文档库 最新最全的文档下载
当前位置:文档库 › 药物控制释放中应用的生物降解性高分子载体材料②

药物控制释放中应用的生物降解性高分子载体材料②

药物控制释放中应用的生物降解性高分子载体材料②

可生物降解高分子材料的分类及应用

四川工业学院学报 Journa l of S ich ua n Uni vers ity o f Sc ience and Tec hnolog y 文章编号:1000-5722(2003)增刊-0145-03 收到日期:2003-03-22 基金项目:中国石油天然气集团公司中青年创新基金项目(部(基)349):四川工业学院人才引进项目(0225964) 作者简介:王周玉(1977-),女,四川省彭州市人,西华大学生物工程系助教,硕士,主要从事高聚物的合成、改性性质及其应用的研究。 可生物降解高分子材料的分类及应用 王周玉,岳 松,蒋珍菊,芮光伟,任川宏 (西华大学生物工程系,四川成都 610039) 摘 要: 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 关键词: 生物降解;高分子材料;应用 中图分类号:O631.2 文献标识码:B 0前言 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料[1]是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳 的高分子材料。根据降解机理[1,2] 的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光-生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景,所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全 生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestruc tible ma terials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 [3,4] 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合成量超过1010 吨。利用它们制备的生物高分子材料可完全降解、具有良好的生物相容性、安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视,特别是日本。如日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳聚糖复合,采用流延工艺制成的薄膜,具有与通用薄膜同样的强度,并可在2个月后完全降解;他们还对壳聚糖)淀料复合高分子材料进行了大量的研究工作,发现调节原料的比例、热处理温度,可改变高分子材料的强度和降解时间。 天然高分子材料虽然具有价格低廉、完全降解等诸多优点,但是它的热力学性能较差,不能满足工程高分子材料加工的性能要求,因此对天然高分子进行化学修饰、天然高分子之间的共混及天然高分子与合成高分子共混以制得具有良好降解性、实用性的生物降解高分子材料是目前研究的一个主要方向。1.2 微生物合成高分子材料[3,4,5] 微生物合成高分子材料是由生物通过各种碳源发

(完整版)可降解高分子材料

可降解高分子材料 1 可生物降解高分子材料的定义 可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 2 生物降解高分子材料降解机理 生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。 人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。生物可降解高分子材料的降解除与材料

中国可降解高分子材料行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国可降解高分子材料行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.wendangku.net/doc/f012265271.html, 1

目录 中国可降解高分子材料行业上下游产业链分析 (3) 第一节可降解高分子材料行业上下游产业链概述 (3) 第二节可降解高分子材料上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 二、上游原材料供应情况分析 (4) 三、上游原材料价格走势分析 (4) 四、上游原材料行业前景分析 (4) 第三节可降解高分子材料下游行业需求市场分析 (4) 一、下游行业发展现状分析 (4) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

3 中国可降解高分子材料行业上下游产业链分析 第一节 可降解高分子材料行业上下游产业链概述 图表- 1:可降解高分子材料产业链 以PLA 为例,聚乳酸全名为PolyLacticAcid(PLA),又名玉米淀粉树酯,学名为Polylactide ,是一种丙交酯聚酯。聚乳酸为一多用途可堆肥的高分子聚合物,完全由植物中萃取出淀粉→经过发酵→去水→聚合等过程制造而成,无毒性。 其上游为淀粉、纤维素等原材料行业,下游行业应用范围较为广泛,主要包含医疗、食品包装、日用品等多个行业。 第二节 可降解高分子材料上游行业发展状况分析 一、上游原材料市场发展现状 作为生物塑料家族中的当家品种,聚乳酸(PLA)目前是产业化最成熟、产量最大、应用最广泛、价格最低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,也将成为生物塑料的主力军。 由于我国农业基础较为发达,淀粉酶以及纤维素等相关产品的数量较多,供给较为充足。

