文档库 最新最全的文档下载
当前位置:文档库 › 拓扑学第四章 紧致性

拓扑学第四章 紧致性

拓扑学第四章 紧致性
拓扑学第四章 紧致性

第四章 紧致性

紧致性是数学分析中的重要概念。尽管这个概念出现的较早,但是,从本质上讲,它是一个拓扑概念,也是一个最基本的拓扑性质。

我们先回顾一下度量空间紧性(列紧性)概念(在实直线上,紧性是描述闭区间性质的,而在实分析中,闭区间具有良好的性质)。

§4-1 度量空间(,)X d 中紧性(简单复习)

定义1 设A 是(,)X d 的一个子集。如果A 中任一无穷点列有子列收敛于X 中的一点,则称A 是相对列紧的;

如果A 中每个收敛子列的极限点都属于A ,则称A 是列紧的; 如果(,)X d 本身是列紧的,则称为列紧空间。

注释:这里的紧性之所以成为列紧,是因为用序列收敛描述的。

●下面的结论是显然的(由于都是过去的知识,所以不加证明的给出) (1) 有限子集总是列紧的。

(2) 列紧空间是完备的(但,完备空间未必是列紧的)。 (3) 若A 是(,)X d 的列紧子集,则A 是(,)X d 的有界闭集。

(4) 在一般度量空间中,(3)成立,反之未必;如果(,)X d 是列紧空间,则 A 列紧 ? A 是闭集。 (5) 列紧的度量空间必是可分的。

●进一步分析:列紧性能用来刻画闭集,但是,它是利用“序列”形式刻画的。人们找出了一种非序列刻画的方式。

定义2 设A 是(,)X d 的一个子集。U 是X 的一族开集,满足U U A ∈?U U

,则称U 为A 在X

中的开覆盖;

若U 中只有有限个子集,称U 为有限开覆盖;

若X 本身的每一开覆盖都有一有限子覆盖,则称X 为紧致空间(有的书成为紧空间) ★ 理论上可以证明:对于度量空间来说,列紧性与紧致性是等价的。即列紧空间?紧致空间(这在泛函分析书中都有介绍)。

§4-2 拓扑空间的紧性

在数学分析中,人们很早就注意的,实直线上闭区间[,]a b 具有某些极好的性质,它对于证明极大值定理、一致连续性定理等起着至关重要的作用。

但是,如何在拓扑空间上表述这个特性,长期不得而知。所以,最早人们认为[,]a b 上这个特性取决于[,]a b 上任何一个无穷子集都有极限点,进而提出了列紧性概念。后来研究发现,在拓扑空间上,序列并不是个好的表达形式。因此,列紧性并未触及到问题的本质。

进一步深入研究,认为用“开集”表达形式更为自然。并且从实分析理论中知道:“实数空间R 的子集为有界闭集?它的每一开覆盖都有有限子覆盖”。

这种描述的优点:①用有限族去代替无穷族(序列)的研究;②无须度量描述。

解释:为什么可以用有限覆盖表述无穷序列收敛?

定义3 设X 为拓扑空间,如果X 的每一开覆盖都有有限子覆盖,则称X 为紧致空间。 ★ 显然,每一紧致空间也都是Lindel ?f 空间(X 的每一开覆盖都有可数子覆盖),反之不然。 定义4 设A 为拓扑空间X 的非空子集,若A 作为X 的子空间是紧致的,则称A 为X 的紧致子集。

例1 实数集R 不是紧致空间。

因为{(,)}n n n N =-∈A 为R 的开覆盖,但是A 中任何有限子集族 1122{(,),(,),,(,)}k k n n n n n n ---L

的并集为1212(max{,,,},max{,,,})k k n n n n n n -L L ,它不能覆盖R ,即A 没有有限子覆盖(解释:要覆盖R 只有n →∞。但这是一个无限的过程,不能用有限的方法得到)。

例2 R 的开区间(0,1)不是紧致的。 因为开区间族A :

1

11(,1),(,1),,(,1)23n

L

是(0,1)的一个开覆盖,中任何有限个成员都不能覆盖(0,1)。

例3 R 的子空间1

{0}{

}A n N n

=?∈(N 为正整数集)是紧致的。 因为,任给A 的一个开覆盖A ,A 中有一个成员包含0,记这个成员为U (开区间)。于是,

开区间U 除了有限个“1

n

”外,它要包含A 的所有其余的点,因此,对于A 中的每一个U 未包含

的点,从A 中选一个报还它的成员,这些成员当然是有限的。

例4 任何一个仅含有限多个点的空间必然是紧致的。 ● 重新看一下定义4:

说A 为拓扑空间X 的紧致子集,是指A 中的开集构成的A 的覆盖都有有限子覆盖,并没有明显说明:每一X 的开集构成的A 的覆盖都有有限子覆盖。因此,下面的定理是必要的。

定理1 拓扑空间X 的子集A 是X 的紧致子集?每一由X 的开集构成的A 的覆盖都有有限子覆盖。

证明:()? 假设A 是紧致的。令{}B αα∈Γ=A 是由X 的开集组成的A 的一个覆盖,那么,

{}B A αα?∈Γ就是A 中开集所组成的A 的一个开覆盖。由于A 是紧致的,从而有一个有限子族

12{,,,}m B A B A B A ααα???L

可以覆盖A ,即它就是A 的一个覆盖A 的有限族。

()? 反之,设A 的每一由X 的开集构成的覆盖都有有限子覆盖。设{}U αα=∈ΓA 为A 的

由X 的开集构成的覆盖,其有限子覆盖为

12{,,,}n U U U αααL 而

12()()()n U A U A U A A ααα??????=L 故A 是X 的紧致子集。

定理2 设B 为拓扑空间X 的基,若由B 的成员构成的X 的每一覆盖(自然是开的)都有有限子覆盖,则X 为紧致空间。

证明: 设A 是X 的任一开集。对于A ?∈A ,则A 是开集,故存在B 的子族A B ,使得

A

B A B ∈=

U B 。令

A =A

A ∈=U A

B

(即,覆盖A 中所有成员A 的B 中集族)

()A

B A B A B B A X ∈∈∈∈===U U U U A

A

A

B

即,A 是B 中成员构成的X 的覆盖。

如果A 有有限子覆盖,不妨设为12{,,,}.n i B B B B ?∈L A 。故存在i A ∈A ,使得i i A B ∈B ,从而i i B A ?。于是,A 的有限子集族12{,,,}n A A A L 一定是X 的子覆盖。所以,X 为紧致空间。 定理3 紧致空间的每一闭子集都是紧致子集。

证明: 设A 是紧致空间X 的闭子集,于是C

A 是X 的一个开集。 如果A 是X 的任一开覆盖,不难看出{,}C

A A 构成X 的一个开覆盖。

又因为X 是紧致的,故{,}C

A A 中存在有限集族12{,,,,}C m U U U A L 是X 的有限子覆盖,而

12{,,,}m U U U L 是A 的一个有限子覆盖,即闭集A 的任一开覆盖都有有限子覆盖,所以,A 是紧

致的。

●下面的几个定理不加以证明的给出。

定理4 每一拓扑空间都是某一紧致空间的子空间。

定理5 若12,,,n X X X L 均为紧致空间,则积空间12n X X X ???L 为紧致空间。

定理6 设:f X Y →是从拓扑空间X 到Y 的连续映射,若A 是X 的紧致子集,则()f A 是Y 的紧致子集。

上述定理的解释:

▲定理4说明,对于非紧致的拓扑空间,可以通过补充一些元素的方法,使其成为紧致空间,并将这个紧致空间称为原空间的加一点的紧致化。 实直线的单点紧致化同胚于圆周(补充点N ); 2

R 的单点紧致化同胚于球面2

S 。

同时,从定理4 又可以看出,紧致空间的子空间未必是紧致的。即,紧致性不是可遗传性质。

▲定理6说明:紧致集在连续映射下的象也是紧致集。

▲从前面的定义知:

紧致性是用一族开集的并运算定义的(开覆盖),那么,根据集合论中的摩根定律,“开集的并运算”与“闭集的交运算”是对偶的。所以,空间的紧性也可以利用另一种方式来定义。(尽管这种定义是较费解的,但是在拓扑学的某些证明中还是有用的)

定义5 令X 为任意非空集合,A 是X 的任一子集族。如果A 的每一有限子集族的交集都是非空的,则称A 具有有限交性质。

定理7 拓扑空间X 是紧致的 ? X 的每一具有有限交性质的闭集族都是非空的交。 关于定理7的注释(不证明):

关于“X 的每一具有有限交性质的闭集族都是非空的交”的含义是:

设{}A αα∈Γ是X 上的一族闭集合,它中的任何有限个集合的交集都是非空的,即是有限交性质的。则应由

A αα

∈Γ

≠?I ,即,闭集族{}A αα∈Γ都必含有某个相同元素。

§4-3 紧致性与分离公理(Hausdorff 空间的紧致子集)

