文档库 最新最全的文档下载
当前位置:文档库 › 大学物理习题集(下,含解答)

大学物理习题集(下,含解答)

大学物理习题集(下,含解答)
大学物理习题集(下,含解答)

大学物理习题集(下册,含解答)

单元一 简谐振动

一、 选择题

1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ]

(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;

(D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为4

3π,则t=0时,质点的位置在: [ D ]

(A) 过1x

A 2

=

处,向负方向运动; (B) 过1x A

2

=

处,向正方向运动;

(C) 过1

x A 2

=-处,向负方向运动;(D) 过1

x A 2

=-处,向正方向运动。

3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

x o A x ω

(A) A/2 ω (B) (C)

(D)

o o

o

x

x

x

A x ω ω

A

x

A

x

A/2 -A/2 -A/2 (3)

4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ]

(A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2

5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ]

(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;

(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

(4)

题(5)

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]

2153(A ),or ;A ;(B ),;

A ;

3326623223(C ),or ;

A ;

(D ),;A

442

332ππ±±π±±±π±

ππ±

±

π±±

±

π±

7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3

x t ππ=+

(SI )

,从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ]

(A)

s 8

1; (B)

s 6

1; (C)

s 4

1; (D)

s 2

1

8. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为

[ C ]

x

t

O

x 1

x 2

(8)

(A) π2

3; (B) π; (C) π2

1 ; (D) 0

二、 填空题

9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6

r a d /=ωπ,

/3=φπ

10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。此弹簧下应挂__2.0__kg 的物体,才能使弹簧振子作简谐振动的周期T = 0.2π s 。

11. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为T /12;由最大位移到二分之一最大位移处所需要的时间为T /6。

12. 两个弹簧振子的周期都是0.4 s ,设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 π 。

13. 两个同方向同频率的简谐振动,其振动表达式分别为:

)2

15c o s (10

62

1π+?=-t x (SI) , )5c o s (1022

2t x -π?=- (SI)

它们的合振动的初相为 0.60π 。

三、 判断题

14. 物体做简谐振动时,其加速度的大小与物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 [ √ ] 15. 简谐运动的动能和势能都随时间作周期性的变化,且变化频率与位移变化频率相同。 [ × ]

9.题图

16. 同方向同频率的两简谐振动合成后的合振动的振幅不随时间变化。 [ √ ]

四、 计算题

17. 作简谐运动的小球,速度最大值为3m v =cm/s ,振幅2A =cm ,若从速度为正的最大值的某时刻开始计算时间。(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。

解:(1)振动表达式为 c o s ()x A t ω

?=+ 振幅0.02A m =,0.03/m v A m s ω==,得 0.03 1.5/0.02

m v rad s A

ω=

=

=

周期 22 4.191.5

T s π

πω

=

=

=

(2)加速度的最大值 2

2

2

1.50.02

0.045/m a A m s ω==?=

(3)速度表达式 sin()cos()2

v A t A t π

ωω?ωω?=-+=++

由旋转矢量图知,02

π

?+

=, 得初相 2

π

?=-

振动表达式 0.02cos(1.5)2

x t π

=-

(SI )

18. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。求此简谐振动的振动方程。

解:设振动方程为 )c o s (φω+=t A x 由曲线可知: A = 10 cm

当t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 初相 3

2π=

φ

由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3

22cos(100π+

则有 2/33/22π=π+ω, ∴ 12

5π=ω

故所求振动方程为 )3

212

5cos(

1.0ππ+

=t x (SI)

x (cm) t (s) -5 10 O -10

2 (18)

19. 定滑轮半径为R ,转动惯量为J ,轻绳绕过滑轮,一端与固定的轻弹簧连接,弹簧的倔强系数为K ;另一端挂一质量为m 的物体,如图。现将m 从平衡位置向下拉一微小距离后放手,试证物体作简谐振动,并求其振动周期。(设绳与滑轮间无滑动,轴的摩擦及空气阻力忽略不计)。

解:以物体的平衡位置为原点建立如图所示的坐标。

物体的运动方程:x m T mg 1 =-

滑轮的转动方程:R x J

R )T T (21 =-

对于弹簧:

)

x x (k T 02+=,

mg kx 0=

由以上四个方程得到: 0

x )

m R

J (

k

x

2

=++

令)

m R

J (

k 2

2

+=ω

物体的运动微分方程:0x x 2

=+ω

物体作简谐振动,振动周期为:

k

R

J m 2T 2

+

20. 如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上。设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F 。当重物运动到左方最远位置时开始计时,求物体的运动方程。

解:设物体的运动方程为 )c o s (φω+=t A x 恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J

当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:

5.02

12

=kA

J , ∴ A = 0.204 m

2

4k m

ω=

=, ω = 2 rad/s

按题目所述时刻计时,初相为φ = π

∴ 物体运动方程为 )2

c o s (204.0π+=t x (SI)

O F

x

m (20)

(19)

单元二 简谐波 波动方程

一、选择题

1. 频率为100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为

π3

1,则此两点相距 [ C ]

(A) 2.86 m (B) 2.19 m

(C) 0.5 m (D) 0.25 m

2 . 一平面简谐波的表达式为:)/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是 [ A ]

(A) -1 (B)

3

1 (C) 1 (D) 3

3. 一平面简谐波,其振幅为A ,频率为v ,沿x 轴的正方向传播,设t t =0时刻波形如图所示,则x=0处质点振动方程为: [ B ]

0000(A )y A cos[2v(t t )]

2(B)y A cos[2v(t t )]

2(C )y A cos[2v(t t )]

2(D )y A cos[2v(t t )]

π=π++π=π-+π=π--

=π-+π

4. 某平面简谐波在t=0时的波形曲线和原点(x=0处)的振动曲线如图 (a)(b)所示,则该简谐波的波动方程(SI)为: [ C ]

3(A )y 2cos(t x );(B )y 2cos(t x )

2222(C )y 2cos(t x );

(D )y 2cos(t x )

2222πππ=π++=π-+πππππ=π-

+

=π+

-

5. 在简谐波传播过程中,沿传播方向相距为/2λ,(λ为波长)的两点的振动速度必定: [ A ]

(A) 大小相同,而方向相反; (B) 大小和方向均相同;

(C) 大小不同,方向相同; (D) 大小不同,而方向相反 。

6. 当机械波在媒质中传播时,一媒质质元的最大变形量发生在(A 是振动振幅): [ C ]

(A) 媒质质元离开其平衡位置最大位移处; (B) 媒质质元离开其平衡位置(

2A 2

)处;

(C) 媒质质元在其平衡位置处; (D) 媒质质元离开其平衡位置

2

A 处。

7. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则 [ B ] (A) A 点处质元的弹性势能在减小

(B) 波沿x 轴负方向传播 (C) B 点处质元的振动动能在减小

(D) 各点的波的能量密度都不随时间变化

x

y A

B

O (7)

(4)

题(3)

8. 一平面简谐波在弹性媒质中传播时,在传播方向上媒质中某质元在负的最大位移处,则它的能量是: [ B ]

