文档库 最新最全的文档下载
当前位置:文档库 › 磁阻传感器

磁阻传感器

磁阻传感器
磁阻传感器

实验十五用磁阻传感器分析和测定地磁场

【实验目的】

1.了解磁阻传感器测量磁场的基本原理。

2.学会用磁阻传感器测定地磁场的方法。

3.了解地磁场的方向与强度。

【仪器和用具】

测量地磁场装置如图一所示。它主要包括底座、转轴,带角刻度的转盘、磁阻传感器的引线、亥姆霍兹线圈、地磁场测定仪控制主机(包括数字式电压表、5V直流电源等)

图一

【实验原理】

物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

磁阻传感器是由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图二所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式

θρρρθρ2cos )()(⊥⊥-+=∥ (1)

其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,而非平衡电桥输出后接到一集成运算放大器上,将信号放大输出。传感器内部结构如图三所示。图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式表示

b out U R R U ???

? ???= (2)

图二 磁阻传感器的构造示意图 图三 磁阻传感器内的惠斯通电桥

对于一定的工作电压,如V U b 00.5=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,

KB U U out +=0 (3)

(3)式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。

由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共轴线中心点位置的磁感应强度为

2/3058

R NI B μ= (4)

(4)式中N 为线圈匝数,I 为线圈流过的电流强度,R 为亥姆霍兹线圈的平均半径,0μ为真空磁导率。

【实验内容】

1、将磁阻传感器放置在亥姆霍兹线圈公共轴线中点,并使管脚和磁感应强度方向平行。即传感器的感应面与亥姆霍兹线圈轴线垂直。用亥姆霍兹线圈产生磁场作为已知量,测量磁阻传感器的灵敏度K 。

2、将磁阻传感器平行固定在转盘上,调整转盘至水平(可用水准器指示)。水平旋转转盘,

找到传感器输出电压最大方向,这个方向就是地磁场磁感应强度的水平分量∥B 的方向。记录此时传感器输出电压1U 后,再旋转转盘,记录传感器输出最小电压2U ,由∥KB U U =-2/21,求得当地地磁场水平分量∥B 。

3、将带有磁阻传感器的转盘平面调整为铅直,并使装置沿着地磁场磁感应强度水平分量∥B 方向放置,只是方向转900。转动调节转盘,分别记下传感器输出最大和最小时转盘指示值和水平面之间的夹角1β和2β,同时记录此最大读数'1U 和'

2U 。由磁倾角2/)(21βββ+=计算β的值。

4、由KB U U ='

-'2/21,计算地磁场磁感应强度B 的值。并计算地磁场的垂直分量βsin B B =⊥。

本实验须注意:实验仪器周围的一定范围内不应存在铁磁金属物体,以保证测量结果的准确性。

【思考题】

1、磁阻传感器的基本工作原理是怎样的?

2、实验的线圈装置中心区域,即与磁阻传感器相连的转动盘,其方位如何调整?

3、该实验中附带的水平仪起什么作用?如何调整?

4、该实验所用的电源面板上分别有一调零旋钮和输出旋钮各起什么作用?如何调节?

5、在测量地磁场时,如有一枚铁钉处于磁阻传感器周围,则对测量结果将产生什么影响?

6、为何坡莫合金磁阻传感器遇到较强磁场时,其灵敏度会降低?用什么方法来恢复其原来

的灵敏度?

7、实验中,如何测出地磁场的倾角?

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

巨磁电阻效应及其传感器的原理

巨磁阻效应及其传感器的原理和应用 一、概述 对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。利用这一效应制成的传感器称为GMR传感器。 1、分类 GMR材料按其结构可分为具有层间偶 合特性的多层膜(例如Fe/Cr)、自旋阀多层膜 (例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例 如Fe-Co)和钙钛矿氧化物型多层膜(例如 AMnO3)等结构;其中自旋阀(spin valve)多层膜又分为简单型和对称型两 类;也有将其分为钉扎(pinning)和非钉扎型两类 的。 2、巨磁电阻材料的进展 1986年德国的Grunberg和C.F.Majkrgak 等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中 的层间偶合现象。1988年法国的M.N.Baibich 等人首次在纳米级的Fe/Cr多层膜中发现其Δ r/r在4.2K低温下可达50%以上,由此提出了 GMR效应的概念,在学术界引起了很大的反 响。由此与之相关的研究工作相继展开,陆续 研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、 Co/Ag、Co/Au……等具有显著GMR效应的层 间偶合多层膜。自1988年发现GMR效应后仅 3年,人们便研制出可在低磁场(10-2~10-6T) 出现GMR效应的多层膜(如 [CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。 1992年人们利用两种磁矫顽力差别大的 材料(例如Co和Fe20Ni80)制成Co/Cu/ Fe20Ni80/Cu多层膜,他们发现,当Cu 层厚度大于5nm时,层间偶合较弱,此时利用 磁场的强弱可改变磁矩的方向,以自旋取向的 不同来控制膜电阻的大小,从而获得GMR效 应,故称为自旋阀。

