文档库 最新最全的文档下载
当前位置:文档库 › 薄膜蒸发器选型数据表(中英)-2017

薄膜蒸发器选型数据表(中英)-2017

薄膜蒸发器选型数据表(中英)-2017

Wuxi Lima Chemical Machinery C0., LTD

无锡力马化工机械有限公司

Thin Film Evaporator Selection Technical Data

薄膜蒸发器选型数据表

用户单位Customer: 年Y____月M____日D

板式换热器

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

刮板式薄膜蒸发器

苏州岑途工程技术有限公司 Suzhou Century Engineering Technology CO., LTD 薄膜蒸发器介绍资料 2012年9月编制

刮板式薄膜蒸发器 刮板式薄膜蒸发器 一、概述 刮板式薄膜蒸发器,是一种通过旋转刮板强制成膜,可在真空条件下进行降膜蒸发的新型高效蒸发器。它传热系数大、蒸发强度高、过流时间短、操作弹性大,尤其适宜热敏性物料、高粘度物料及易结晶含颗粒物料的蒸发浓缩、脱气脱溶、蒸馏提纯。因此,在化工、石化、医药、农药、日化、食品、精细化工等行业获得广泛应用。 二、结构特点 主体结构图 整体效果图

三、流程图(非标配) 常见流程图 四、关键部件介绍 1.电机、减速机 它是转子旋转的驱动装置。转子的转动速度将起决于刮板的形式.物料的粘度和蒸发筒身内径;选择刮板合适的线速度是保证蒸发器稳定可靠运行及满意蒸发效果的重要参数之一。 2.分离筒 物料由设在分离筒身下端的入口切向进入蒸发器,并经安装在分离筒身内的布料器被连续均匀地分布于蒸发筒身内壁,从蒸发筒身蒸发出的二次蒸汽上升至分离筒,经安装在内的气液分离器,将二次蒸汽可能挟带的液滴或泡沫分离,二次蒸汽从上端的出口引出蒸发器。 依据于蒸发器内阻力计算的分离筒身的合理设计,是避免物料“短路”的关键因素之一。(所谓“短路”,系指物料刚进蒸发器,尚未完成蒸发过程,即从二次蒸汽出口离开蒸发器。) 3.布料器 布料器安装在转子上。合理的设计,使从切线方向进入蒸发器的物料,通过旋转的布料器,被连续均匀地呈膜上泼布在蒸发面上。 4.气液分离器 旋片式气液分离器安装在分离筒上方,它将上升的二次蒸汽可能挟带的液滴或泡沫捕集,并使之回落到蒸发面上。 5.蒸发筒身 又称加热筒身。它是被旋转刮板强制成膜的物料与夹套内加热介质进行热交换的蒸发面。蒸发筒身的内径及长度由蒸发面积及适宜的长径比确定。

中央空调常用管道保温厚度数据表

hvacrbk制冷百科是制冷快报旗下专业的制冷技术知识分享公众号,制冷百科将为您提供最全面、最实用、最前沿的暖通、空调、制冷技术知识。一、冷冻水管道(≥5℃) 柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 管道公称直 径厚度 管道公称直 径 厚度 房间吊顶内、机房15~252515~2525 32~803032~8030≥10035≥10035 室外 15~253515~2530 32~804032~8035 ≥10050≥10040二、热水、冷热合用管(5~60℃) 柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 管道公称直径厚度管道公称直径厚度 房间吊顶内、机房 ≤5030≤4035 70~1503050~10040≥20035125~25045 ≥30050 室外 ≤5035≤4040 70~1503550~10045≥20040125~25050

≥30055三、热水、冷热合用管(0~95℃) 聚氨酯硬质泡沫(直埋)(mm)玻璃棉管壳(mm) 管道公称直 径厚度 管道公称直 径 厚度 房间吊顶内、机房 ≤3230≤5050 40~2003570~15060≥25045≥20070 室外 ≤3235≤5060 40~2004070~15070 ≥25050≥20080四、蓄冰管道(≥-10℃) 柔性泡沫橡塑(mm)聚氨酯发泡(mm) 室内 15~403530 50~1004040≥1255050板式换热器35-槽、罐6050 室外 15~404040 50~1005050 ≥1256060 槽、罐7070五、空调凝结水管道

柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 空调房间吊 顶内 1010 非空调房间1515 六、空调风管道 柔性泡沫橡塑板(mm)玻璃棉板、毡(mm) 送风温度≥14℃在非空调房间内2040在空调房间内2030 送风温度≥4℃在非空调房间内2550在空调房间内2540 七、冷媒管道(分体空调,VRV) 安装说明要求的保温层的最小厚度 1、通过空调空间19mm 2、通过非空调空间19mm 3、贯穿浴室吊顶空间25mm 八、导热系数 离心玻璃棉λ=0.031+0.00017tmW/m.K 柔性泡沫橡塑λ=0.03375+0.000125tmW/m.K 聚氨酯λ=0.0275+0.0009tmW/m.K 聚氨酯硬质泡沫(直埋)λ=0.02+0.00014tmW/m.K

板式换热器选型参数表

选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

薄膜蒸发器

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN 工程名: PROJECT 设备位号: ITEM 设备名称:薄膜蒸发器 EQUIPMENT 图号: XLE-41J DWG NO。 设计单位:西安协力动力科技有限公司 DESIGNER

计算所依据的标准 GB 150.3-2011 设 计 条 件 简 图 计算压力 p c -0.100 MPa 设计温度 t 150.0 ? C 设备壳体内径 D i 1000.0 mm 螺栓连接平盖型式 N o 9 计算直径 D c 1028.0 mm 径向截面上各开孔直径之 和 D 65.0 mm 材料名称 Q245R 许用应力 [σ]t 127.0 MPa 中心圆直径 D b 1090.0 mm 螺 公称直径 d B 20.0 mm 栓 数量 n 36 个 材料名称 35CrMoA 垫 外径 D 外 1044.0 mm 内径 D 内 1004.0 mm m 2.00 y 11.0 MPa 片 压紧面形状 1a,1b 材料类型 软垫片 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 0.50 MPa 压力试验允许通过的应力[σ]t [σ]T = 202.50 MPa 试验压力下封头的应力 σT = φ δ..22 e i T KD p = 119.95 MPa 校核条件 σT ≤ [σ]T 校核结果 合格 厚 度 设 计 系数 K (取大值) 预紧时 A m =1353.4 A b =8456.4 W = 0.5( A m + A b )[σ]b = 1030027.0 3 78.1c c G D p WL K = = 0.52 操作时 W =0.0 3 78.13.0c c G D p WL K + == 0.30 开孔削弱系数 ν = 0.94 计算厚度 δp = D c []φ σt p K c ?= 19.97 mm 计 算 结 果 名义厚度 47.7 mm 校核合格