本节讨论紧致空间和2T 公理共同作用下得到的拓扑空间性质。

定理8 设A 是Hausdorff 空间X 的紧致子集,若x A ?,则x 与A 有不相交的邻域。 证明: 对于y A ?∈,则y x ≠。

由于X 是2T 空间,则有x 和y 的开邻域,y y U V (注:下标均为y ,表示这两个邻域与y 的选择有关),且y y U V ?=?。

当y 取遍A 时,有{}y V y A ∈构成A 的开覆盖。

又由于A 是紧致子集,故存在有限子覆盖,设为12{,,,}n y y y V V V L 。 令

12n y y y V V V V =???L 12n y y y U U U U =???L

则V 是A 的开邻域,U 是x 的开邻域。又,对于任意(1,2,,)i y V i n =L 均有i y U V ?=?。所以,

U V ?=?。

证毕。

定理9 Hausdorff 空间的不相交紧致子集有不相交的邻域。 证明方法与定理8 雷同,证略。它的意义如右图所示。

由定理8和定理9,可以得到如下的推论。 推论1 Hausdorff 空间的每一紧致子集都是闭集。

注释:因为x A ?,则x A ?(闭包),所以x 不是A 的聚点,即A 是含有聚点的集合,故A 是

闭集。

推论2 紧致的Hausdorff 空间的子集为闭集 ? 它是紧致子集。

注释:根据推论1得到?;由定理3“紧致空间的闭子集是紧致子集”得到?。

★ 于是,有如下关系:

紧致空间: 闭集 ? 紧致子集

Hausdorff 空间: 闭集 ? 紧致子集

紧致Hausdorff 空间: 闭集 ? 紧致子集

另外,由定理9,我们得到如下结论。

推论3 每一紧致的Hausdorff 空间都是4T 空间。

注释:根据紧致Hausdorff 空间的紧致子集是闭集,且闭集也是紧致集。则由定理9,有不相交邻域,则是4T 空间。

推论4 每一紧致的Hausdorff 空间都是3T 空间。

注释:由紧致Hausdorff 空间的紧致子集等价于闭集,再由定理8,则是3T 空间。

于是,我们又推出如下关系: ★ 对于紧致空间:

Hausdorff 空间 ? 正则空间 ? 正规空间

注:

已知: 正规空间 ? 正则空间 ? Hausdorff 空间 (↖) 又,紧致空间是Lindel?f 空间,而对Lindel?f 空间有3T ?4T ,于是

正则空间 ? 正规空间

又由推论3和4,故有(↖)成立。

定理10 从紧致空间到Hausdorff 空间的连续映射必为闭映射。

证明: 设X 为紧致空间,Y 为Hausdorff 空间。:f X Y →为连续映射。

设A 是X 的任一闭集,故而是紧致子集(由定理3),则()f A 是Y 的紧致子集(由定理6)。由推论1,()f A 是闭集。故f 为闭映射。

定理11 X 为紧致空间,Y 为Hausdorff 空间,:f X Y →是在上的一一连续映射,则f 是同胚。

证明: (提示:只要证明1

:f

Y X -→是连续的)

在第二章§2-5“连续映射与同胚”中定理1(3)已有结论:

“:F U V →,若V 的闭集在F 下的原象是闭的,则F 连续”

在此,记1

,,F f

U Y V X -===;于是利用定理10,有1f -是连续的。故f 是同胚。

★ 关于“欧氏空间的紧致子集”一节略,同学们可以自己看。

§4-4 几种紧致性的关系(简介)

在微积分学中,实数空间R 的子集A 上,下述命题是等价的: (1)A 是有界闭集;

(2)A 的每一开覆盖都有有限子覆盖; (3)A 中每一无限子集都有聚点在A 中;

(4)A 中每一序列都有收敛的子序列收敛于A 中的点; ★ 同时,(2)可以写成

(5)A的每一可数开覆盖都有有限子覆盖

(注:由(5)不能推出(2)!即,(5)不是(1)~(4)的等价命题)

定义6设X为拓扑空间,如果X的每一可数开覆盖都有有限子覆盖,则称X为可数紧致空间。

●下面的命题都是显然的。

命题1每一紧致空间都是可数紧致空间。

命题2每一Lindel?f的可数紧致空间都是紧致空间。

注释: Lindel?f空间——每一开覆盖有可数子覆盖。如果它又是可数紧致空间,则每个可数子覆盖都有有限子覆盖,则X每个开覆盖都有有限子覆盖,故X是紧致空间。

●前面介绍了度量空间的列紧性,列紧性也可以移植到拓扑空间中。

定义7设X为拓扑空间,如果X的每一无限子集都有聚点,则称X为列紧空间。

(说明:许多书对列紧的定义不一致)