PSD位置传感器实验报告

报告者:1004520233余敏同组人:1004520235张昕煜 1004520209谢清楠 实验十 PSD位置传感器实验 一、实验目的: 了解PSD光电位置敏感器件的原理与应用 二、基本原理: PSD为一具有PIN三层结构的平板半导体硅片。其断面结构如图10—1所示,表面层P为感光面,在其两边各有一信号输入电极,底层的公共电极是用与加反偏电压。当光点入射到PSD表面时,由于横向电势的存在,产生光生电流,光生电流就流向两个输出电极,从I0而在两个输出电极上分别得到光电流和,显然。而和II?I?III201112的分流关系则取决于入射光点到两个输出电极间的等效电阻。假设I2PSD 表面分流层的阻挡是均匀的,则PSD可简化为图10—2所示的电位器模型,其中、为入射光点位置到两个输出电极间的等效电RR21阻,显然、正比于光点到两个输出电极间的距离。RR21

图10-1 图10-2 因为)?X)/(L/R?(L?X?I/IR1212I?I?I201所以可 得)L/2I(L?X?I01)2LL?X/?II(02L)I/IIX?(?012当入射光恒定时,恒定,则入射光点与PSD中间零位点距离X I0与成线性关系,与入射光点强度无关。通过适当的处理电路,II?12就可以获得光点位置的输出信号。 三、需用器件与单元: PSD传感器及位移装置、PSD传感器实验模板、主机箱 四、实验步骤: 1观察PSD结构,它有四只管脚,其中有一边为园弧状附近的管脚加反偏电压,V

f其对角线部位管脚为空 脚(如图10—3)。PSD接线中黑线接端,其中两个为输V f出端可随意接入。 图10—3 2按图10-4接线,将实验模块的和“⊥”插孔与主机箱中V?15的稳压电源和“⊥”分别相连,再将实验PSD传感器装V?15置中的半导体激光器的两个插孔与实验模板的激光电源的插孔相应连接。实验模板的PSD I2接PSD传感器的蓝色插孔,vref基准源接PSD传感器的白色插孔,PSD I1接PSD传感器的红色插孔。 与3将PSD传感器实验模板单元电路连接起来,即与接,VVV1io21o接(注:V、V、V、V不用接线)与接,与VVVVV i4i305036o4oii256i接,将实验模板上激光电源的“⊥”与的“⊥”及输V V15?7i出的“⊥”连接起来。将主机箱的电压表接到实验模板的V07或“⊥”上。

巨磁阻传感器原理及其应用

巨磁阻传感器原理及其应用 日期:2013-11-15 作者:何喜富,传感器系统应用工程师,英飞凌科技(中国)有限公司 目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握磁性感应技术并应用于产品中的半导体公司之一。 磁性传感器广泛应用于现代汽车中,如速度检测,角度检测,位置检测,电流检测等。根据磁性感应原理,可分为霍尔原理及磁阻原理。其中磁阻式根据原理又可分为常磁阻效应(Ordinary Magneto Resistance, OMR)、各项异性磁阻效应(Anisotropic Magneto Resistance,AMR)、巨磁阻效应(Giant Magneto Resistance,GMR)、超巨磁阻效应(Colossal Magneto Resistance,CMR)、穿遂磁阻效应(Tunnel Magneto Resistance,TMR)、巨磁阻抗效应(Giant Magneto impedance,GMI)以及特异磁阻效应(Extraordinary Magneto Resistance,EMR)等。 目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握有以上磁性感应技术并应用于产品中的半导体公司之一。 相比于霍尔效应和各项异性磁阻效应,巨磁阻效应具有更好的灵敏度,更小的噪声以及气隙表现,非常适合汽车领域中需要高精度以及较大工作气隙要求的应用。目前英飞凌巨磁阻系列传感器涵盖速度及角度应用,本文主要介绍巨磁阻传感器原理及其在速度检测和角度检测方面应用。 集成巨磁阻原理 所谓磁阻效应是指导体或半导体在磁场作用下其电阻值发生变化的现象,巨磁阻效应在1988年由彼得?格林贝格(Peter Grünberg)和艾尔伯?费尔(Albert Fert)分别独立发现,他们因此共同获得2007年诺贝尔物理学奖。研究发现在磁性多层膜如Fe/Cr和Co/Cu中,铁磁性层被纳米级厚度的非磁性材料分隔开来。在特定条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的磁电阻值约高10余倍,这一现象称为“巨磁阻效应”。 巨磁阻效应可以用量子力学解释,每一个电子都能够自旋,电子的散射率取决于自旋方向和磁性材料的磁化方向。自旋方向和磁性材料磁化方向相同,则电子散射率就低,穿过磁性层的电子就多,从而呈现低阻抗。反之当自旋方向和磁性材料磁化方向相反时,电子散射率高,因而穿过磁性层的电子较少,此时呈现高阻抗。 如图1所示,两侧蓝色层代表磁性材料薄膜层,中间橘色层代表非磁性材料薄膜层。

