何谓盐析沉淀?其沉淀机理是什么?有何特点? 2) 生产中常用的盐析剂有哪些?其选择依据是什么? 3) 何谓分步盐析沉淀? 4)何谓等电点沉淀?其机理是什么?pH是如何影响pI的? 第六章吸附分离法 1、吸附作用机理是什么? 2、吸附法有几种?各自有何特点? 5、已知80g的活性炭最多能吸附0.78 mol腺苷三磷酸(ATP),这种吸附过程符合兰缪尔等温线。其中b=2.0×10E3mol/L,请问在1.2L的料液浓度为多少时才能使活性炭吸附能力达90%? (计算题) ★第七章离子交换法 1、何谓离子交换法(剂)?一般可分为那几种? 2、离子交换剂的结构、组成?按活性基团不同可分为那几大类? 3、pH值是如何影响离子交换分离的? 5、在离子交换层析分离过程中,离子交换剂是如何选择的? 6、各类离子交换树脂的洗涤、再生条件是什么? 7、软水、去离子水的制备工艺路线? ★第八章膜分离技术 2)膜在结构上可分为那几种?膜材料主要用什么? 3)简述微滤、超滤、纳滤及反渗透膜在膜材料、结构、性能、分离机理及其应用等方面的异同点 5)何谓浓差极化现象?它是如何影响膜分离的?减少浓差极化现象的措施?

分离技术及在化工生产中的应用

分离技术及在化工生产中的应用 摘要:主要介绍了膜分离技术、超滤技术、新型吸附技术、微波萃取、耦合分离技术的原理、现状、化工生产中的应用及发展趋势。 关键词:膜分离技术;超滤技术;新型吸附技术;微波萃取;耦合分离 前言 化工分离技术是化学工程的一个重要分支,无论是石油炼制、塑料化纤、湿法冶金、同位素分离,还是生物制品的精制、纳米材料的制备、烟道气的脱硫和化肥农药的生产等等都离不开化工分离技术。 化工生产中的原料和产物绝大多数都是混合物,需要利用体系中各组分物性的差别或借助于分离剂使混合物得到分离提纯。它往往是获得合格产品、充分利用资源和控制环境污染的关键步骤。伴随着化工行业的快速发展,分离技术也获得了高速的发展。一方面,对传统分离技术的研究和应用不断进步,分离效率提高,处理能力加大,工程放大问题逐步得到解决,新型分离装置不断出现;另一方面,为了适应技术进步提出了新的分离要求,膜分离技术、超临界萃取技术、吸附技术等现有分离技术的开发、研究和应用已成为分离工程研究的前沿课题。 1 膜分离技术在化工生产中的应用 膜分离技术是一种借助外界能量或化学位的推动,以选择性透过膜为分离介质,对两组分或多组分气体或液体进行分离、分级和富集的。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩;具有高效、节能,工艺过程简单,投资少,污染小等优点, 因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 膜技术被认为是固液分离的新型技术,由于化工母液具有高温、高压、强腐蚀的特点,因此对膜分离过程提出了更高的要求。 郑捷[1] 利用膜分离方法提取合成氨施放气中的氢,通过二级膜分离流程,回收氢的浓度达98%以上,回收的氢用于合成氨生产可增产2%~3%,加上节电等效应,因此能给企业带来明显的经济效益。李仲民[2]在实验中利用超滤法回收造纸黑液中的木质素,结果显示能回收95.9%木质素。赵宜江[3]利用陶瓷微滤膜澄清钛白废酸,研究结果显示陶瓷膜对钛白废酸具有很好的澄清效果, 渗透液浊度小于0.5NTU,并提出了压力、温度、浓度与通量的相互关系。王志斌[4]等人用微滤膜对天然脱落酸进行了分离研究, 结果发现在一定操作工艺条件下能有效的除去母液中的水分。周花[5]等人采用SNF- 150 膜对活性红3BS进行了脱盐浓缩研究, 结果发现染料的着色强度达到150%左右,提高了约50%;料液浓缩达3倍,染料的固含量从11.7%提高到20%~30%,且中试设备的平稳膜通量可达50 L/m2·h 以上。柴红[6]等人用CA 钠滤膜对苯胺蓝染料水溶液的脱盐浓缩进行了研究,结果发现染料的截留率大于99.9%,总脱盐率达到51%,染料的浓度提高了2.76倍,回收率达到约97%。何毅[7]等人利用CA50 纳滤膜对水溶性黄染料进行了分离试验研究,结果表明,纳滤技术能将主体染料的纯度提高20%,且染料工业的经济、环境和社会效益得到了显著提高,杨刚[8]等人利用CA 纳滤膜对荧光增白染料进行了过滤研究,结果表明Nacl 浓度由 1.05mol/L降到0.023 mol/L,NT浓度由0.14 mol/L提高到0.25 mol/L以上,且NT产品稳度和白度提