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

薄膜蒸发器原理和规格

薄膜蒸发器(无锡海源) 一、概述 薄膜蒸发器是通过旋转刮膜器强制成膜,并高速流动,热传递效率高,停留时间短(约10~50秒),可在真空条件下进行降膜蒸发的一种新型高效蒸发器。 它由一个或多个带夹套加热的圆筒体及筒内旋转的刮膜器组成。刮膜器将进料连续地在加热面刮成厚薄均匀的液膜并向下移动;在此过程中,低沸点的组份被蒸发,而残留物从蒸发器底部排出。 二、性能特点 ·真空压降小: 物料汽化气体从加热面送到外置的冷凝器,存在一定的压差。在一般的蒸发器中,这种压力降(Δp)通常是比较高的,有时甚至高得难于接受。而刮板式薄膜蒸发器有较大的气体穿越空间,蒸发器内压力能看成与冷凝器中的压力几乎相等,因此,压力降很小,真空度可达5mmHg。 ·操作温度低: 由于上述特性,这使得蒸发过程可以保持在较高真空度条件下进行。由于真空度的提高,与之相应的物料沸点迅速降低,因此,操作可以在较低温度下进行,降低了产品的热分解。·受热时间短: 由于刮板式薄膜蒸发器的独特结构,刮膜器具有泵送作用,使得物料在蒸发器内的停留时间很短;另,在加热的蒸发器上由于薄膜的高速湍流使得产品不会滞留在蒸发器表面。因此,特别适用于热敏性物料的蒸发。 ·蒸发强度高: 物料沸点的降低,增大了同热介质的温度差;刮膜器的功能,减小了呈现湍流状态的液膜厚度,降低了热阻。同时,在这过程中抑制物料在加热面结壁、结垢,并伴有良好的热交换,因此,提高了刮板式薄膜蒸发器的总传热系数。 ·操作弹性大: 正是由于刮板式薄膜蒸发器独有的性能,使其适宜于处理热敏性和要求平稳蒸发的、高粘度的及随浓度提高粘度急剧增加的物料,其蒸发过程也能平稳蒸发。 它还能成功地应用于含固颗粒、结晶、聚合、结垢等情况物料的蒸发和蒸馏。 三、应用领域 在热交换工程中,刮板式薄膜蒸发器得到广乏的应用。尤其对热敏性物料(时间短暂)

板式换热器原理图

板式换热器原理图 液体换热通用型板式换热器 用于液体之间热交换,平均温度差大于2℃的工况。 主要型号:BR10、BR20、BR30、BR31、BR35、BR50、BR64、BR80、BR100、BR140等。 空调系统专用型板式换热器 空调系统专用型的板式换热器才能实现。 主要型号:BR70C、BR170C等。

颗粒纤维介质专用型板式换热器 在酒精酿造,造纸,纺织,及其他含颗粒或纤维介质的热交换中必须采用专用大间隙无阻碍的板式换热器。 主要型号:BPF40、BPF100、BPF170等。 低阻降冷凝专用型板式换热器 适用于各种工业气体的冷凝工艺需要,冷凝阻力非常小,又要有很高的传热系数,一般的板式换热器不能实现。 专用冷凝换热器有:BL80、BZL140。

各国替代板片及垫片 太平洋公司按照用户的要求开发了各国板片及垫片。可以满足各种规格进口板式换热器,板片,及垫片的替代要求。 实验室适用型板式换热器 BR3,BR6等型号小型板式换热器适用于小流量的场合使用。例如:实验室,药品生产,机器润滑配套冷却等。

箱形半焊板式换热器系列 适用于高温,高压,真空及要求无泄漏的场合。主要有冷凝型、自由流型、普通换热型

1. 板式换热器简介 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。 板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。 1.1板式换热器的基本结构 板式换热器主要由框架和板片两大部分组成。 板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫片加以密封。 框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构

蒸发器冷凝器选型参数.doc

选型参数计算表 蒸发器简易选型 ( 仅供参考) 压缩机输 RT 104kcal/h 输入功率制冷量 KW 蒸发器片数 ( 冷冻水进 12°出 7°) 入功率备注 (kW)(COP3.33) (Hp) EATB25 EATB55 EATB85 小1 0.62 0.124 0.65 2.17 16 2°蒸发 1 0.7 0.2 2 0.75 2.5 18 2°蒸发 1.5 1.05 0.33 1.13 3.76 22 2°蒸发 2 1.4 0.4 3 1.50 5 26 2°蒸发 3 2.1 0.65 2.25 7.5 3 4 18 2°蒸发 4 2.8 0.86 3.00 10 44 22 2°蒸发 5 3.5 1.1 3.75 12.5 54 2 6 2°蒸发 6 4.2 1.29 4.50 15 30 2°蒸发 7 5 1.5 5.25 17.5 32 2°蒸发 8 5.7 1.7 6.00 20 36 2°蒸发 9 6.4 1.9 6.75 22.5 40 2°蒸发 10 7.1 2.1 7.50 25 46 2°蒸发 11 7.9 2.4 8.25 27.5 50 2°蒸发 12 8.5 2.6 9.00 30 56 36 2°蒸发 13 9.4 2.8 9.75 32.5 60 40 2°蒸发 14 10 3 10.50 35 64 42 2°蒸发 15 11 3.26 11.25 37.5 70 46 2°蒸发 16 11.3 3.44 12.00 40 74 48 2°蒸发 17 12.2 3.7 12.75 42.5 78 52 2°蒸发 18 12.7 3.87 13.50 45 84 56 2°蒸发 19 13.6 4.13 14.25 47.5 60 2°蒸发 20 14.2 4.3 15.00 50 64 2°蒸发 21 15 4.5 15.75 52.5 68 2°蒸发 22 15.6 4.7 16.50 55 74 2°蒸发 23 16.5 5 17.25 57.5 80 2°蒸发 24 17 5.16 18.00 60 84 2°蒸发 25 18 5.6 18.25 62.5 90 2°蒸发 26 20 6 19.00 65 98 2°蒸发 选型参数计算表