定理12 每一可数紧致空间都是列紧空间。(不证明)

定义8 设X为拓扑空间,如果X中每一序列都有收敛的子序列,则称X为序列紧致空间。

定理13每一序列紧致空间都是可数紧致空间。

C的可数紧致空间都是序列紧致空间。

每一满足第一可数公理

1

●由上述定理,我们可归纳出如下关系:

§4-5 局部紧致与仿紧

紧致性是一种很好的拓扑性质,如,紧致空间上的函数有界,并且达到最大、最小值。但是,

E也不是紧致的(n E的闭子集是紧致的)。

紧致性的条件太强,以至于n维欧氏空间n

本节介绍紧致性的两个方面推广——局部紧致和仿紧的。

∈都有一个紧致的邻域,则称X为局部紧致定义9设X为拓扑空间,如果X的每一点x X

空间。

注释:“x X

∈,都有一个紧致的邻域”,表示至少存在一个,并不是说x的所有邻域都是紧致

的。

★ 由定义9不难看出:

① 紧致空间一定是局部紧致的。

因为x X ?∈,若X 是紧致的,则其闭子集也是紧致的,只要取包含x 的闭集V 作为x 的邻域即可; 另外,X 本身就是每一x 的邻域。

② n 维欧氏空间n E 是局部紧致空间。

因为欧氏空间上的闭子集是紧致的,于是n E 的球形邻域的闭包是紧致的。 ●下面讨论局部紧致性与2T 公理(Hausdorff 空间)配合的结果。 定理14 设X 是局部紧致的Hausdorff 空间,则

(1)X 满足3T 公理。

(2)x X ?∈,x 的紧致邻域构成它的邻域基(也称局部基)。 (3)X 的开子集也是局部紧致的。 证明:

(1)证明思路:由§3-4节命题5,有

“X 是3T ?x X ?∈和它的开邻域U ,存在x 的开邻域V ,使得V U ?”。 于是,设x X ∈,U 是x 的开邻域,仅证存在x 的开邻域V ,使得V U ?。

设X 是局部紧致的Hausdorff 空间,x X ∈,U 是x 的开邻域。x 有一紧致邻域D 。根据§4-3中推论1“Hausdorff 空间的每一紧致子集都是闭集”,则D 是X 的闭集。

又由推论4“每一紧致的Hausdorff 空间都是3T 空间”,则D 作为子空间是3T 空间。

令int W U D =?,则W 是x 在D 中的开邻域;由于D 是3T 空间,则有x 在D 中的开邻域V ,使得V W U ??。

以为W 是X 的开集,D 是X 的闭子空间,V 是D 中闭包,也是X 中闭包。综上所述:

x X ∈,x 在X 中的开邻域V ,满足V U ?,即X 是3T 空间。

(2)证明思路:根据x 的局部基定义,只要证明对于x 的任一开邻域U ,存在x 的一个紧致邻

域C ,使得C U ?。

对于x X ∈,设D 是x 的一个紧致邻域,则D U ?也是x 的邻域。又根据(1)知,X 满足3

T 公理,于是,存在x 的邻域V ,满足V D U U ???。

取C V =,它是紧致空间D 的闭集,故V 也是紧致的。 (3)可由(2)直接推出。

●在定义仿紧性之前,先给出两个概念:

① 设A 是拓扑空间X 的一个覆盖,如果对于任一x X ∈,x 有一邻域V ,V 仅与A 中有限个成员相交,则称A 为X 的局部有限覆盖。

易知,有限覆盖当然是局部有限覆盖。

② 设A 和'A 都是X 的覆盖,若'A 的每一成员都包含在A 的某个成员中,则称'A 是A 的加细。若'A 是开覆盖,则称'A 是A 的开加细。

易知,'A 是A 的子覆盖,则'A 是A 的加细。('A 中成员的测度都比A 中成员的测度小,故而称加细。)

例:在实数空间R 中,令

{(1,1)},{(,)}n n n Z n n n N '=-+∈=-∈A A (Z 为整数集,N 为自然数集)

'A 和A 都是R 的覆盖,'A 是A 的加细;并且'A 是局部有限的覆盖,而A 不是。 分析: 在A 中,成员为 (1,1),(2,2),(3,3),,(,),n n ----L L