萃取分离法

萃取分离法 1,按萃取的目的,粗去方法可大致分为两类,一类称“完全萃取”,他是要将一个样品中的某个物质全部萃取出,这种萃取常称为提取。如用大量的溶解度高的二甲基甲酰胺从橘皮中提取出橙皮苷而使溶解性差的细胞壁物质残留。另一类成为选择性萃取,他是用于比较困难的分离过程。如金属离子混合物的分离;化学标准品如光谱纯试剂的纯化制备。2,溶剂萃取按萃取原理的不同,可分为两类:一类为物理萃取,这些萃取是基于被萃取物在水相和有机相(或反相胶团)中溶解度不同来实现的。另一类为化学萃取。 3,溶剂萃取的有机相涉及两个概念,萃取剂和萃取溶剂。萃取剂是指被萃取物有化学反应,而能是被萃取物被萃入有机相的试剂。而用于稀释萃取剂的有机相溶剂被称为萃取溶剂(准确称为稀释剂)。 4,在分析化学中选择萃取剂的原则是: a)对萃取物有高的分配比,以保证尽可能地萃取出被萃取物; b)萃取剂对被萃取物的选择性要好,即对需分离的共存物具有足够大的分离因子; c)萃取剂对后面的分析测定没有影响,否则需要反萃除去; d)毒性小,容易制备。 5,所谓反萃,是指在溶剂萃取中常不可缺少的一后处理步骤。反萃即是使用在萃取步骤时,被萃取物最不易被萃取的这种条件,将被萃取物萃取回纯的水相,而与萃取剂分离。6,根据所形成的被萃取物质的不同,可把萃取体系分成以下几类:螯合物萃取体系,离子缔合物萃取体系,三元络合物萃取体系,共萃取体系,酸性磷类萃取体系等。 7,反胶团萃取 a)微胶团概述:反胶团萃取也类似于水-有机溶剂的液液萃取,但他是李永乐表面活性 剂在有机相形成的反胶团水池的双电层与蛋白质的静电吸引作用,而将不同极性 (等电点)、不同分子量的蛋白质选择性地萃取到有机相,达到分离的目的。 b)将表面活性剂溶于水中,当其浓度超过临界胶束浓度时表面活性剂就会在水溶液中 聚集在一起形成聚合体,称为胶束。 c)表面活性剂是由亲水憎油的极性基团和亲油憎水的非极性基团两部分组成的两性 分子,可分为:阴离子表面活性剂(脂肪醇硫酸酯盐等)、阳离子表面活性剂(十 六烷基三甲基季铵溴化物等)、非离子表面活性剂(烷基酚类聚醚等) d)形成反胶团的条件:加入的表面活性剂在有机相中的浓度达临界胶束浓度值以上。 e)反相微萃取的原理:表面活性剂有表面聚集的倾向,在宏观有机相和水相界面的表 面活性剂层,同临界的蛋白质发生静电作用而变形,从而接着在两相界面形成包含

生物分离工程第四章综合测试汇编

生物分离工程第四章 综合测试

第四章萃取 一、名词解释 萃取:是利用液体或超临界流体为溶剂提取原料中目标产物的分离纯化操作。 反萃取:通过调节水相条件,将目标产物从有机相转入水相的萃取操作成为反萃取。 分配系数:在恒温恒压条件下,溶质在互不相容的两相中达到分配平衡时,其在两相中的浓度之比为一常数,该常数称为分配系数。即K=溶质在萃取相中的浓度/溶质在萃余相中的浓度=C2/C1。 分离因子:萃取剂对溶质A和B的选择或分离能力可以用分离因子表示。即 α=(C2A/CIA)/(C2B/C1B)=KA/KB (C:浓度;下标1,2分别表示萃余相和萃取相;A、B:溶质;α越大,A和B越容易分离,分离效果越好) 超临界流体:物质均具有其固有的临界温度和临界压强,在P-T相图上称为临界点,在临界点以上物质处于即非液体也非气体的超临界状态,这时的物质称为超临界流体。 化学萃取:化学萃取是指利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性复合因子实现水溶性溶质向有机相的分配,主要用于一些氨基酸和极性较大的抗生素的萃取。 双水相体系:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相水分均占有很大比例,即形成双水相系统。 萃取因子:即萃取平衡后萃取相和萃余相中质量之比。用E表示。 盐效应:由于同一双水相系统中添加不同的盐产生的相间电位不同,故分配系数与静电荷数的关系因无机盐而异,这称为盐效应。 二、选择 1.萃取利用的是物质在两相之间的___B___不同来实现分离或纯化。 2. A.溶解度比 B.分配系数 C.分离系数 D.稳定常数 3.下列搭配中不适合双水相萃取的是____C__。