(A) 动能为零,势能最大; (B) 动能为零,势能为零;

(C) 动能最大,势能最大; (D) 动能最大,势能为零。 二、填空题

9. 如图所示, 一平面简谐波在t=0时的波形图,则O 点的振动方程0y 0.04cos(0.4t 0.5)=-ππ,该波的波动方程y 0.04cos(0.4t 5x 0.5)=--πππ

10. 一平面简谐波沿X 轴正方向传播,波速u=100m/s ,t=0时刻的波形曲线如图所示,则简谐波的波长m 8.0=λ,振幅m 2.0A =, 频率Hz 125=ν 。

11. 如图所示, 一平面简谐波沿OX 轴正方向传播,波长为λ,若P 1点处质点的振动方程为1y A cos(2vt )=+π?,则P 2点处质点的振动方程为12

2L L y A cos(2t 2)]+=πν-π

+?λ

;与

P 1点处质点振动状态相同的那

些点的位置是1L k x -=λ, k 1,2,3,=±±± 。

12. 一列强度为I (J/sm 2)的平面简谐波通过一面积为S 的平面,波速u 与该平面的法线0n

的夹角为θ ,则通过该平面的能流是 I S cos θ (J/s )。

13. . 余弦波x

y A cos (t )c =ω-在介质中传播,介质密度为ρ0 ,波的传播过程也是能量传播过程,不

同位相的波阵面所携带的能量也不同,若在某一时刻去观察位相为2

π处的波阵面,能量密度

为2

2

0ωρA ;波阵面位相为π处的能量密度为 0 。

三、判断题

14. 从动力学的角度看,波是各质元受到相邻质元的作用而产生的。 [ √ ] 15. 一平面简谐波的表达式为 )/(cos u x t A y -=ω)/cos(u x t A ωω-= 其中x / u 表示波从坐标原点传至x 处所需时间。 [ √ ] 16. 当一平面简谐机械波在弹性媒质中传播时,媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒。 [ × ]

10.题图

9.题图

11.题图

u

四、计算题

17. 如图所示,一平面简谐波沿OX 轴传播 ,波动方程为x

y A cos[2(vt )]=π-+?λ ,求:

(1) P 处质点的振动方程;

(2) 该质点的速度表达式与加速度表达式。

解:(1)P 处质点的振动方程:])L

vt (2cos[A y ?λ

π++

=

(L x -=, P 处质点的振动位相超前)

(2)P 处质点的速度:])L vt (2sin[v A 2y

v ?λ

ππ++-==

P 处质点的加速度:])L

vt (2cos[v A 4y a 22?λ

ππ++-==

18. 某质点作简谐振动,周期为2s ,振幅为0.06m ,开始计时( t=0 ),质点恰好处在负向最大位移处,求:

(1) 该质点的振动方程;

(2) 此振动以速度u=2 m/s 沿x 轴正方向传播时,形成的一维筒谐波的波动方程(以该质点的

平衡位置为坐标原点);

(3) 该波的波长。

解: (1)该质点的初相位 πφ=

振动方程 )2

2c o s (06.00π+π=t

y )c o s (06.0π+π

=t (SI) (2) 波动表达式

])/(c o s [06.0π+-π=u x t y

])2

1(c o s [06.0π+-π

=x t (SI)

(3) 波长 4==uT λ m

19. 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.波长米160=λ,

求 : (1) 波速和周期;

(2) 坐标原点处介质质点的振动方程;

(3) 该波的波动表达式.

(17)

x (m) O

160

A y (m)

80 20

t

=0 t =2 s

(19)

解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,

可知此波向左传播.

u = 20 /2 m/s = 10 m/s

s u

T 16==λ

(2) 在t = 0时刻,O 处质点 φc o s 0A =, φωs i n 00A -=

=2

振动方程为 )2

18/c o s (0π-

π=t A y (SI)

(3) 波动表达式 ]2

1)160

16

(2cos[π-

+

π=x t A y (SI)

20. 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s , x 0 = 1 m, P 点的振动方程为 )2

1500cos(03.0π-

π=t y (SI).

(1) 按图所示坐标系,写出相应的波的表达式;

(2) 在图上画出t = 0时刻的波形曲线.

解:(1) 2m )250/500(/===νλu m (2分)

波的表达式 ]/2)1(2

1500cos[03.0),(λπ--π-π=x t t x y

]2/2)1(2

1500cos[03.0π--π-π=x t

)2

1500cos(03.0x t π-π+π= (SI) (3分)

(2) t = 0时刻的波形方程

x x x y π=π-π=sin 03.0)2

1cos(03.0)0,( (SI) (2分)

t = 0时刻的波形曲线 (3分)

x (m)

u x 0 P y (m)

O 20.题图

x (m )u

P y (m )O -2

-1

12

-0.03

0.03

(1)

题(2)

单元三 波的干涉 驻波 多普勒效应

一、 选择、填空题

1. 如图所示,两列波长为λ的相干波在P 点相遇, S 1点的初位相是Φ1,S 1到P 点的距离是r 1, S 2点的初位相是Φ2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为: [ D ]

212121211221(A )r r k ;(B )2k ;2(r r )

(C )2k ;2(r r )

(D )2k -=λΦ-Φ=ππ-Φ-Φ+=πλπ-Φ-Φ+

λ

2. 如图所示, S 1,S 2为两相干波源,其振幅皆为0.5m ,频率皆为100Hz ,但当S 1为波峰时,S 2点适为波谷,设在媒质中的波速为101ms -,则两波抵达P 点的相位差和P 点的合振幅为: [ C ]

(A )200,1m;(B)201,0.5m ;(C)201,0;(D)200,0;(E)201,1m πππππ 3. 惠更斯原理涉及了下列哪个概念? [ C ] (A) 波长 (B) 振幅 (C) 次波假设 (D) 位相 4. 在弦线上有一简谐波,其表达式为21x 4y 2.010cos[100(t )]

203π=?π+

-(SI)为了在此弦线上形成驻波,

并在x=0处为一波腹,此弦线上还应有一简谐波,其表达式为: [ D ]

2

2222222x (A )y 2.010cos[100(t )](S I)203x 4(B )y 2.010cos[100(t )](S I)203x (C )y 2.010cos[100(t )]

(S I)

203x 4(D )y 2.010cos[100(t )](S I)

20

3

π=?π-+=?π-+ππ=?π--=?π-

-

π

5. 如图所示,为一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 [ B ]

6. 如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直图面,发出波长为λ的简谐波。P 点是两列波相遇区域一点,已知S 1P=2λ, S 2P=2.2λ,两列波在P 点发生的相消干涉,若S 1的振动方程为1cos(22)y A t =π+π/,则S 2的振动方程为: [ D ]

(5)

2

22

2

()c o s (2);2()c o s (2);()c o s (2);2

()2c o s (20.1)

A y A t

B y A t

C y A t

D y A t π

=π-

=π-ππ=π+

=π-π

7. 在驻波中,两个相邻波节间各质点的振动 [ B ] (A) 振幅相同,相位相同 (B) 振幅不同,相位相同 (C) 振幅相同,相位不同 (D) 振幅不同,相位不同