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一 《食品工程原理》课程设计任务书 ............................................................................. 1 (1).设计课题 ....................................................................................................................... 2 (2).设计条件 ....................................................................................................................... 2 (3).设计要求.......................................................................................................................... 2 (4).设计意义.......................................................................................................................... 2 (5).主要参考资料 .................................................................................................................. 3 二 设计方案的确定 ............................................................................................................. 3 三 设计计算 ......................................................................................................................... 4 3.1.总蒸发水量 ..................................................................................................................... 4 3.2.加热面积初算 ................................................................................................................. 4 (1)估算各效浓度 ............................................................................................................. 4 (2)沸点的初算 ................................................................................................................. 4 (3)温度差的计算 ............................................................................................................. 5 (4)计算两效蒸发水量1V ,2V 及加热蒸汽的消耗量1S ................................................. 6 (5)总传热系数K 的计算 ................................................................................................. 7 (6)分配有效温度差,计算传热面积 ............................................................................. 9 3.3.重算两效传热面积 ....................................................................................................... 10 (1)第一次重算 ............................................................................................................... 10 3.4 计算结果 ...................................................................................................................... 11 四 蒸发器主要工艺尺寸的计算 (13) 五 简图-----------------------------------------------------------------------------------------------------13 (1)工艺流程图-----------------------------------------------------------------------------------------13 (2)细节图-----------------------------------------------------------------------------------------------14

冷却塔选型计算

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量 +压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1 比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃× Δt 进气温度) 制冷量=温差×重量/时间×比热×安全系数例如:有一个速冻库1 库温-35℃,2冷冻量1ton/H、3时间2/H 内,4 冷冻物品(鲜鱼);5环境温度27℃;6 安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB 与MC 选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) =电动机额定电流×1 .5 ~2 .5(如保险丝的IC 值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部

的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。 电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小( 亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10 倍。额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V 电压之额定值为准。 电磁接触器依启闭电流为额 定电流倍数分为: (1).AC1级:1.5 倍以上,电热器或电阻性负载用。 (2).AC2B级:4 倍以上,绕线式感应电动机起动用。 (3).AC2级:4 倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10 倍以上,启断8 倍以上,感应电动机起动用。 (5).AC4级:闭合12 倍以上,启断10 倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21 规格 ◎额定容量CNS AC3级3 相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V): 用以表示该压缩机泄漏或阀门间隙所造成排出的气体 流量减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量体积效率细分可分为二部分 (1)间隙体积效率 η vc=V′ / V V′:实际之进排气量V :理论之排气量间隙体积效率一般由厂商提供,当压