生物可降解高分子材料的发展现状与前景综述

生物可降解高分子材料的发展现状与前景综述Present Development and Prospects of Biodegradable Polymer 张璐,浙江大学工科试验班1128班,jangru@https://www.wendangku.net/doc/f012265271.html, 摘要:本文介绍了生物可降解高分子材料的定义和降解原理,并概述了生物可降解材料的种类,例如天然高分子材料,合成高分子材料和掺混型高分子材料,同时介绍了可降解高分子材料在环境保护、医疗保健、食品包装等领域的应用,并对其未来发展作了展望。 关键字:可降解高分子材料,分类,应用,发展前景 Abstract: This paper introduces the definition and degradation mechanism of biodegradable polymer, and summarizes the types of biodegradable materials, such as naturally occurring polymers, synthetic polymers and mixing type. Besides, the application of biodegradable polymer in environment protecting, medical science and other areas and the development prospect of this material are also include. Keywords:degradable polymer, classification, application, development prospect 当前社会,在经济快速发展和科学技术突飞猛进的同时,谋求绿色发展已经越来越成为时代的重要趋势。这种发展理念不仅体现在经济活动上,也体现在生物、化学等基础学科领域。就高分子材料方面而言,我国目前的高分子材料生产和使用已位居世界前列,每年产生数百万吨的废弃物,既造成了环境破坏,又极大地制约了学科本身的发展。为了解决这种矛盾,生物可降解高分子材料应运而生。作为一种新型的环境材料,生物可降解高分子材料很好平衡了经济与环境之间的需求,同时也为医疗保健等领域作出了长足的贡献。它的研究和迅速发展,已经受到人们越来越多的关注。 1 生物可降解高分子材料的定义及降解原理 可降解高分子材料,是一种环保高分子材料,它是在一定条件下,能在微生物分泌酶的作用下由大分子分解为小分子的材料[1]。 高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。高分子水合

生物降解高分子材料

生物降解高分子材料 肖群 (东北林业大学材料科学与工程学院,黑龙江哈尔滨 150040) 摘要:高分子材料在日常生活中的使用量越来越大.然而高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量塑料废弃物也与日俱增。给人类赖以生存的环境造成了不可忽视的负面影响。本文简要介绍生物降解高分子材料的定义、降解机理及影响因素的基础上,较为全面的阐述了当前生物降解高分子材料的应用领域。 关键词:生物降解,医用生物材料, 1 前言 聚合物工业蓬勃发展的同时也导致了环境污染的加剧,引起了人们对聚合物废料处理的关注。目前全世界每年生产塑料约1.2亿吨.用后废弃的大约占生产量的50%~60%。废塑料的处理以掩埋和焚烧为主,但这两种处理方法会产生新的有害物质。对此,一些国家实行了3R工程,即减少使用、重复使用和回收循环。但对一些回收困难、不宜回收或需要追加很大能量才能回收的领域(如食品包装、卫生用品),实施3R工程很困难,而如果使用生物降解材料则十分有利[1]。 2生物降解高分子材料定义降解机理 2.1生物降解高分子定义 根据美国ASTM定义生物降解高分子材料是指在一定的条件下.一定的时间内能被细菌、霉菌、藻类等微生物降解的高分子材料[2,3,4]。真正的生物降解高分子在有水存在的环境下,能被酶或微生物水解降解,从而高分子主链断裂,分子量 逐渐变小,以致最终成为单体或代谢成CO 2和H 2 O[5]。 2.2生物降解高分子材料的降解机理 生物降解机理和光一生物降解机理.完全生物降解机理大致有三种途径:①生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏.分裂成低聚物碎片:②生物化学作用:微生物对聚合物作用而产生新 物质(CH 4、C0 2 和H 2 0):③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩 裂。而光一生物降解机理则是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成含氧化物,并氧化断裂.分子量下降到能被微生物消化的水平。进一步研究发现.不同的生物降解高分子材料的生物降解性与其结构有很大关系,包括化学结构、物理结构、表面结构等。 对不同种类的生物降解材料而言.它们降解机理的不同决定了它们具有不同的性质。天然降解高分子材料.其本身来源于生物体,能保证足够的细胞及组织亲和性.降解周期一般较短.最终降解产物为多糖或氨基酸.容易被机体吸收.但是这种材料力学性能差。难于满足组织构建的速度要求,应用时需要进行改性。化学合成的生物降解材料的组成、结构和降解行为更易于控制。比如降解速度和强度可调.易构建高孔隙率三维支架.但材料本身对细胞亲和力弱.往往需要引入适量能促进细胞黏附和增值的活性基团、生长因子或黏附因子等。[6] 3生物降解高分子材料的种类及降解过程