8. 设声波在媒质中的传播速度为u ,声源频率为νs ,若声源s 不动,而接收器R 相对于媒质以速度v R 沿着s 、R 的连线向着声源s 运动,则接收器R 的振动频率为 [ A ]

(A) νs

(B) R v u u -νs

(C) R

v u u +νs

(D) u

v u R

+νs

二、填空题

9. 两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2πφω++=t A y .S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是 2A 。 10. 一驻波表达式为t x A y ππ=100cos 2cos (SI).位于x 1 = (1 /8) m 处的质元P 1与位于x 2 = (3 /8) m 处的质元P 2的振动相位差为 π 。

11. 如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知

λ31=P S ,λ3

102=

P S ,P 点的合振幅总是极大值,则两波源的振动频

率 相同

(填相同或不相同)。

12. 在绳上传播的入射波波动方程12x y A cos(t )

π=ω+

λ,入射波在x=0处绳端反射,反射端为自由

端,设反射波不衰减,则反射波波动方程)x

2t cos(A y 2λ

πω-

=,形成驻波波动方程

t cos x

2cos

A 2y ωλ

π?=。

13. 两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前

π2

1,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐

振动的相位差是 π 。

S 1

S 2

P

(6)

S 1

S 2

P

λ/4

13.题图

P

S 1

S 2

r 1

r 2

11.题图

三、判断题

14. 当波从波疏媒质(ρu 较小)向波密媒质(ρu 较大)传播,在界面上反射时,反射波中产生半波损失,其实质是位相突变π。 [ √ ] 15. 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 [ √ ] 16. 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。 [ √ ] 四、计算题

17. 图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是 多少.

解:由图 =AP 50 cm . πλ

φφφ)12k ()4050(2B A +±=--

-=?π

πλ

2k )4050(2±=-π

∴ cm k

10±=λ当1k =时,10cm =λ

18. 相干波源S 1和S 1,相距11 m ,S 1的相位比S 2超前

π2

1.这两个相干波在S 1 、S 2连线和延长线

上传播时可看成两等幅的平面余弦波,它们的频率都等于100 Hz , 波速都等于400 m/s .试求在S 1、S 2的连线中间因干涉而静止不动的各点位置.

解:取P ′点如图.从S 1、S 2分别传播来的两波在P ′点的相位差为 )](2[2201021x l x -π

--π

-

=-λ

φλ

φφφl x λ

λ

φφπ

+

π

-

-=242010

l x u

νλ

νφφπ

+

π-

-=2220102

112

π+

π-π=

x

由干涉静止的条件可得

π+=π+

π-π)12(2

112k x ( k = 0,±1,±2,…)

∴ x = 5-2k ( -3≤k ≤2 )

19. 设入射波的表达式为1t x y A cos 2(

)

T =π+λ,在x=0发生反射,反射点为一固定端,求:

(1) 反射波的表达式;(2) 驻波的表达式;(3)波腹、波节的位置。

A

B

P 30 cm

40 cm

(17)

x (m ) O

S 1 S 2 P ′ l

解:(1)入射波:)x

T

t (

2cos A y 1λ

π+

=,反射点x=0为固定点,说明反射波存在半波损失。

反射波的波动方程:])x T t (

2cos[ A y 2πλ

π+-=

(2) 根据波的叠加原理, 驻波方程:)T

t 2cos(2x 2cos

A 2y 1

2?π

??λ

π+-=)+

将01=?和π?=2代入得到:驻波方程:)2

t 2cos(x

2sin A 2y π

πνλ

π+

=

驻波的振幅:λ

πx

2sin A 2A =合 (3)波幅的位置:2

)

1k 2(x

λ

π+=,4

)

1k 2(x λ

+=, 32,1,0k ,

= 波节的位置:πλ

π

k x 2=,λ2

k x =, 32,1,0k ,=

(因为波只在x>0的空间,k 取正整数)

20. 一个观测者在铁路边,看到一列火车从远处开来,他测得远处传来的火车汽笛声的频率为650 Hz ,当列车从身旁驶过而远离他时,他测得汽笛声频率降低为540 Hz ,求火车行驶的速度。已知空气中的声速为330 m/s 。

解:根据多普勒效应, 列车接近观察者时,测得汽笛的频率:

s

)v u u (

'νν-=(观察者静止,波源朝着观察者运动)

列车离开观察者时,测得汽笛的频率: 0

s

)v

u u (

''νν+=(观察者静止,波源背离观察者运动)

由上面两式得到: s

s v u v u '

''-+=νν,

列车行驶的速度:

u

'

'''''v s νννν+-=

,

s

/m 5.30v s =。

单元四 杨氏双缝实验

一、选择题 1. 有三种装置

(1) 完全相同的两盏钠光灯, 发出相同波长的光,照射到屏上;

(2) 同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上;

(3) 用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上;以上三种装置,能在屏上形成稳定干涉花样的是: 【 A 】 (A) 装置(3) (B) 装置(2) (C) 装置(1)(3) (D) 装置(2)(3)

2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中: 【 C 】 (A) 传播的路程相等,走过的光程相等; (B) 传播的路程相等,走过的光程不相等; (C) 传播的路程不相等,走过的光程相等; (D) 传播的路程不相等,走过的光程不相等。

3. 如图,如果S 1、S 2 是两个相干光源,它们到P 点的距离 分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率 为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2 的另一介质板,其余部分可看作真空,这两条路径的光程 差等于: 【 B 】 (A) 222111()();r n t r n t +-+ (B) 222111[(1)][(1)];r n t r n t +--+- (C) 222111()();

r n t r n t --- (D) 2211n t n t -

4. 双缝干涉实验中,入射光波长为λ,用玻璃纸遮住其中一缝,若玻璃纸中光程比相同厚度的空气

大λ5.2,则屏上原0级明纹中心处 【 B 】

(A) 仍为明纹中心 (B) 变为暗纹中心 (C) 不是最明,也不是最暗 (D) 无法确定

5. 用白光(波长为400nm ~760nm)垂直照射间距为a =0.25mm 的双缝,距缝50cm 处放屏幕,则观

察到的第一级彩色条纹和第五级彩色条纹的宽度分别是: 【 B 】

(A) 3.6×10-4m ,3.6×10-4m (B) 7.2×10-4m ,3.6×10-3m (C) 7.2×10-4m ,7.2×10-4m (D) 3.6×10-4m ,1.8×10-4m 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光

3. 题图

P

O

1

S

屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为: 【 B 】

(A) 5.0×10-4

cm (B) 6.0×10-4

cm (C) 7.0×10-4

cm (D) 8.0×10-4

cm

7. 在双缝干涉实验中,设单缝宽度为t , 双缝间距离d ,双缝与屏距离为d ’,下列四组数据中哪一组在屏上可观察到清晰干涉条纹: 【 D 】

(A) t =1cm, d =0.1cm, d ’=1m (B) t =1mm, d =0.1mm, d ’=10cm

(C) t =1mm, d =1cm, d ’=100cm (D) t =1mm, d =0.1mm, d ’=100cm

二、填空题

8.相干光满足的条件是1)频率相同;2)位相差恒定;3)光矢量振动方向平行,有两束相干光, 频率为ν,初相相同,在空气中传播,若在相遇点它们几何路程差为r r 21-, 则相位差)r r (c

212-=

πν??。

9. 光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是0I 4,可能出现的最小光强是 0 。

10. 薄钢片上有两条紧靠着的平行细缝,用双缝干涉方法来测量两缝间距。如果用波长

nm 1.546=λm)10nm 1(9-=的单色光照射,双缝与屏的距离m m 300=D 。测得中央明条纹两侧的

两个第五级明条纹的间距为mm 2.12,则两缝间距离为 0.134 mm 。 11. 试分析在双缝实验中,当作如下调节时, 屏幕上的干涉条纹将如何变化?