废水中有机物质萃取分离的应用实例

废水中有机物质萃取分离的应用实例 1、废水中醋酸的萃取分离 醋酸是一种用途广泛的化工产品。它可用作生产乙烯塑料、粘合剂、纺织涂料及轧胶漆的原料,也可以用来生产醋酸酐、各种醋酸酯及氯乙酸、醋酸盐。在醋酸的生产过程中及以醋酸为原料或溶剂的产品生产过程中都会产生含量不等(百分之几到百分之几十)的醋酸溶液,其中很大一部分是5%以下醋酸稀溶液。由于醋酸稀溶液回收价值不大,一些企业不对其进行处理和回收而直接排放,既污染环境又浪费资源。如何有效地处理和回收废水中醋酸一直是人们十分关注的研究课题。 (1)物理溶剂萃取工艺 多年来,研究者对醋酸溶液的萃取分离工艺进行了大量的研究工作,得到了很多有价值的研究结果。在同系列溶剂中,碳链越短,分配系数越高。尽管醇和酮能提供相对较高的分配系数,但是在再生过程中醇易与醋酸发生酯化反应,而酮与水不能形成共沸,因此它们很少被工业上采用。醋酸酯和醚是工业上常用的萃取剂。实际废水中盐的存在不仅可以大大提高醋酸的分配系数,而且可以降低溶剂在水中的溶解度。 (2)络合溶剂萃取工艺 随着磷氧类溶剂分子中烷氧基个数的减少,分配系数增加。三丁基氧膦可提供的分配系数达4.5。三辛基氧膦也可提供相当高的分配系数,且水中溶解度低(小于1mol/L)、萃水量小。与磷氧类萃取剂相比,胺类萃取剂具有价格低及萃取效率高的特点。伯胺的水中溶解度高,仲胺在溶剂再生过程中易于醋酸发生不可逆的酰胺化反应。长链叔胺(TOA)在水中溶解度小于10mg/L,且热稳定性好,因此它是最常用的一种络合萃取剂。 2、废水中酚类物质的萃取分离 含酚废水是一种污染范围广、危害性很大的工业废水,国内外一直对工业含酚废水的排放严格加以控制。另一方面,酚类又是重要的化工原料之一。随着化学工业的发展和环境保护的严格标准的实施,含酚废水的治理和回收日益成为人们关注的问题。溶剂萃取法是工业上常用的一种脱酚方法。溶剂萃取脱酚法的工艺主要有两种:物理萃取脱酚工艺及络合萃取脱酚工艺。 (1)物理溶剂萃取脱酚工艺物理萃取脱酚工艺中主要采用苯、重苯、重溶剂油、醋酸丁酯、异丙醚等溶剂,它们对苯酚均能提供较高的分配系数。对苯酚分配系数越高的溶剂,

溶剂萃取分离法

溶剂萃取分离法 萃取分离法包括液相-液相、固相-液相和气相-液相等几种方法,但应用最广泛的为液-液萃取分离法(亦称溶剂萃取分离法)。该法常用一种与水不相溶的有机溶剂与试液一起混合振荡,然后搁置分层,这时便有一种或几种组分转入有机相中,而另一些组分则仍留在试液中,从而达到分离的目的。 溶剂萃取分离法既可用于常量元素的分离又适用于痕量元素的分离与富集,而且方法简单、快速。如果萃取的组分是有色化合物,便可直接进行比色测定,称为萃取比色法。这种方法具有较高的灵敏度和选择性。 一、萃取分离的基本原理 (一)萃取过程的本质 根据相似相溶规则,将物质由亲水性转化为疏水性。 极性化合物易溶于极性的溶剂中,而非极性化合物易溶于非极性的溶剂中,这一规律称为“相似相溶原则”。例如I2是一种非极性化合物、CCl4是非极性溶剂,水是极性溶剂,所以I2易溶于CCl4而难溶于水。当用等体积的CCl4从I2的水溶液中提取I2时,萃取百分率可达98.8%。又如用水可以从丙醇和溴丙烷的混合液,萃取极性的丙醇。常用的非极性溶剂有:酮类、醚类、苯、CCl4和CHCl3等。 无机化合物在水溶液中受水分子极性的作用,电离成为带电荷的亲水性离子,并进一步结合成为水合离子,而易溶于水中。如果要从水溶液中萃取水合离子,显然是比较困难的。为了从水溶液中萃取某种金属离子,就必须设法脱去水合离子周围的水分子,并中和所带的电荷,使之变成极性很弱的可溶于有机溶剂的化合物,就是说将亲水性的离子变成疏水性的化合物。为此,常加入某种试剂使之与被萃取的金属离子作用,生成一种不带电荷的易溶于有机溶剂的分子,然后用有机溶剂萃取。例如Ni2+在水溶液中是亲水性的,以水合离子Ni(H2O)62+的状态存在。如果在氨性溶液中,加人丁二酮肟试剂,生成疏水性的丁二酮肟镍螯合物分子,它不带电荷并由硫水基团取许代了水合离子中的水分子,成为亲有机溶剂的硫水性化合物,即可用CHCl3萃取。 (二)分配系数 设物质A在萃取过程中分配在不互溶的水相和有机相中: A有= A水