空调冷凝器工作原理及选择技巧

空调冷凝器工作原理及选择技巧 在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传。 空调机根据冷凝形式可分为:水冷式和空冷式两种,根据使用目的可分为单冷式和制冷制暖式两种,不论是哪一种型式的构成,都是由以下的主要部件组合而成的。 冷凝器的必要性基于热力学第二定律——根据热力学第二定律,封闭系统内部热能自发的流动方向是单向的,即只能从高热流向低热,在微观世界表现为承载热能的微观粒子只能由有序变成无序。所以,一个热机在有能量输入做功的同时,下游也必须有能量放出,这样上下游才会有热能差距,热能的流动才会成为可能,循环才会继续下去。 天津市隆泰冷暖设备制造有限公司主要从事研发、生产、销售空调用冷凝器及中央空调系统加工、安装、维修等。下面天津隆泰技术人员将为大家介绍泠凝器的工作原理及选择技巧: 工作原理 气体通过一根长长的管子(通常盘成螺线管),让热量散失到四周的空气中,铜之类的金属导入性能强,常用于输送蒸气。为提高冷凝器的效率经常在管道上附加热传导性能优异的散热片,加大散热面积,以加速散热。并通过风机加快空气对流的方式把热带走。 一般制冷机的制冷原理压缩机的作用是把工质由低温低压气体压缩成高温高压气体,再经过冷凝器,在冷凝器中冷凝成低温高压的液体,经节流阀节流后,则成为低温低压的液体。

低温低压的液态工质送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,从而完成制冷循环。 单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 冷凝器的选择包括形式和型号的选择,并确定流经冷凝器的冷却水或空气的流量和阻力。冷凝器型式的选择要考虑当地的水源、水温、气候条件,以及制冷系统总制冷量的大小和制冷机房的布置要求。在确定冷凝器型式的前提下,根据冷凝负荷和冷凝器单位面积的热负荷来计算冷凝器的传热面积,以此来选定具体的冷凝器的型号。 天津市隆泰冷暖设备制造有限公司拥有强大的管理团队,公司总经理拥有大型企业管理及国家高新技术产业化项目的管理经验。研发团队主要是自研和外聘专业技术人员,公司的研发主管曾参与设计实施93年天津世乒赛场馆的中央空调的安装调试工作。

板式换热器的优化选型

板式换热器的优化选型 1 平均温差△tm 从公式Q=K△tmA,△tm=1/A∫A(t1-t2)dA中可知,平均温差△tm是传热的驱动力,对于各种流动形式,如能求出平均温差,即板面两侧流体间温差对面积的平均值,就能计算出换热器的传热量。平均温差是一个较为直观的概念,也是评价板式换热器性能的一项重要指标。 1.1 对数平均温差的计算 当换热器传热量为dQ,温度上升为dt时,则C=dQ/dt,将C定义为热容量,它表示单位时间通过单位面积交换的热量,即dQ=K(th-tc)dA=K△tdA,两种流体产生的温度变化分别为 dth=-dQ/Ch,dtc=-dQ/Cc,d△t=d(th -tc)=dQ(1/Cc-1/Ch),则dA=[1/k(1/Cc-1/Ch)]· (d△t/△t),当从A=0积分至A=A0时,A0=[1/k(1/Cc-1/Ch)]·㏑[(tho-tci)/(thi-tco)],由于两种流体间交换的热量相等,即Q=Ch(thi-tho)=Cc (tco-tci),经简化后可知,Q=KA0{[(tho-tci)-(thi-tco)]/㏑ [(tho -tci)/(thi-tco)]},若△t1=thi-tco,△t2=tho-tci,则Q=KA0[(△t1-△t2)/㏑(△t1/△t2)]=KA0△tm,式中的△tm=(△t1-△t2)/㏑(△t1/△t2)。 顺流△tm=[(thi-tci)-(tho-tco)] /㏑[(thi-tci)/(tho -tci)] 逆流△tm=[(thi-tco)-(tho-tci)] /㏑[(thi-tco)/(tho -tci)] 对于各种流动型式,在相同的进口、出口温度条件下,逆流的平均温差最大。 当板式换热器入口和出口两流体的温差△t1和△t2之间的差不大时,可采用算术平均温差(△t1+△t2)/2,一般△t1/△t2小于1.5时,可采用,若△t/△t2为3时,则误差约为10%。 1.2 传热单元数法 在传热单元数法中引入一个无量纲参数NTU,称为传热单元数,它表示板式换热器的总热导(即换热器传热热阻的倒数)与流体热容量的比值 NTU=KA/MC,

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

相关文档