(A)双缝间距变小: 条纹变宽 ; (B)屏幕移近: 条纹变窄 ; (C)波长变长: 条纹变宽 ; (D)如图所示,把双缝中的一条狭缝挡住,并在两缝垂直平分线

上放一块平面反射镜:看到的明条纹亮度暗一些,与杨氏双缝干涉相比较,明暗条纹相反; (E)将光源S 向下移动到S'位置: 条纹上移 。 12. 若将双缝干涉实验从空气移入水面之下进行,则干涉条纹间的距离将 变小 。(填变大、变小或不变)

13. 在双缝干涉实验中,用白光照射时,明纹会出现彩色条纹,明纹内侧呈 紫 色;如果用纯红色滤光片和纯蓝色滤光片分别盖住两缝,则 不能 产生干涉条纹。(填能或不能)

三、判断题

14. 洛埃德镜和双镜等光的干涉实验都是用波阵面分割的方法来实现的。 答案:对。

11. 题图

15. 获得相干光源只能用波阵面分割和振幅分割这两种方法来实现。 答案:错(激光光源)。 16. 在双缝干涉实验中, 两条缝的宽度原来是相等的, 若其中一缝的宽度略变窄, 则干涉条纹间距不变。 答案:对。

17. 光在真空中和介质中传播时,波长不变,介质中的波速减小。 答案:错。

18. 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 答案:错(833nm )。

四、计算题

19. 用一束8.632=λnm 激光垂直照射一双缝, 在缝后2.0m 处的墙上观察到中央明纹和第一级明纹的间隔为14cm 。求(1)两缝的间距;(2)在中央明纹以上还能看到几条明纹?

解: (1)m x

d d 6

9

100.914

.010

8.6320.2--?=??=?'=λ

(2)由于2

π

θ<, 按2

π

θ=

计算,则 3.14/'/sin =?==x d d k λθ 应取14即看到14条明纹。

20. 在一双缝实验中,缝间距为 5.0mm ,缝离屏 1.0m ,在屏上可见到两个干涉花样。一个由

480nm λ=的光产生,另一个由'600nm λ=的光产生。问在屏上两个不同花样第三级干涉条纹间

的距离是多少?

解: 对于nm 480=λ的光,第三级条纹的位置:λ3d D x =

对于nm 600'=λ的光,第三级条纹的位置:'3d

D 'x λ=

那么:)'(3d

D x 'x x λλ?-=-=,m 10

2.7x 5

-?=?。

21. 双缝干涉实验装置如图所示, 双缝与屏之间的距离D =120cm, 两缝之间的距离d =0.50mm, 用波长λ=5000 ?的单色光垂直照射双缝。(1) 求原点O (零级明条纹所在处)上方的第五级明条纹的坐标。 (2) 如果用厚度e =1.0×10-2mm, 折射率n =1.58的透明薄膜覆盖在图中的s 1缝后面, 求上述第五级明条纹的坐标x '。 解: (1)光程差 λ

δk D d x

r r ==-=12

d

D k x k λ=

因k=5有 mm x 65=

s 1

s 2

屏 d

D O

x

21. 题图

(2)光程差 )(12ne e r r +--=δ λk e n D

d x

e n r r =--=---=)1(')1(12

有 d

D e n k x ]

)1(['-+=λ

因k =5, 有mm x 9.19'

5=

22. 在双缝干涉实验中,单色光源S 0到两缝S 1、S 2的距离分 别为l 1、l 2,并且123,l l λλ-=为入射光的波长,双缝之间 的距离为d ,双缝到屏幕的距离为D ,如图,求: (1) 零级明纹到屏幕中央O 点的距离;

(2) 相邻明条纹间的距离。 解: 两缝发出的光在相遇点的位相差:λ

πδ

????22010+

-=

根据给出的条件:λλ

π

??322010?-=-

所以,λ

πδ

π??26+

-=

明条纹满足:π??k 2=,πλ

πδ

πk 226=+-,λδ)3k (+=

明条纹的位置:δd

D x =

,λ)3k (d

D x +=

令0k =,得到零级明条纹的位置:λd

D 3x 0=,零级明条纹在O 点上方。

相邻明条纹间的距离:λ?d

D x =。

22. 题图

单元五 劈尖的干涉,牛顿环

一.选择题

1. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ

2. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两

束光发生干涉,若薄膜厚度为e ,而且123n n n <>,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为:【 C 】 (A) 2112/()n e n πλ; (B) 1114/()n e n πλπ+; (C) 214/()n e n πλπ+; (D) 2114/()n e n πλ

3. 波长为500nm 的单色光从空气中垂直地入射到镀在玻璃(折射率为1.50)上折射率为1.375、厚度为1.0×10- 4cm 的薄膜上。入射光的一部分进入薄膜,并在下表面反射, 则这条光线在薄膜内的光程上有多少个波长?反射光线离开薄膜时与进入时的相位差是: 【 D 】 (A) 2.75,5.5π (B) 2.75,6.5π (C) 5.50,11π (D) 5.50,12π

4. 两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹: 【 E 】

(A) 向棱边方向平移,条纹间隔变小; (B) 向远离棱的方向平移,条纹间隔不变; (C) 向棱边方向平移,条纹间隔变大; (D) 向远离棱的方向平移,条纹间隔变小; (E) 向棱边方向平移,条纹间隔不变。

5. 如图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500 nm 的单色光垂直入射。 看到的反射光的干涉条纹如图所示。有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分相切。 则工件的上表面缺陷是: 【 B 】

(A) 不平处为凸起纹,最大高度为500 nm ; (B) 不平处为凸起纹,最大高度为250 nm; (C) 不平处为凹槽,最大深度为500 nm ;

2 题.图

e

λ n 1 n 2 n 3

(D) 不平处为凹槽,最大深度为250 nm 6. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为: 【 D 】

(A) 全明; (B) 全暗;

(C) 右半部明,左半部暗; (D) 右半部暗,左半部明。 7. 由两块玻璃片(n 1 = 1.75)所形成的空气劈尖,其一端厚度为零,

另一端厚度为0.002cm ,现用波长为7000 ?的单色平行光,从入射角为30?角的方向射在劈尖的表面,则形成的干涉条纹数为: 【 A 】 (A) 27 (B) 56 (C) 40 (D) 100