磁阻传感器在导航系统中的应用

Applications of Magnetoresistive Sensors in Navigation Systems Michael J. Caruso Honeywell Inc. ABSTRACT Most navigation systems today use some type of compass to determine heading direction. Using the earth?s magnetic field, electronic compasses based on magnetoresistive (MR) sensors can electrically resolve better than 0.1 degree rotation. Discussion of a simple 8- point compass will be described using MR sensors. Methods for building a one degree compass using MR sensors will also be discussed. Compensation techniques are shown to correct for compass tilt angles and nearby ferrous material disturbances. INTRODUCTION The magnetic compass has been used in navigation for centuries. The inventor of the compass is not known, though evidence suggests that the Chinese were using lodestone?a magnetic iron ore?over 2000 years ago to indicate horizontal directions. It appears that Mediterranean seamen of the 12th century were the first to use a magnetic compass at sea [1]. Today, the balanced needle compass is only a slight variation of this early discovery. Advances in technology have led to the solid state electronic compass based on MR magnetic sensors and acceleration based tilt sensors. Electronic compasses offer many advantages over conventional òneedleó type or gimbaled compasses such as: shock and vibration resistance, electronic compensation for stray field effects, and direct interface to electronic navigation systems. Two types of compasses will be discussed in this paper?a basic eight-point compass and a one-degree compass. EARTH?S MAGNETIC FIELD The earth?s magnetic field intensity is about 0.5 to 0.6 gauss and has a component parallel to the earth?s surface that always point toward magnetic north. This is the basis for all magnetic compasses. The key words here are òparallel to the earth?s surfaceó and òmagnetic northó.

TLE5012B英飞凌Infineon 360°角度传感器GMR巨磁阻

TLE5012B英飞凌Infineon 360°角度传感器GMR巨磁阻 Infineon TLE5012B GMR-Based Angle Sensors 英飞凌TLE5012B 基于GMR 的角度传感器是一款360°角度传感器,可检测磁场的方向。这是通过使用单片式集成巨磁阻(iGMR)元件测量正弦和余弦角分量来实现的。可对原始信号(正弦和余弦)在内部进行数字处理以计算磁场(磁铁)的角方向。TLE5012B 是经过预校准的传感器。校准参数存储在激光引信中。启动时引信值被写入双稳态多谐振荡器触发电路中,在其中这些值可由具体应用的参数进行修改。数据通信通过一个兼容SPI 的双向同步串行通信接口(SSC)实现。传感器配置存储在寄存器中,可由SSC 接口进行访问。 特点 巨磁阻(GMR)原理 集成磁场感应用于角度测量 360°角度测量,有转数表和角速度测量 两个单独的高精度单位SD-ADC 绝对角度值在输出端的15 位表示( 0.01°的分辨率) 正弦/余弦值在接口上的16 位表示 使用周期和温度范围内最大为1.0°的角度误差,并有激活自校准功能 达8Mbit/s 的双向SSC 接口 有诊断功能和状态信息,支持安全完整性等级(SIL) 接口:SSC、PWM、增量接口(IIF), 霍尔开关模式(HSM), 短PWM 码(SPC, 基于SAE

J2716 中规定的SENT 协议) 输出引脚可配置(编程或预配置)为推挽或开漏 SSC 或SPC 接口为开漏配置时,可以实现一条线上多个传感器的总线模式工作0.25μm CMOS 技术 汽车级:-40°C 到+ 150°C(结温) ESD > 4kV (HBM) 符合RoHS(无铅封装) 不含卤素 应用:电换向电机,旋转开关,转向角测量,通用角测量 方框图Block Diagram