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

降解高分子材料

III降解高分子材料 1简述 降解性高分子(又称生物可降解塑胶),在日本又称为绿色塑胶,是可以在自然界降解的塑胶材质。在有足够的湿度、氧气与适当微生物存在的自然掩埋或堆肥环境中,可被微生物所代谢分解产生水和二氧化碳或甲烷,对环境危害较小。由降解性高分子构成。基本上,生物塑胶并不是什麼新概念。由木材和棉花制成的赛璐珞,早在1850年代就被发明出来作为象牙撞球的替代品。但就像其他早期发明的可循环塑胶一样,赛璐珞缺乏合成塑胶的可变性和发展性,因此现在多半只能拿来做领口衬料和桌球。 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广, 可用于地膜、包装袋、医药等领域。 2生物降解高分子材料降解机理 按美国ASTM定义:生物降解高分子材料是指在细菌、真菌、藻类等自然界存在的微生物作用下能发生化学、生物或物理作用而降解或分解的高分子材料。般高分子材料的生物降解可分为完全生物降解和光一生物降解b。完全生物降解 大致有三种途径: (1) 生物化学作用:微生物对聚合物作用而产生新物质(C,C02和H 0)。 (2) 生物物理作用:由于生物细胞增长而使聚合物组分水解、电离质子化而发生机械性的毁坏,分裂成低聚物碎片。 (3) 酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。而光一生物降解则是材料中淀粉等生物降解剂首先被生物降解,增大表面积/体积比,同时, 日光、热、氧引发光敏剂等使聚合物生成含氧化物,并氧化断裂,分子量下降到 能被微生物消化的水平, 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

生物降解高分子材料的研究现状及应用前景_吴卫霞

?40? 2005年3月 油气田环境保护 综 述   生物降解高分子材料  的研究现状及应用前景  吴卫霞1 涂阿朋2 肖俊霞1 段明锋1  (1.江汉石油学院化学工程系;2.土哈油田钻井公司)  摘 要 目前,处理高分子材料的一些传统方法,如焚烧法、掩埋法、熔融共混挤出法、回收利用等都存在一定的缺陷和局限性,给环境保护带来严重的困难。因此,开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程。论述了生物降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业、包装业和其他领域的潜在应用前景进行了探讨。  关键词 生物降解高分子材料 降解机理 影响因素 研究现状 应用前景    0 引 言  随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害[1]。目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用[2]。同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。  1 高分子生物降解机理  理想的生物降解高分子材料是一种具有优良的使用性能,废弃后可被环境微生物完全分解,最终被无机化而成为自然界中碳元素循环的一个组成部分的高分子材料[3]。生物降解高分子材料的生物降解通常是指以化学方式进行的,即在微生物活性(有酶参与)的作用下,酶进入聚合物的活性位置并渗透至聚合物的作用点后,使聚合物发生水解反应从而使聚合物的大分子骨架结构发生断裂成为小的链段,并最终断裂成稳定的小分子产物,完成降解过程[4]。  一般高分子材料的生物降解可分为完全生物降解机理和光-生物降解机理[5]。完全生物降解机理大致有三种途径:① 生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏,分裂成低聚物碎片;② 生物化学作用:微生物对聚合物作用而产生新物质(CH4,CO2和H2O);③ 酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。光-生物降解机理是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成氧化物,并氧化断裂,分子量下降到能被微生物消化的水平。  2 影响生物降解的因素  生物降解高分子在制造和使用过程中应保持稳定,并要求在废弃后及时进行生物降解,因此影响生物降解性的因素成为人们关注的焦点之一。  环境因素[4,6]是指水、温度、pH值和氧的浓度。水是微生物生成的基本条件,因此聚合物能保持一定的湿度是其可生物降解的首要条件。每一种微生物都有其适合生长的最佳温度,通常真菌的适宜温度为20℃~28℃,细菌则为28℃~37℃。一般来说,真菌适宜长在酸性环境中,而细菌适宜长在微碱性条件下。真菌为好氧型的,细菌则可在有氧或无氧条件下生长。