8. 设如图牛顿环干涉装置的平凸透镜可以在垂直于平玻璃板的方向上移动,当透镜向上平移(离开玻璃板)时,从入射光方向观察到干涉环纹的变化情况是: 【 C 】

(A) 环纹向边缘扩散,环数不变 (B) 环纹向边缘扩散,环数增加 (C) 环纹向中心靠拢,环数不变 (D) 环纹向中心靠拢,环数减少

9. 图示为一干涉膨胀仪示意图,上下两平行玻璃板用一对热膨胀系数极小的石英柱支撑着,被测样品W 在两玻璃板之间,样品上表面与玻璃板下表面间形成一空气劈尖,在以波长为λ的单色光照射下,可以看到平行的等厚干涉条纹。当W 受热膨胀时,条纹将: 【 D 】 (A) 条纹变密,向右靠拢 (B) 条纹变疏,向上展开 (C) 条纹疏密不变,向右平移 (D) 条纹疏密不变,向左平移

二.填空题

10. 在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第10个明环的直径由充液前的14.8 cm 变成充液后的12.7 cm ,则这种液体的折射率 n=1.36 。

11. 用波长为λ的单色光垂直照射如图的劈尖膜(n 1>n 2>n 3),观察反射光干涉。从劈尖顶开始算起,第二条明纹中心所对应的膜厚度22/n e λ=。

12. 氟化镁增透膜的折射率为n 2,当光垂直入射时,其透射光的光程差为2/22λ+d n 。 13. 在空气中有一劈尖形透明物,其劈尖角rad 10

0.14

-?=θ,在波长700=λnm 的单色光垂直照

射下,测得干涉相邻明条纹间距l=0.25cm ,此透明材料的折射率为 n=1.4 。

5 题

.图

9. 题图

λ

1.51.6

1

.6

1.5

1.7P

6 题.图

8. 题图

14. 波长λ = 600 nm 的单色光垂直照射到牛顿环的装置上,第二级明纹与第五级明纹所对应的空气膜厚度之差为 900 nm 。

15. 空气劈尖干涉实验中,如将劈尖中充水,则条纹宽度将 变密 。(填变密、变疏或不变)

三、判断题

16. 折射率2.12=n 的油滴掉在50.13=n 的平板玻璃上,形成一上表面近似于球面的油膜,用单色光垂直照射油膜,看到油膜周边是明环。 答案:对。

17. 白光垂直照射到在胞皂膜上,肥皂膜呈彩色,当肥皂膜的厚度趋于零时,从透射光方向观察肥皂膜为透明无色。 答案:对。

18. 白光垂直照射到在胞皂膜上,肥皂膜呈彩色,当肥皂膜的厚度趋于零时,从反射光方向观察肥皂膜透明无色。 答案:错(呈黑色)。

19. 可用观察等厚条纹半径变化的方法来确定待测透镜球面半径比标准 样规所要求的半径大还是小。如图待测透镜球面半径比标准样规所要求 的半径大,此时若轻轻地从上面往下按样规,则图中的条纹半径将缩小。 答案:错(增大)。

四、计算题

20. 如图所示,牛顿环装置的平凸透镜与平面玻璃有一小缝

e 0。现用波长为λ单色光垂直照射,已知平凸透镜的曲率半

径为R ,求反射光形成的牛顿环的各暗环半径。

解: 设反射光牛顿环暗环半径为r ,不包括e 0对应空气膜厚度 为r 2

/(2R ),所以r 处对应空气膜的总厚度为: 02

2e R

r

e +=

因光垂直照射,且相干减弱,所以有 λλ

λ

δ)2

1(2

22202

+

=+

+=+

=k e R

r

e

得牛顿环的各暗环半径

R e k r )2(0-=

λ

(k 为大于等于2e 0/λ的整数)

21. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心。

(1) 求此空气劈尖的劈尖角θ 。

9. 题1

21. 题图

(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,还是暗条纹?

解: 因是空气薄膜,有n 1>n 2

δ+=e ,

暗纹应 ,2

)

12(2

λ

δ+=+

=k e

所以 λk e =2 2

λk e =

因第一条暗纹对应k =0,故第4条暗纹对应k =3, 所以 2

3λ=

e

(1)空气劈尖角

rad l

l e 5

10

8.423-?===

λθ

(2)因 32

1'

3')2

'

2('

=+

=

+=

λλ

λλλδe 故A 处为第三级明纹,棱边依然为暗纹。

22. 欲测定2SiO 的厚度,通常将其磨成图示劈尖状,然后 用光的干涉方法测量,若以590λ=nm 光垂直入射,看到 七条暗纹,且第七条位于N 处,问该膜厚为多少。 解: 由于321n n n <<则nd 2=? 由暗条纹条件得 ???=+==?3,2,1,0;

2)

12(2k k nd λ

已知N 处为第七条暗纹,而棱边处对应K=0的暗纹,所以取K=6,得 nm n k d 3

2

1027.14)12(?=+=

λ

23. 在牛顿环装置的平凸透镜和平板玻璃之间充满折射率n=1.33的透明液体(设平凸透镜和平板玻璃的折射率都大于1.33),凸透镜的曲率半径为300cm ,波长λ=650nm 的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。求: (1) 从中心向外数第十个明环所在处液体厚度e 10; (2) 第十个明环的半径r 10。

解:在牛顿环干涉实验中明环的光程差满足:λλk 2

1ne 2=+

23. 题图

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理测试题及答案3

波动光学测试题 一.选择题 1. 如图3.1所示,折射率为n2 、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,已知n1 <n2 >n3,若用波长为(的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是 (A) 2n2e. (B) 2n2e-(/(2 n2 ). (C) 2n2e-(. (D) 2n2e-(/2. 2. 如图 3.2所示,s1、s2是两个相干光源,它们到P点的距离分别为r1和r2,路径s1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径s2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r2 + n2 t2)-(r1 + n1 t1). (B) [r2 + ( n2-1) t2]-[r1 + (n1-1)t1]. (C) (r2 -n2 t2)-(r1 -n1 t1). (D) n2 t2-n1 t1. 3. 如图3.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,(1 为入射光在折射率为n1 的媒质中的波长,则两束反射光在相遇点的位相差为 (A) 2 ( n2 e / (n1 (1 ). (B) 4 ( n1 e / (n2 (1 ) +(. (C) 4 ( n2 e / (n1 (1 ) +(. (D) 4( n2 e / (n1 (1 ). 4. 在如图3.4所示的单缝夫琅和费衍射实验装置中,s为单缝,L为透镜,C为放在L的焦面处的屏幕,当把单缝s沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样 (A) 向上平移.(B) 向下平移.(C) 不动.(D) 条纹间距变大. 5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为 (A) a = b. (B) a = 2b. (C) a = 3b. (D) b = 2a. 二.填空题 1. 光的干涉和衍射现象反映了光的性质, 光的偏振现象说明光波是波. 2. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = . 3. 用白光(4000?~7600?)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm的凸透镜,则第一级光谱的宽度为. 三.计算题 1. 波长为500nm的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边l = 1.56cm的A处是从棱边算起的第四条暗条纹中心. (1) 求此空气劈尖的劈尖角( . (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹,还是暗条纹? 2. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为(=589 nm的钠黄光的光谱线. (1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数km 是多少? (2) 当光线以30(的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数km 是多少? 3.在杨氏实验中,两缝相距0.2mm,屏与缝相距1m,第3明条纹距中央明条纹7.5mm,求光波波长?