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究 二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法; 2、测量锑化铟传感器的电阻与磁感应强度的关系; 3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线 和直线拟合; 4、学习用磁阻传感器测量磁场的方法。 三、实验原理: 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。 一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中U H短路,磁阻效应更明显。因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。 当磁感应强度平行于电流时,是纵向情况。若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。 通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图 9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

磁阻传感器实验报告

磁阻传感器/地磁场测量 一、 二、 关于磁阻传感器 磁阻效应传感器是根据磁性材料的磁阻效应制成的一种传感器。广泛应用于工业,汽车制造,以及可用于地磁场测量。 三、 四、 磁阻传感器原理(如图1) 磁性材料(如坡莫合金)具有各向异性,对它进行磁化时,其磁化方向将取决于材料的易磁化轴、材料的形状和磁化磁场的方向。当给带状坡莫合金材料通电流时,材料的电阻取决于电流的方向与磁化方向的夹角。如果给材料施加一个磁场B(被测磁场), 就会使原来的磁化方向转动。如果磁化方向 转向垂直于电流的方向,则材料的电阻将减 小;如果磁化方向转向平行于电流的方向,则 材料的电阻将增大。磁阻效应传感器一般有 四个这样的电阻组成,并将它们接成电桥。 在被测磁场B 作用下,电桥中位于相对位置 的两个电阻阻值增大,另外两个电阻的阻值 减小。在其线性范围内,电桥的输出电压与 被测磁场成正比。 五、 六、 磁阻传感器/地磁场测量的实验过程(如图2) 1.将磁阻传感器放在赫姆霍兹线圈公共轴线中点,使管脚和磁感应强度方向平行。 2. 从0开始每隔10mA 改变励磁电流,分别测量出励磁电流为正向和反向时磁阻传感器的输出电压1U 和2U ,2/)(21U U U -=。测正向和反向两次,目的是消除地磁沿亥姆霍兹线圈方向(水平)分量的影响。 3.用亥姆霍磁线圈产生的磁场磁感应强度作为已知量,采用最小二乘法拟合,测量磁阻传感器的灵敏度K 。 4.将磁阻传感器平行固定在转盘上,调 整转盘至水平(可用水准器指示)。水平 旋转转盘,找到传感器输出电压最大方 向,这个方向就是地磁场磁感应强度的 水平分量∥B 的方向。记录此时传感器输 出电压1U 后,再旋转转盘,记录传感器 图1 磁阻传感器示意图 图2 地磁场测量/磁阻传感器演示

位置传感器标准 y

山东欧凯机电设备有限公司企业标准 Q/OKB005-2011 KHX24矿用本安型位置传感器

目 次 前言..............................................................................................................................................................II 1范围. (1) 2 规范性引用文件 (1) 3型式及型号 (1) 4技术要求 (2) 5试验方法 (4) 6检验规则 (6) 7 标志、包装、运输和贮存 (7)

前 言 本标准由山东欧凯机电设备有限公司负责起草。 本标准由山东欧凯机电设备有限公司负责解释。 本标准主要起草人:左增民、李诚新、陈井明 本标准于2011年05月01日首次发布,2011年05月01日实施。

Q/OKB005-2011 K H X24矿用本安型位置传感器 1范围 本标准规定了KHX24矿用本安型位置传感器(以下简称位置传感器)的型式、型号及基本参数、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于煤矿用KHX24矿用本安型位置传感器。(此设备为简单设备。) 2 规范性引用文件 下列文件中的条款通过本标准的引用而构成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191-2000 包装储运图示标志 GB/T2423.1-2008 电工电子产品环境试验第2部分 试验方法 试验A:低温 GB/T2423.2-2008 电工电子产品环境试验第2部分 试验方法 试验B:高温 GB/T2423.4-2008 电工电子产品环境试验第2部分 试验方法 试验Db:交变湿热 GB/T2423.10-2008 电工电子产品环境试验第2部分 试验方法 试验Ea和导则:振动(正弦) GB/T2423.5-1995 电工电子产品环境试验 第2部分 试验方法 试验Fc和导则:冲击 GB 3836.1-2000 爆炸性气体环境用电气设备第1部分:通用要求 GB 3836.4-2000 爆炸性气体环境用电气设备第4部分:本质安全型“i” GB 4208-2008外壳防护等级(IP代码) GB 13306-1991 标牌 GB 13384-1992 机电产品包装通用技术条件 MT 209-1990 煤矿通讯、检测、控制用电工电子产品通用技术要求 MT 210-1990 煤矿通讯、检测、控制用电工电子产品基本试验方法 AQ 1043-2007 矿用产品安全标志标识 3型式及型号 3.1型式 3.1.1防爆型式:矿用本质安全型。 3.1.2防爆标志为ExibI。 3.2型号命名和编制方法如下:

磁阻传感器实验报告

磁阻传感器/地磁场测量 一、 关于磁阻传感器 磁阻效应传感器是根据磁性材料的磁阻效应制成的一种传感器。广泛应用于工业,汽车制造,以及可用于地磁场测量。 二、 磁阻传感器原理(如图1) 磁性材料(如坡莫合金)具有各向异性,对它进行磁化时,其磁化方向将取决于材料的易磁化轴、材料的形状和磁化磁场的方向。当给带状坡莫合金材料通电流时,材料的电阻取决于电流的方向与磁化方向的夹角。如果给材料施加一个磁场B(被测磁场),就会使原来的磁化方向 转动。如果磁化方向转向垂直于电流的方向,则材料的电阻将减小;如果磁化方向转向平行于电流的方向,则材料的电阻将增 大。磁阻效应传感器一般有四个这样的电 阻组成,并将它们接成电桥。在被测磁场B 作用下,电桥中位于相对位置的两个电阻 阻值增大,另外两个电阻的阻值减小。在 其线性范围内,电桥的输出电压与被测磁 场成正比。 三、 磁阻传感器/地磁场测量的实验过程(如图2) 1.将磁阻传感器放在赫姆霍兹线圈公共轴线中点,使管脚和磁感应强度方向平行。 2. 从0开始每隔10mA 改变励磁电流,分别测量出励磁电流为正向和反向时磁阻传感器的输出电压1U 和2U ,2/)(21U U U -=。测正向和反向两次,目的是消除地磁沿亥姆霍兹线圈方向(水平)分量的影响。 3.用亥姆霍磁线圈产生的磁场磁感应强度作为已知量,采用最小二乘法拟合,测量磁阻传感器的灵敏度K 。 4.将磁阻传感器平行固定在转盘上,调整转盘至水平(可用水准器指示)。水平旋转转盘,找到传感器输出电压最大方向,这个方向就是地磁场磁感应强度的水平分 量∥B 的方向。记录此时传感器输出电压 1U 后,再旋转转盘,记录传感器输出最小 电压2U ,由∥KB U U =-2/21,求得当地地磁场水平分量∥B 。 量∥B 方向放置,只是方向转900。转动调节转盘,分别记下传感器输出最大和最小 时转盘指示值和水平面之间的夹角1β和2β,同时记录此最大读数'1U 和'2U 。由 2/)(21βββ+=计算磁倾角β的值。测量10组β值,求其平均值。 6.由 KB U U ='-'2/21,计算地磁场磁感应强度B 的值。并计算地磁场的垂直分量 βsin B B =⊥。 图1 磁阻传感器示意图 图 2 地磁场测量/磁阻传感器演示

霍尔位置传感器的定标和杨氏模量的测定

霍尔位置传感器的定标和杨氏模量的测定 通过弯梁法测量固体材料的杨氏模量,可以学习和掌握基本长度和微小位移量测量的方法和手段,提高学生的实验技能,是大学物理实验中一个十分重要的项目。传统的弯梁法测量固体材料杨氏模量实验是采用光杠杆放大的方法测量微小位移量。随着科学技术的发展,微小位移量的测量技术愈来愈先进,在弯梁法测量固体材料杨氏模量的基础上,通过位移传感器的输出电压与位移量线性关系的定标和微小位移量的测量,有利于联系科研和生产实际,使学生了解和掌握微小位移的非电量电测新方法。 【实验目的】 1.本实验要求掌握用米尺、游标卡尺、螺旋测微计、读数显微镜测量长度的方法。 2.用弯曲法测出金属黄铜(或可锻铸铁)的杨氏模量。 【实验原理】 1.位移传感器 位移传感器是将霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者相垂直的方向上将产生霍尔电势差U H H U K I B = (1) 式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为 H dB U KI Z dZ ?=? (2) 式中△U 为位移量,此式说明若dB dZ 为常数时,△U H 与△Z 成 正比。取比例系数为κ,则 H U Z κ?=? (3) 为实现均匀梯度的磁场,可以如图1 所示,两块相同的磁铁(磁铁截面积及表面磁感应强度相同) 相对放置,即N 极与N 极相对( S 极与S 极相对),两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范围的测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差 图1