生物可降解高分子材料——聚乳酸

生物可降解高分子材料——聚乳酸 摘要:论述了聚乳酸的基本性质、性能、应用及展望,指出了聚乳酸是一种新型绿色环保可生物降解的高分子材料. 关键词:绿色高分子;聚乳酸;生物可降解高分子材料 人类在21世纪的最大课题之一是保护环境。橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】。 1聚乳酸的基本性质 聚乳酸(PLA)是以微生物的发酵产物L—乳酸为单体聚合成的一类聚合物,具体性能【2】见表1.由于具有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。 聚乳酸的分子量对降解性能有重要的影响.在相同降解时间和降解环境下,分子量高的降解速率比分子量低的慢.这是因为随着聚合物分子量的提高,聚合物分子间的作用力增大、结晶度增高,且分子量低的聚合物末端羧基的数目较多,更容易发生水解.PDLLA的降解速率比PLLA的快.就是由于PLLA为结晶性聚合物,而PDLLA为无定型聚合物.无定型聚合物的结构疏松,水的渗透快,可以由外到里同时水解【3】。 表1聚乳酸的基本性能

2聚乳酸的合成方法 目前合成聚乳酸(PLA)的方法主要分为直接缩聚法和间接法(即丙交酯开环聚合、扩链反应等)【2】。 2.1直接缩聚 乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。但是乳酸的来源充足,价格便宜,所以直接法合成聚乳酸比较经济合算。研究表明,延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物分子量,在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加人催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸.它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融一固相缩聚法和反应挤出聚合法等. 2.1.1溶液缩聚法 采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸.该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引人使产物的最后纯化比较困难,成本仍然较高. 2.1.2熔融缩聚法 该方法工艺路线简单,操作简单,要求高真空或者氮气保护.但是产物的分子量不高,主要是因为反应后期体系的粘度较大,小分子水难以除去,因此有待于进一步完善.2000年日本学者合成M。超过10万的PLLA熔融聚合比溶液聚合操作简单,免去了高沸点溶剂的提纯,是减少辅助剂使用的最佳方法.它有利于降低成本、提高安全性、提高产率、缩短反应时间,是绿色化学的重要研究方向之—【4】. 2.1.3熔融固相缩聚 在聚合温度低于预聚物的熔点,而高于其玻璃化转变温度下进行的一种聚合方法.当熔融聚合产物继续进行固相缩聚时,随结晶度的不断提高,这些低分子

医用高分子载体材料

医用高分子载体材料 Medical polymer carrier materials 摘要:药物高分子载体是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。高分子材料优良的生物相容性、生物可降解性、降解速率的可调节性以及良好的可加工性能,都为药物制剂的创新提供了便利和可能。高分子载体材料的合成,高分子材料和所载药物分子的结构关系,提高载药效率,以及药物载体材料的结构,在性能方面,不仅要考虑高分子材料的生物适应性,而且考虑它在体内的分布情况和生物降解性能、降解产物对机体的影响等问题都需要深入研究。本文结合国内有关医用高分子载体材料方面的研究论文, 阐述了医用高分子载体的概念、种类、作用机理、研究现状、应用以及发展前景。 关键词: 医用高分子载体高分子载体药物控制释放肿瘤给药系统应用 Abstract:The development of pharmacology, biomaterials and clinical medicine brings on a new administration method, namely medical polymer carriers. The excellent biocompatibility, bio-degradability, adjusted degradation velocity and processing property of polymer materials facilitate the pharmaceutical preparation. Many problems, such as biocompatibility of polymer materials, in vivo distribution, in vivo degradability, and effect of degradable products, all need further researches in the fields regarding the synthesis of polymer carriers, the correlation between polymer materials and carrying drug molecules, raising the efficiency of drug carrying, the structure and property of the drug carriers. Based on the relevant domestic medical polymer carrier material research papers, expounds the concept of medical polymer carrier, type, function mechanism and research status quo, application and development prospect. Keywords:medical polymer carrier polymer drug carrier control release tumor drug delivery system application 1. 引言 20世纪60年代化学家们提出将高分子材料应用于生物药物领域,制备高分子药物是改善药物最有效的方法之一。高分子载体药物可以通过剂型改变,控制药物释放速度,避免间歇给药使血药浓度呈波形变化,从而使释放到体内的药物浓度比较稳定,还可以通过释放体系使药物送达体内特定部位,而对身体其它部位不起作用。载体药物技术的关键是