大学物理下 试卷

大学物理(下)试卷 一、选择题 1、在静电场中,下列说法中正确的是 (D ) (A ) 带正电荷的导体其电势一定是正值 (B ) 等势面上各点的场强一定相等 (C ) 场强为零处电势也一定为零 (D )场强相等处电势不一定相等 2、一球壳半径为R ,带电量 q ,在离球心O 为 r (r < R )处一点的电势为(设“无限远”处为电势零点)(B ) (A ) 0 (B ) R q 0π4ε (C ) r q 0π4ε (D ) r q 0π4ε- 3、 两个半径相同的金属球,一为空心,一为实心,两者的电容值相比较 (C ) (A ) 空心球电容值大 (B ) 实心球电容值大 (C )两球电容值相等 (D )大小关系无法确定 4、有一外表形状不规则的带电的空腔导体,比较A 、B 两点的电场强度E 和电势U ,应该是: (A ) (A )B A B A U U E E == , (B )B A B A U U E E <= , (C ) B A B A U U E E >= , (D )B A B A U U E E =≠ , 5、一带电粒子,垂直射入均匀磁场,如果粒子质量增大到2倍,入射速度增大到2倍,磁场的磁感应强度增大到4倍,则通过粒子运动轨道包围范围内的磁通量增大到原来的(B ) (A )2 倍 (B )4 倍 (C )1/2 倍 (D )1/4 倍 6、图中有两根“无限长”载流均为I 的直导线,有一回路 L ,则下述正确的是(B ) (A )0 d =??L l B ,且环路上任意一点B= 0 (B ) d =??L l B ,且环路上任意一点B ≠ 0 (C ) d ≠??L l B ,且环路上任意一点B ≠ 0(D ) d ≠??L l B ,且环路上任意一点B= 常量 7、若用条形磁铁竖直插入木质圆环,则环中(B ) (A ) 产生感应电动势,也产生感应电流 (B ) 产生感应电动势,不产生感应电流 (C ) 不产生感应电动势,也不产生感应电流(D ) 不产生感应电动势,产生感应电流 8、均匀磁场如图垂直纸面向里. 在垂直磁场的平面内有一个边长为l 的正方形金属细线框,在周长固定的条件下,正方形变为一个圆,则图形回路中感应电流方向为 (B ) (A ) 顺时针 (B ) 逆时针 (C ) 无电流 (D ) 无法判定

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理练习题(下)

第十一章真空中的静电场 1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度. L P 2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为???,通过立方体一面的电场强度通量是???,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是???,(2)另外三个面每个面的电通量是???。 3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是() A.E R2 π B. R2 2π C. E R2 2π D. E R2 2 1 π 4.根据高斯定理的数学表达式?∑ ?= S q S E / dε ? ? 可知下述各种说法中,正确的是() (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. 5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( ) E O r (A) E∝1/r 6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2 图11-3

)(R L L <

大学物理下册练习题

静电场部分练习题 一、选择题 : 1.根据高斯定理的数学表达式?∑=?0 εq s d E ,可知下述各种说法中正确的是( ) A 闭合面的电荷代数和为零时,闭合面上各点场强一定为零。 B 闭合面的电荷代数和不为零时,闭合面上各点场强一定处处不为零。 C 闭合面的电荷代数和为零时,闭合面上各点场强不一定处处为零。 D 闭合面上各点场强均为零时,闭合面一定处处无电荷。 2.在静电场中电场线为平行直线的区域( ) A 电场强度相同,电势不同; B 电场强度不同,电势相同; C 电场强度、电势都相同; D 电场强度、电势都不相同; 3.当一个带电导体达到静电平衡时,( ) A 表面上电荷密度较大处电势较高。 B 表面曲率较大处电势较高。 C 导体部的电势比导体表面的电势高; D 导体任一点与其表面上任意点的电势差等于零。 4.有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零。则原点O 处电场强度和电势均为零的组态是( ) A 图 B 图 C 图 D 图 5.关于高斯定理,下列说法中哪一个是正确的?( ) A 高斯面不包围自由电荷,则面上各点电位移矢量D 为零。 B 高斯面上处处D 为零,则面必不存在自由电荷。 C 高斯面上D 通量仅与面自由电荷有关。 D 以上说法都不对。 6.A 和B 为两个均匀带电球体,A 带电量+q ,B 带电量-q ,作一个与A 同心的球面S 为高斯面,如图所示,则( ) S A B

A 通过S 面的电通量为零,S 面上各点的场强为零。 B 通过S 面的电通量为 εq ,S 面上各点的场强大小为2 04r q E πε= 。 C 通过S 面的电通量为- εq ,S 面上各点的场强大小为2 04r q E πε- =。 D 通过S 面的电通量为 εq ,但S 面上场强不能直接由高斯定理求出。 7.三块互相平行的导体板,相互之间的距离1d 和2d ,与板面积相比线度小得多,外面二板用导线连接,中间板上带电,设左、右两面上电荷面密度分别为1σ,2σ。如图所示,则比值1σ/2σ为( ) A 1d /2d ; B 1 C 2d /1d ; D (2d /1d )2 8.一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变?( ) A 电容器的电容量 B 两极板间的场强 C 两极板间的电势差 D 电容器储存的能量 9.一空心导体球壳,其外半径分别为1R 和2R ,带电量q ,当球壳中心处再放一电量为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为( )。 A 1 04R q πε B 2 04R q πε C 1 02R q πε D 2 02R q πε 10.以下说确的是( )。 A 场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零; B 场强大小相等的地方,电势也相等,等势面上各点场强大小相等; C 带正电的物体,也势一定是正的,不带电的物体,电势一定等于零。 D 沿着均场强的方向,电势一定降低。 11.两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷为( )。