实验霍尔位置传感器测杨氏模量

实验霍尔位置传感器测杨氏模量 实验目的 1.熟悉霍尔位置传感器的特性: 2.弯曲法测量黄铜的杨氏模量: 3.测黄铜杨氏模量的同时,对霍尔位宜传感器左标: 4.用霍尔位置传感器测量可锻铸铁的杨氏模量。 实验仪器 1.霍尔位置传感器测杨氏模量装置一台 (1)读数显微镜 型号丿C — 10型 放大倍数20 分度值0.01〃"“ 测量范围0?6〃劝 (2)舷码lO.Og 8 块、20.0g 2 块 (3)95型集成霍尔位置传感器 (4)样品(铜板和冷扎板) 2.霍尔位宜传感器输出信号测量仪(放大倍数3—5倍)一台(包括直流数字电压表0? 20OW )。 实验原理 1.霍尔位置传感器 霍尔元件置于磁感应强度为3的磁场中,在垂直于磁场方向通以电流/,则与这二者 相垂直的方向上将产生霍尔电势差U〃 : (1)式中K为元件的霍尔灵敏度。如果保持霍尔元件的电流/不变,而使其在一个均匀梯 度的磁场中移动时,则输出的霍尔电势差变化量为: (2) (2)式中AZ为位移量,此式说明若劣 为实现均匀梯度的磁场,可以如图1所 示,两块相同的磁铁(磁铁截而积及表而磁 感应强度相同)相对放置,即N极与N极相 对,两磁铁之间留一等间距间隙,霍尔元 件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范和测量灵敏度要求 - 而上,间隙越小,磁场梯度就越大,灵敏 度就越髙。磁铁截而要远大于霍尔元件, 以尽可能的减小边缘效应影+ out

响,提髙测量精确度。 若磁铁间隙内中心截而处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差 应该为零。当霍尔元件偏离中心沿Z 轴发生位移时,由于磁感应强度不再为零,霍尔元件 也就产生相应的电势差输出,其大小可以用数字电压表测量。由此可以将霍尔电势差为零时 元件所处的位程作为位移参考零点。 霍尔电势差与位移量之间存在一一对应关系,当位移量较小(<2加加),这一对应关系 具有良好的线性。 2. 杨氏模童 杨氏模量测左仪主体装置如图2所示,在横梁弯曲的情况下,杨氏模量丫可以用下式表 示: 丫_ / ?Mg 4/?b ?AZ 1. 铜刀口上的基线 2.读数显微镜 成 霍尔传感器)6.磁铁盒 实验步骤 1. 调节底座箱上的水平螺丝旋,将实验装置调节水平。 2. 将横梁穿在琏码铜刀口内,安放在两立柱刀口的正中央位苣。接着装上铜杠杆,将 有传 感器一端插入两立柱刀口中间,该杠杆中间的铜刀口放在刀座上。圆柱型拖尖应在祛码 刀口的小圆洞内,传感器若不在磁铁中间,可以松弛固左螺丝使磁铁上下移动,或者用调节 架上的套筒螺 (3) 3?刀口 4 ?横梁 7?磁铁(“极相对放宜) 5?铜杠杆(顶端装有95A 型集 8 ?调节架 9磁码盘 其中:〃为两刀口之间的距离? M 为所加磁码的质量,"为梁的厚度,〃为梁的宽度, 5 4 3 2

传感器原理及应用习题答案(完整版)