高分子材料综述

不饱和聚酯合成及加工工艺进展 摘要:本文介绍了不饱和聚酯合成与加工工艺,不饱和聚酯的由来以及一些不饱和聚酯的最新科研成果,包括不饱和聚酯的合成原料、加工助剂、不饱和聚酯的改性以及新型的加工工艺等方面内容。 关键词:不饱和聚酯(UP);合成;加工工艺;改性;进展 0前言 不饱和聚酯树脂是热固性树脂中用量最大的树脂品种,也是FRP制品生产中用得最多的基体树脂。UPR生产工艺简便,原料易得,耐化学腐蚀,力学性能、电性能优良,可常温常压固化,具有良好的工艺性能,广泛应用于建筑、防腐、汽车、电子电器等多种复合材料。近年来,由于苯乙烯等主要原材料价格的大幅上涨,对低端产品的冲击很大,不饱和聚酯树脂行业的效益下滑。面对严峻的形势,各国纷纷加大研究开发的力度,研究出多种低成本、环境友好的复合材料,并将其应用领域不断拓宽。 1不饱和聚酯的概述 1.1不饱和聚酯的定义 人类最早发现的树脂是从树上分泌物中提炼出来的脂状物,如松香等,这是“脂”前有“树”的原因。直到1906年第一次用人工合成了酚醛树脂,才开辟了人工合成树脂的新纪元。1942年美国橡胶公司首先投产不饱和聚酯树脂,后来把未经加工的任何高聚物都称作树脂。但是早就与“树”无关了。树脂又分为热塑性树脂和热固性树脂两大类。对于加热熔化冷却变固,而且可以反复进行的可熔的树脂叫做热塑性树脂,如聚氯乙烯树脂(PVC)、聚乙烯树脂(PE)等;对于加热固化以后不再可逆,成为既不溶解,又不熔化的固体,叫做热固性树脂,如酚醛树脂、环氧树脂、不饱和聚酯树脂等。“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯(英文名Unsaturated Polyester简称UP)。因此,不饱和聚酯可以定义为由饱和的和不饱和的二元酸(或酸酐)与多元醇缩聚而成的线型高分子化合物。不饱和聚酯是一种线性不饱和聚脂,当其在热、光照、高能辐射以及引发剂的作用下与交联剂反应,固化成为一种不溶不融的高分子网状的不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”(英文名Fiber Reinforced Plastics 简称FRP)。"玻璃钢"的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。 1.2不饱和聚酯的发展历史 不饱和聚酯树脂产品发展至今大约有70多年的历史,在这么短的时期内,不饱和聚酯产品无论从产量还是从技术水平方面均得到了飞速的发展。而在上世纪80年代后期,我国先后引进了美国、日本、意大利和德国的制造技术,使我