大学物理下练习题答案汇总

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

2大学物理期末试题及答案

1 大学物理期末考试试卷 一、填空题(每空2分,共20分) 1.两列简谐波发生干涉的条件是 , , 。 2.做功只与始末位置有关的力称为 。 3.角动量守恒的条件是物体所受的 等于零。 4.两个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则两简谐振动的相位差为 。 5.波动方程 ??? ?? -=c x t A y ωcos 当x=常数时的物理意义是 。 6.气体分子的最可几速率的物理意义 是 。 7.三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为 4:2:1)(:)(:)(2 /122/122/12=C B A v v v ,则压强之比=C B A P P P :: 。 8.两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。开 始他们的压强和温度都相同,现将3J 的热量传给氦气,使之升高一定的温度。若使氧气也升 高同样的温度,则应向氧气传递的热量为 J 。 二、选择题(本大题共10小题,每小题3分,共30分) 1. 一个质点作圆周运动时,则有( ) A. 切向加速度一定改变,法向加速度也改变。 B. 切向加速度可能不变,法向加速度一定改变。 C. 切向加速度可能不变,法向加速度改变。 D. 切向加速度一定改变,法向加速度不变。 2. 一个物体沿固定圆弧光滑轨道由静止下滑,在下滑过程中( ) A. 它的加速度方向永远指出圆心,其速率保持不变. B. 它受到的轨道的作用力的大小不断增加. C. 它受到的合外力的大小变化,方向永远指向圆心. D. 它受到的合外力的大小不变,其速率不断增加. 3. 一质量为m,长度为L 的匀质细杆对过杆中点且垂直的轴的转动惯量为( ) A. 2 21mL B. 23 1mL C. 241mL D. 2121mL 4.物体A 的质量是B 的2倍且静止,物体B 以一定的动能E 与A 碰撞后粘在一块并以共 同的速度运动, 碰撞后两物体的总动能为( ) A. E B. E/2 C. E/3 D. 2E/3 5.一质量为0.02kg 的弹簧振子, 振幅为0.12m, 周期为2s,此振动系统的机械能为 ( ) A. 0.00014J 6. 有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始下滑,则( ) A .物块到达斜面底端时的动量相等。 B .物块到达斜面底端时的动能相等。 C .物块和斜面组成的系统,机械能不守恒。 D .物块和斜面组成的系统水平方向上动量守恒。 7. 假设卫星环绕地球作椭圆运动,则在运动过程中,卫星对地球中心的( ) A .角动量守恒,动能守恒。 B .角动量守恒,机械能守恒。 C .角动量不守恒,机械能守恒。 D .角动量不守恒,动量也不守恒。 8.把理想气体的状态方程写成=T PV 恒量时,下列说法中正确的是 ( ) A. 对一定质量的某种气体,在不同状态下,此恒量不等, B. 对摩尔数相同的不同气体,此恒量相等, C. 对不同质量的同种气体,此恒量相等, D. 以上说法都不对。

大学物理计算题

第3大题: 计算题( 分) 3.1 (10分)如图所示,一个劲度系数为k 的轻弹簧与一轻柔绳相连接,该绳跨过一半径为R ,转动惯量为I 的定滑轮,绳的另一端悬挂一质量为m 的物体。开始时,弹簧无伸长,物体由静止释放。滑轮与轴之间的摩擦可以忽略不计。当物体下落h 时,试求物体的速度v ? Mg-T1=ma (T1-T2)R=I β T2-kx=0 a=βR 联立解得a=(mg-kx)/(m+I/R2) d )(1 d 0 2 ??-+= h v kx mg R I m v v 解得v=genhao (2mgh-kh2)/ (m+I/R2) 3.2 (10分)一皮带传动装置如图所示, B A,两轮上套有传动皮带。外力矩M 作用 在A 轮上,驱使其转动,并通过传动皮带带动B 轮转动。B A,两轮皆可视为质量均匀分布的圆盘,其质量分别为1m 和2m ,半径分别为1R 和2R 。设皮带在轮上不打滑,并略去转轴与轮之间的摩擦。试求B A,两轮的角加速度1β和2β。解 12 111212 1)(βR m R T T M = -- (1)……………………….2分 22222212 1)(βR m R T T = - (2)………………..2分 由于皮带不打滑,切向速度相同,其变化率即切相加速度相同: 2211ββR R = 由式(2)(3)得 2 1211)(2R m m M += β 代入式(3)得2 1212 )(2R R m m M += β 3.3 (10分)如图所示,一根细棒长为L ,总质量为m ,其质量分布与离O 点的距离成正比。现将细棒放在粗糙的水平桌面上,棒可绕过其端点O 的竖直轴转动。已知棒与桌面间的摩擦系数为μ,棒的初始角度为0ω。求: (1) 细棒对给定轴的转动惯量 (2) 细棒绕轴转动时所受的摩擦力矩; (3) 细棒从角速度0ω开始到停止转动所经过的时间。 解 (1)由题意可知细棒的质量线密度为 kr =λ 式中k 为常数。由于细棒的总质量为m ,所以 m r kr L =? d 0 … 由此得 22L m k = 故 r L m kr 22= =λ ……… 得一并代入式得由式得由式)1()3(21)2(1 21 222221???? ???== -βββR R R m T T

2014大学物理作业下作业和附加题

第9章 振动 作 业 一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题 (一)、选择题 1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t =0时,质点的位置在: (A)过A x 21=处,向负方向运动; (B) 过A x 2 1=处,向正方向运动; (C) 过A x 21-=处,向负方向运动; (D) 过A x 2 1-=处,向正方向运动。 2、一质点作简谐振动,振动方程为:x =A cos(ωt +φ )在t=T/2(T 为周期)时刻,质点的速度为: (A) sin A ω?-. (B) sin A ω?. (C) cos A ω?-. (D) cos A ω?. 3、一质点沿x 轴做简谐运动,振动方程为:21410cos(2)3 x t ππ-=?+。从t = 0时刻起,到x =-2cm 处,且向x 轴正方向运动的最短时间间隔为: (A) 1s 8. (B) 1s 4. (C) 1s 2. (D) 1s 3. (E) 1s 6 . (二)、计算题 1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x 0= 0.06m ,且向x 轴正向运动.求:(1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度; 2、一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = 2.0s .当t = 0时,物体的位移x 0= -5cm ,且向x 轴负方向运动.求:(1)简谐运动方程;(2)t = 0.5s 时,物体的位移;(3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处?

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理下试题库

大 学物理(下)试题库 第九章 静电场 知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是: A :?只要有电荷存在,电荷周围就一定存在电场; ?B?:电场是一种物质; ?C?:电荷间的相互作用是通过电场而产生的; ?D :电荷间的相互作用是一种超距作用。 2、【 】?电场中有一点P ,下列说法中正确的是: ?A :?若放在P 点的检验电荷的电量减半,则P 点的场强减半; ?B :若P 点没有试探电荷,则P 点场强为零; ?C :?P 点的场强越大,则同一电荷在P 点受到的电场力越大; ?D :?P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是:? A :?沿着电场线的方向电场强度越来越小; ?B :?在没有电荷的地方,电场线不会中止; ?C :?电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在: ?D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。? 4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性; C :涡旋性; D :对其中的电荷有力的作用。 5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E .现在,另外有一个负电荷 -2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上00 6、真空中一点电荷的场强分布函数为:E = ___________________。 7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。 8、【 】两个点电荷 21q q 和固定在一条直线上。相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与 2q 相距为d ,故使3q 保持静止,则 (A )21 2q q = (B )212q q -= (C ) 214q q -= (D )2122q q -= 9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理下期末试题集讲诉