液-液萃取分离法

液-液萃取分离法 (单位:天水师范学院生命科学与化学学院07应用化学一班) 作者:李锦华 学号:272060113 【摘要】液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。如果被萃取组分是有色化合物,则可以取有机相宜接进行光度测定,这种方法称为萃取光度法。萃取光度法具有较高的灵敏度和选择性。 【关键字】液—液萃取分离法、亲水性、分配系数、螯合剂 液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。 一. 萃取分离法的基本原理及重要参数 1.萃取过程的本质:根据物质对水的亲疏性不同,通过适当的处理将物质从水相中萃取到有机相,最终达到分离。 亲水性物质:易溶于水而难溶于有机溶剂的物质。如:无机盐类,含有一些亲水基团有机化合物常见的亲水基团有一OH,一SO3H,一NH2,=NH 等.疏水性或亲油性物质:具有难溶于水而易溶于有机溶剂的物质。如:有机化合物常见的疏水基团有烷基如一CH3,一C2H3,卤代烷基,苯基、萘基等物质含疏水基团越多,相对分子质量越大,其疏水性越强2.分配系数和分配比 (1)分配系数 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD为一常数。在稀溶液中可以用浓度代替活度。 (2)分配比 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比. 示例:CCl4——水萃取体系萃取OsO4在水相中Os(VIII)以OsO4,OsO52-和HOsO5-三种形

分离方法探讨:萃取分离法的原理,特点、应用及进展

分离方法探讨:萃取分离法的原理,特点、应用及进展 摘要 近年关于萃取技术研究进展很快,各种萃取方法层出不穷但各有其优缺点,现通过对几种比较流行的萃取方法进行总结归纳,并对未来萃取分离技术进展的特点做些分析。随着科技水平发展以及对于各种科研需要关于萃取技术这方面的研究不断更新,新的方法不断研究出来,本文简单归纳介绍了以下几种常用方法:1.固相萃取技术 2.亚临界水萃取技术3.液相微萃取技术。另外补充说明近年来我国稀土工业发展中萃取技术的应用情况和未来的发展趋势。 关键词:萃取分离;分离过程;发展趋势 引言 分离过程是将混合物分成组成互不相同的两种或几种产品的操作[1]。在化工生产中,分离操作一方面为化学反应提供符合质量要求的原料,清除对反应或催化剂有害的杂质,减少副反应和提高收率;另一方面对反应产物进行分离提纯,得到合格的产品,并且使未反应的物料循环利用,对生成的三废进行末端治理。对于大型的石油工业和以化学反应为中心的石油化工生产过程,分离装置的费用占总投资的50%~90 oA。因此,分离操作在提高石油化工生产过程的经济效益和产品质量中起着举足轻重的作用。此外,分离操作也广泛应用于医药、材料、冶金、食品、生化、原子能和环境治理等领域。 传统的提取物质中有效成分的方法复杂,而且产品的纯度不高易含有有毒有害物质在其中。萃取分离法是一种新型的分离技术,是将样品中的目标化合物选择性的转移到另一相中或选择性的保留在原来的相中,从而使目标化合物与原来的复杂基体相互分离方法。通过萃取分离这个重要单元操作步骤,可以达到产品提纯率高,纯度好,能耗低等优点。这种方法不仅在化工医药领域得到广泛应用,而且在食品,烟草,香料,稀土行业得到极大认可。随着科技的更新和进步,萃取分离技术也在不断的改进优化,新型的萃取分离技术不断出现并完善,这项技术在未来具有广阔的发展前景。 文献研究综述 1.1萃取原理 萃取是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作,

相关文档