可降解高分子塑料的发展与应用

第40卷第7期 辽 宁 化 工 Vol.40,No. 7 2011年7月 Liaoning Chemical Industry July,2011 收稿日期: 2011-03-17 可降解高分子塑料的发展与应用 白 东 明 (大庆炼化公司聚丙烯厂, 黑龙江 大庆 163411) 摘 要: 介绍了可降解塑料的分类及降解机理,探讨了其发展中存在的问题,并且对可降解塑料的发展前景进行了分析。 关 键 词: 可降解塑料; 光降解; 生物降解 中图分类号: TQ 317.9 文献标识码: A 文章编号: 1004-0935(2011)07-0712-03 可降解塑料是一类新型的带降解功能的高分子材料,在使用过程中,它与同类的普通塑料具有相应的卫生性能和相近的应用性能,而在其完成使 用功能后,这种材料能在自然环境条件下迅速地降解成为容易被环境消纳的碎片或碎末,且随时间的推移进一步降解成为最终氧化产物(CO 2和水),最终回归自然[1] 。基于塑料废物对环境的污染,以及环保呼声和人类需求,研究可降解高分子材料是当务之急。在特定的时间内并且在一定的环境条件下,可降解塑料的化学结构会发生变化,根据促使其化学结构发生变化的原因来分类,可降解塑料可分为生物降解塑料和光降解塑料两大类[2] (见图1)。 1 可降解塑料的降解机理 一般认为,可降解塑料是指一种通过土壤中微生物作用或太阳光辐射作用使其能分解成为小分子物的塑料[3] 。它必须在满足了产品使用的要求性能及易加工性能的基础上兼具有可降解性能。 图1 生物降解和光降解塑料分类 太阳光对聚合物材料作用的实质是太阳光中的紫外光和空气中氧的综合效应,因此也称为光氧化 降解。下面以聚烯烃为例解释光氧化降解的机理,光氧化对于聚合物的作用实质是引起聚合物的断链或交联,并在此过程中伴随形成了一些含氧官能团,如羧酸、过氧化物、酮和醇。聚合物中催化剂残留物以及加工过程中引入的过氧化物和羧基的引发作用是其降解的主要来源,其引发过程如下: 催化剂残留物的引发作用 M n + Xn 光能 M (n -1) +X n -1+X · (1) X ·+PH P ·+XH (2) 过氧化物引发作用 POOH 光能 PO ·+·OH (3) PO ·+PH POH+P · (4) P ·+O 2 POO · (5) POO ·+PH POOH+P · (6) N-Ⅰ型: H 2 C H 2C O H 2C H 2C O H 2H 2C H 3C CH 2 H C CH 3 CO (7) N-Ⅱ型: H 2C O H 2C H 2C H 2C H 2C C O CH 3 H 2C C H H 2C (8) 通过上述反应,导致聚合物被降解[4] 。 微生物对聚合物的劣化作用主要分为生物物理作用、生物化学作用及酶的作用。聚合物的自身结构以及周围的环境,如温度、水、pH 值和氧气等都是影响微生物降解作用敏感性的关键因素,通过

降解高分子材料

III降解高分子材料 1 简述 降解性高分子(又称生物可降解塑胶),在日本又称为绿色塑胶,是可以在自然界降解的塑胶材质。在有足够的湿度、氧气与适当微生物存在的自然掩埋或堆肥环境中,可被微生物所代谢分解产生水和二氧化碳或甲烷,对环境危害较小。由降解性高分子构成。基本上,生物塑胶并不是什麼新概念。由木材和棉花制成的赛璐珞,早在1850年代就被发明出来作为象牙撞球的替代品。但就像其他早期发明的可循环塑胶一样,赛璐珞缺乏合成塑胶的可变性和发展性,因此现在多半只能拿来做领口衬料和桌球。 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。 2 生物降解高分子材料降解机理 按美国ASTM定义:生物降解高分子材料是指在细菌、真菌、藻类等自然界存在的微生物作用下能发生化学、生物或物理作用而降解或分解的高分子材料。般高分子材料的生物降解可分为完全生物降解和光一生物降解b 。完全生物降解大致有三种途径: (1)生物化学作用:微生物对聚合物作用而产生新物质(C ,C02和H O)。 (2)生物物理作用:由于生物细胞增长而使聚合物组分水解、电离质子化而发生机械性的毁坏,分裂成低聚物碎片。 (3)酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。而光一生物降解则是材料中淀粉等生物降解剂首先被生物降解,增大表面积/体积比,同时,日光、热、氧引发光敏剂等使聚合物生成含氧化物,并氧化断裂,分子量下降到能被微生物消化的水平, 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、