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的 电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ,则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000 A ( B )40000 A (C )50000 A (D )60000 A 6.若星光的波长按55000 A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星 2 4 1

大学物理下(计算题)

第9章 9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷 91 1.810C q -=?,B 点上有一点电荷 92 4.810C q -=-?,已知 0.04m BC =,0.03m AC =,求C 点电场强度E ρ 的大小和方向 (cos370.8?≈,sin370.6?≈). 解:如解图9-4所示C 点的电场强度为 12 E E E =+r r r 99 41 1122 0 1.810910 1.810(N C )4π()(0.03)q E AC ε--???===?? 9941 2222 0 4.810910 2.710(N C )4π()(0.04)q E BC ε--???===?? C 点电场强度E ρ 的大小 222244112 1.8 2.710 3.2410(N C ) E E E -=+=+?=?? 方向为 4o 14 2 1.810arctan arctan 33.7 2.710E E α?===? 即方向与BC 边成33.7°。 9-5 两个点电荷 6612410C,810C q q --=?=?的间距为0.1m ,求距离它们都是0.1m 处 的电场强度E ρ。 解:如解图9-5所示 9661 1122 01910410 3.610(N C )4π10q E r ε---???===?? 96612222 029108107.210(N C )4π10q E r ε---???===?? 1E ρ,2E ρ 沿x 、y 轴分解 611212cos60cos120 1.810(N C )x x x E E E E E -=+=?+?=-?? 611212sin60sin1209.3610(N C ) y y y E E E E E -=+=?+?=?? 电场强度为 22 619.5210(N C ) x y E E E -=+=?? 解图9-5 解图9-4 C 题图9-4

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理下册练习题

静电场部分练习题 一、选择题: 1.根据高斯定理的数学表达式?∑=?0 εq s d E ??,可知下述各种说法中正确的是( ) A 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零。 B 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零。 C 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零。 D 闭合面上各点场强均为零时,闭合面内一定处处无电荷。 2.在静电场中电场线为平行直线的区域内( ) A 电场强度相同,电势不同; B 电场强度不同,电势相同; C 电场强度、电势都相同; D 电场强度、电势都不相同; 3.当一个带电导体达到静电平衡时,( ) A 表面上电荷密度较大处电势较高。 B 表面曲率较大处电势较高。 C 导体内部的电势比导体表面的电势高; D 导体内任一点与其表面上任意点的电势差等于零。 4.有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零。则原点O 处电场强度和电势均为零的组态是( ) A 图 B 图 C 图 D 图 5.关于高斯定理,下列说法中哪一个是正确的?( ) A 高斯面内不包围自由电荷,则面上各点电位移矢量D ? 为零。 B 高斯面上处处D ? 为零,则面内必不存在自由电荷。 C 高斯面上 D ? 通量仅与面内自由电荷有关。 D 以上说法都不对。 6.A 和B 为两个均匀带电球体,A 带电量+q ,B 带电量-q ,作一个与A 同心的 S A B

球面S 为高斯面,如图所示,则( ) A 通过S 面的电通量为零,S 面上各点的场强为零。 B 通过S 面的电通量为 εq ,S 面上各点的场强大小为2 04r q E πε= 。 C 通过S 面的电通量为- εq ,S 面上各点的场强大小为2 04r q E πε- =。 D 通过S 面的电通量为 εq ,但S 面上场强不能直接由高斯定理求出。 7.三块互相平行的导体板,相互之间的距离1d 和2d ,与板面积相比线度小得多,外面二板用导线连接,中间板上带电,设左、右两面上电荷面密度分别为1σ,2σ。如图所示,则比值1σ/2σ为( ) A 1d /2d ; B 1 C 2d /1d ; D (2d /1d )2 8.一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变?( ) A 电容器的电容量 B 两极板间的场强 C 两极板间的电势差 D 电容器储存的能量 9.一空心导体球壳,其内外半径分别为1R 和2R ,带电量q ,当球壳中心处再放一电量为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为( )。 A 1 04R q πε B 2 04R q πε C 1 02R q πε D 2 02R q πε 10.以下说法正确的是( )。 A 场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零; B 场强大小相等的地方,电势也相等,等势面上各点场强大小相等; C 带正电的物体,也势一定是正的,不带电的物体,电势一定等于零。 D 沿着均场强的方向,电势一定降低。 11.两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷为

大学物理一计算题

1、均匀带电细线ABCD 弯成如图所示的形状,其线电荷密度为λ,试求圆心O 处的电势。 解: 两段直线的电势为 2ln 420 1πε λ =V 半圆的电势为 ππε λ 24=V , O 点电势)2ln 2(40 ππε λ += V 2、有一半径为 a 的半圆环,左半截均匀带有负电 荷,电荷线密度为-λ,右半截均匀带有正电荷,电线密度为λ ,如图。试求:环心处 O 点的电场强度。 解:如图,在半圆周上取电荷元dq a a dE dE E E a dq dE ad dl dq x x 02 2 2d cos 21 2cos 41πελθθλπε θ πε θλλπ - =-=-= = == ==???由对称性 3、一锥顶角为θ的圆台,上下底面半径分别为R 1和R 2,在 它的侧面上均匀带电,电荷面密度为σ,求顶点O 的电势。(以无穷远处为电势零点) 解::以顶点O 作坐标原点,圆锥轴线为X 轴向下为正. 在任意位置x 处取高度为d x 的小圆环, 其面积为 xdx dx r dS θ θπ θ πcos tan 2cos 2== 其上电量为 xdx tg dS dq θ θπσ σcos 2== 它在O 点产生的电势为 2 20 4x r dq dU += πε 2 2 2 2tan tan 4cos tan 2εθσθπε θ θπσdx x x xdx = += 总电势 ?? -= = = 120 2) (tan 22 1 εσθ εσR R dx dU U x x A B C O E d

4、已知一带电细杆,杆长为l ,其线电荷密度 为λ = cx ,其中c 为常数。试求距杆右端距离为a 的P 点电势。 解:考虑杆上坐标为x 的一小块d x d x 在P 点产生的电势为 x a l xdx c x a l dx dU -+= -+= 00441πελπε 求上式的积分,得P 点上的电势为 ] )ln( )[(440 l a a l a l c x a l xdx c U l -++= -+= ? πε πε 5、有一半径为 a 的非均匀带电的半球面,电荷面密度为σ = σ0 cos θ σ0为恒量 。试求:球心处 O 点的电势。 解: 6、有一半径为 a 的非均匀带电的半圆环,电荷线密度为λ =λ0 cos θ,λ0为恒量 。试求:圆心处 O 点的电势。 解: 020002 000 42sin cos 4sin 24sin 2sin 2εσεθθθσπεθθπσπεθθπσσθθπππR d R R Rd R dU U R dq dU Rd R ds dq Rd R ds =??=??===??==??=???圆环的电势 上取一圆环,y ??= == === -0 2 2 0024cos 4πε λπε θ θλθ λλπεπ π d dU U ad dl dq , a dq dU dq , 在半圆上取电荷元

相关文档
相关文档 最新文档