2-4、现有栅长为3mm 和5mm 两种丝式应变计,其横向效应系数分别为5%和3%,欲用来测量泊松比μ=的铝合金构件在单向应力状态下的应力分布(其应力分布梯度较大)。试问:应选用哪一种应变计为什么 答:应选用栅长为5mm 的应变计。由公式ρρ εμd R dR x + +=)21(和[]x m x K C R dR εεμμ=-++=)21()21(知应力大小是通过测量 应变片电阻的变化率来实现的。电阻的变化率主要由受力后金属丝几何尺寸变化所致部分(相对较大)加上电阻率随应变而变的部分(相对较小)。一般金属μ≈,因此(1+2μ)≈;后部分为电阻率随应变而变的部分。以康铜为例,C ≈1,C(1-2μ)≈,所以此时K0=Km ≈。显然,金属丝材的应变电阻效应以结构尺寸变化为主。从结构尺寸看,栅长为5mm 的丝式应变计比栅长为3mm 的应变计在相同力的作用下,引起的电阻变化大。 2-5、现选用丝栅长10mm 的应变计检测弹性模量E=2×1011N/m 2、密度ρ=cm 3的钢构件承受谐振力作用下的应变,要求测量精度不低于%。试确定构件的最大应变频率限。 答:机械应变波是以相同于声波的形式和速度在材料中传播的。当它依次通过一定厚度的基底、胶层(两者都很薄,可忽略不计)和栅长l 而 为应变计所响应时,就会有时间的迟后。应变计的这种响应迟后对动态(高频)应变测量,尤会产生误差。由][]e l v f e l l 66max max ππλ<= <或式中v 为声波在钢 构件中传播的速度; 又知道声波在该钢构件中的传播速度为: kg m m N E 336211108.710/102--????= = ρ ν; s m kg s m Kg /10585.18.7/8.91024228?=???=; 可算得kHz m s m e l v f 112%5.061010/10585.1||63 4max =???= = -π 。 2-6、为什么常用等强度悬臂梁作为应变式传感器的力敏元件 现用一等强度梁:有效长l =150mm ,固支处宽b=18mm ,厚h=5mm ,弹性模量E=2×105N/mm 2,贴上4片等阻值、K=2的电阻应变计,并接入四等臂差动电桥构成称重传感器。试问: 1)悬臂梁上如何布片又如何接桥为什么 2)当输入电压为3V ,有输出电压为2mV 时的称重量为多少 答:当力F 作用在弹性臂梁自由端时,悬臂梁产生变形,在梁的上、下表面对称位置上应变大小相当,极性相反,若分别粘贴应变片R 1 、 R 4 和R 2 、R 3 ,并接成差动电桥,则电桥输出电压U o 与力F 成正比。等强度悬臂梁的应变E h b Fl x 206= ε不随应变片粘贴位置变化。 1)、悬臂梁上布片如图2-20a 所示。接桥方式如图2-20b 所示。这样当梁上受力时,R1、R4受拉伸力作用,阻值增大,R2、R3受压,阻值减小,使差动输出电压成倍变化。可提高灵敏度。 2)、当输入电压为3V ,有输出电压为2mV 时的称重量为: 计算如下: 由公式: o i i x i o U KlU E bh F E h b Fl K U K U U 66220=?==ε代入各参数算F =; 1牛顿=千克力;所以,F=。此处注意:F=m*g ;即力=质量*重力加速度;1N=1Kg*s 2.力的单位是牛顿(N )和质量的单位是Kg ;所以称得的重量应该是。 ; 2-7、何谓压阻效应扩散硅压阻式传感器与贴片型电阻应变式传感器相比有什么优点,有什么缺点如何克服 答:“压阻效应”是指半导体材料(锗和硅)的电阻率随作用应力的变化而变化的现象。 优点是尺寸、横向效应、机械滞后都很小,灵敏系数极大,因而输出也大,可以不需放大器直接与记录仪器连接,使得测量系统简化。 缺点是电阻值和灵敏系数随温度稳定性差,测量较大应变时非线性严重;灵敏系数随受拉或压而变,且分散度大,一般在(3-5)%之间,因而使得测量结果有(±3-5)%的误差。 压阻式传感器广泛采用全等臂差动桥路来提高输出灵敏度,又部分地消除阻值随温度而变化的影响。 2-8 、一应变片的电阻R=120Ω,k=,用作应变片为800μm/m 的传感元件。