功能高分子材料的应用综述

功能高分子材料的应用 *** 广西科技大学生化学院,广西柳州545006 【摘要】新型功能高分子材料已广泛应用于许多领域,本文介绍了功能高分子材料在化学、光、电、生物医用等方面的应用;介绍了几种新型功能高分子材料的研究进展,并论述了发展功能高分子材料对促进现代化发展的重要意义,对初步了解认识功能高分子材料的应用具有一定的指导意义。 【关键词】功能材料;高分子;应用 材料是人类赖以生存和发展的物质基础,是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪8O年代以来。一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向。而功能高分子材料占有举足轻重的地位,由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。 1 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料[2]。功能高分子材料的研究现状在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料。 2 高功能高分子材料 2.1 化学功能高分子材料 通常具有某种化学反应功能。它将具有化学活性的基团连接到以原有主链为骨架的高分子上。离子交换树脂是材料一种带有可交换离子的活性基团、具有三维网状结构、不溶的交联聚合物。在水中具有足够大的凝胶孔或大孔结构。由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化、溶液浓缩和净化、海水提铀,特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛。 2.2 光功能高分子材料 在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材

有机高分子材料综述3

聚合物材料的发展应用综述 王奇华 有机高分子聚合物是由小分子单体以重复连接方式结合而成的长链大分子。化学家发展有机大分子的目标,是通过巧妙操控这些分子结构单元并利用其与功用的联系来发展当今社会需要的各种特殊材料。高分子化学在20世纪早期随着高分子材料尼龙等的出现有过一次大的飞跃。今天,对高分子聚合的大多数工作都主要是改进和精细调适现有的技术。但对聚合物化学家和对高分子材料来讲仍有机会。高分子材料在许多领域出现了一些重大进展。而塑料在所有材料中用途是非常广泛的。塑料以其优越的特性成为21世纪的宠儿,被广泛应用于各个方面。虽然塑料对环境造成了危害,但塑料制品在我们生活中的作用是不容忽视的,而塑料也不会被其他材料替代,因为塑料有其优越的性能。下面就高分子材料的地位、特点、近年来的重大进展以及我所关注的塑料的发展状况作一下简单的介绍。 一、高分子科学近年来取得的重要进展 (一)、高分子化学 在高分子合成方面,聚烯烃方面的微小突破就会带来很大的影响。道化学公司的研究小组[1]利用高通量筛选找到了两种催化剂,带取代基双(水杨醛亚胺)锆作为乙烯聚合催化剂、带取代基的吡啶-胺铪作为辛烯-1聚合催化剂,在这种“链穿梭聚合”中,在单一反应器中利用二乙基锌作为链转移剂和聚合物链的“储藏库”,间歇穿梭于两种催化剂之间形成两种聚合物的交替嵌段,共聚物中嵌段数链转移速度可由单体和二乙基锌浓度来控制。可以获得工业化规模的一系列乙烯-辛烯多嵌段共聚物。连续过程有许多优点:性能比无规共聚物或两种均聚物共混物优异,比现有共聚物生产分批过程更加有效、经济和绿色、为一类新型热塑性弹性体的创制提供了新途径,有望获得新型聚合物产品。 “Click”化学的运用正处于广泛运用的时期,属于高分子合成中简单易行、高选择性、单一产物的新途径[6]。近期《Macromolecules》点击率很高的论文多篇为此方面的,国内学者也已开始此领域的研究。 2005年包括易位聚合在内的烯烃易位反应获得了诺贝尔化学奖。该领域的研究仍是国际上的热点。Schrock[7]最近报导了以Schrock催化剂引发取代环丙烯活性易位开环聚合(ROMP)。这样将活性ROMP从双环烯拓展到了单环烯烃聚合物分子量与理论值接近,其分子量高达34300、分子量分布为1.04。Grubbs[8]发展了烯烃易位聚合水溶性催化剂,实现了水溶性降冰片烯的易位开环聚合,进一步显示了此类聚合的优势。关键是在Grubbs催化剂的配体上接上了PEG。聚合物收率很高。 高分子化学近期的热点领域仍为可控聚合与树枝状聚合物的制备,我国高分子学者在高分子化学领域取得的代表性进展举例如下: 1、高选择性交替共聚:

相关文档
相关文档 最新文档