8实验八锑化铟磁电阻传感器的磁阻特性测量和应用

实验八 锑化铟磁阻特性测量 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测,导航系统、伪钞检测、位置测量等,其中最典型的锑化铟(InSb )传感器是一种价格低廉、灵敏度高的磁电阻,有着十分重要的应用价值。本实验装置结构简单、实验内容丰富,使用两种材料的传感器:利用砷化镓(GaAs )霍尔传感器测量磁感应强度,研究锑化铟(InSb )磁阻传感器的电阻随磁感应强度的变化情况。 一、实验目的 1 、测量锑化铟传感器的电阻与磁感应强度变化的关系。 2 、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。 3 、对此关系曲线的非线性区域和线性区域分别进行曲线和直线拟合。 二、实验仪器 FD-MR-Ⅱ型磁阻效应实验仪(直流双路恒流电源、 0~2V 直流数字电压表、电磁铁、数字式毫特仪、锑化铟磁阻传感器、电磁铁及双向单刀开关等)、示波器、电阻箱、正弦交流低频发生器及导线若干。 三、实验原理 在一定条件下,载流导体或半导体的电阻值 R 随磁感应强度 B 变化的规律称为磁阻效 应。如图 43-1 所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场,如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大出现横向磁阻效应。如果将图43-1中的 a 端和 b 端短路,磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用 )0(/ρρ?表示。其中)0(ρ为零磁场时的电阻率,设磁阻在磁感应强度为B 的磁场作用下的电阻率为)B (ρ, 则 )0()B (ρρρ-=?。由于磁阻传感器电阻的相对变化率 △R/R(0)正比于)0(/ρρ?,这里△R = R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。测量磁阻电阻值R 与磁感应强度 B 的关系所用实验装置及线路如图 43-2 所示。

PSD位置传感器实验报告

报告者:1004520233余敏 同组人:1004520235张昕煜 1004520209谢清楠 实验十 PSD 位置传感器实验 一、实验目的: 了解PSD 光电位置敏感器件的原理与应用 二、基本原理: PSD 为一具有PIN 三层结构的平板半导体硅片。其断面结构如图10—1所示,表面层P 为感光面,在其两边各有一信号输入电极,底层的公共电极是用与加反偏电压。当光点入射到PSD 表面时,由于横向电势的存在,产生光生电流0I ,光生电流就流向两个输出电极,从 而在两个输出电极上分别得到光电流1I 和2I ,显然210I I I +=。而1I 和2I 的分流关系则取决于入射光点到两个输出电极间的等效电阻。假设 PSD 表面分流层的阻挡是均匀的,则PSD 可简化为图10—2所示的电位器模型,其中1R 、2R 为入射光点位置到两个输出电极间的等效电 阻,显然1R 、2R 正比于光点到两个输出电极间的距离。

图10-1 图10-2 因为 )/()(//1221X L X L R R I I +-== 210I I I += 所以可得 )2/(01L X L I I -= )2/(02L X L I I += L I I I X )/(012-= 当入射光恒定时,0I 恒定,则入射光点与PSD 中间零位点距离X 与12I I -成线性关系,与入射光点强度无关。通过适当的处理电路, 就可以获得光点位置的输出信号。 三、需用器件与单元: PSD 传感器及位移装置、PSD 传感器实验模板、主机箱 四 、实验步骤: 1 观察PSD 结构,它有四只管脚,其中有一边为园弧状附近 的管脚加反偏电压 f V , 其对角线部位管脚为空

GMR磁场传感器的工作原理

GMR磁场传感器的工作原理 巨磁电阻(GMR)效应是1988年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。 1. 巨磁电阻(GMR)原理,见图一。 巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。这种效应只有在纳米尺度的薄膜结构中才能观测出来。赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。 2. 巨磁电阻(GMR)传感器原理,见图二。 巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。

3. 巨磁电阻(GMR)传感器性能,见图三,表一。 图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。 表一所示为国际上各公司生产的巨磁电阻(GMR)传感器的性能对照,表中标注有(库万军)处为本公司产品。对比表明本公司的产品无论灵敏度或线性范围都有较大的优越性,而且本公司产品性能仍在不停的丰富和完善过程中。更为重要的是,本公司产品采用特殊的结构,适宜于采用半导体集成化规模生产,因此生产成本低。

3. 产品使用说明 a.巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V的直流电源。而且该 电源的稳定性直接影响传感器的测试精度,因此要求以稳压电源提供;使用中也应避免过电压供电; b.巨磁电阻(GMR)传感器作为一种高精度的磁敏传感器,对使用磁环境也有一定的要求, 其型号选用应根据使用环境的磁场大小来决定; c.巨磁电阻(GMR)传感器对磁场的灵敏度与方向有关。其外形结构上标注的敏感轴为传感 器对磁场最为灵敏的方向,参见图四。当不平行时,灵敏度降低,其关系为 Sθ=S0COSθ 其中Sθ为磁场方向与传感器敏感轴间的夹角为θ时的灵敏度,S0为磁场方向与传感器敏感轴平行时的灵敏度。 图4 巨磁电阻(GMR)传感器外形结构及接线图 d.对于输出特性相对于外磁场为偶函数时,则将传感器作为测量使用时需要外加偏置磁场。理想情况偏置磁 场的大小为传感器保持线性范围磁场的1/2。

相关文档