在'A 中,成员为(5,3),(4,2),(3,1),(2,0),(1,1),(0,2),(1,3),(2,4)--------L L

定义10 拓扑空间X 称为仿紧的,若X 的每个开覆盖都有局部有限的开加细(也称X 是仿紧致空间)

●下面仅给出一些有关仿紧性的结论,不做证明。 ① 紧致空间是仿紧的。

② 仿紧的Hausdorff 空间满足4T 公理。

③ 局部仿紧并满足2C 公理的Hausdorff 空间是仿紧的,从而n E 是仿紧的。 ④ 度量空间是仿紧的。

点集拓扑学

点集拓扑学 注明:这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后的那些不变性和不变量,比如联通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这种弹性变形指的是拓扑学中的同柸,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来构成一个群体称为集合,这种对象可能是独立的个体或者群体,也可能对象之间本身就有包涵关系的集合但不相同或相等,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母表示,其中元素用小写。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,, c b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,我们平时研究的最多的也就是这种表达方法: (){}(){}x P X x x x P X x ,∈∈或者 对集合的描述必须合理,要不然会出现悖论比如:理发师只给不给自己理发的人理发,这种表述就不合理,导致理发师傅是给自己理发还是不给自己理发都是矛盾,这句话应该理解为理发师只给除自己以外不给自己理发的人理发。 又比如:

关于连通在图论与拓扑学中的关系研究

第23卷第5期2009年9月甘肃联合大学学报(自然科学版) Journal of G ansu Lianhe University (Natural Sciences )Vol.23No.5Sept.2009 收稿日期:2009204215. 基金项目:甘肃省教育厅科研项目(0709B 204). 作者简介:罗明奇(19852),男,甘肃天水人,西北民族大学研究生,主要从事应用数学的研究. 文章编号:16722691X (2009)0520026203 关于连通在图论与拓扑学中的关系研究 罗明奇,马少仙,万淑慧,郭旭卫 (西北民族大学计算机科学与信息工程学院,甘肃兰州730030) 摘 要:本文主要通过在简单无向连通图中建立距离概念,构造出一个拓扑空间,在此拓扑空间上证明了图论中的连通可以推导出拓扑学中的连通;反之,证明了拓扑学中的连通也可以推导出图论中的连通;从而说明图论中的连通与拓扑学中的连通可以相互转化.关键词:连通;开集;邻域 中图分类号:O157.5 文献标识码:A 图论中所说的图是描述事物之间关系的一种手段.现实世界中,许多事物之间的关系可以抽象成点及其它们之间的连线,可以说图论是训练离散数学证明技巧的乐园,对培养学生的离散性思维具有很好的促进作用,再者,离散数学属于现代数学的范畴,可以说学好图论可以间接的使学生了解到现代数学知识.拓扑学是近代数学重要的基础分支学科,它是以研究图形在拓扑变换(一对一的,双方连续的映射)下的不变性质为特征.拓扑学的一些基本概念、方法、理论已经在其他数学分支如泛函分析,微分方程,微分几何等中广泛应用,甚至成为许多数学分支的一种通用语言.所以,无论对离散数学、拓扑学还是图论而言,它们都属于最基本的理论基础,对我们更进一步的学习都具有很好的铺垫.伴随着计算机科学技术的迅猛发展,作为支撑学科的离散数学和图论正变得越来越重要.图论的一个最新发展分支就是代数拓扑图论,所以建立连通在图论与拓扑学中的转化关系,对我们以后的更深层次的学习具有很大的帮助,同时对我们的离散数学教学也具有指导意义.连通是图论中的一个基础概念,图论研究的对象基本都是基于连通图;同时它也是拓扑学中的一个基石.本文主要通过在简单无向连通图中建立距离概念,构造出一个拓扑空间,在此拓扑空间上证明了图论中的连通可以推导出拓扑学中的连通;反之,证明了拓扑学中的连通也可以推导出图论中的连通;从而说明图论中的连通与拓扑学中的连通可以相互转化.从而,无论对图论还是拓扑学来说,都拓宽了各自的研究方法.  基本理论观点 本文考虑的是简单无向连通图.定义1[1] 设G =(V ,E )是一个无向图,u ,v ∈V ,若结点u 和v 之间存在一条路,则称结点u 和v 是连通的. 定义2[1] 设G =(V ,E )是简单无向图,如果结点u 和v 是连通的,则min {w |w =连接u 与v 的路的长度}为结点u 与v 的距离,记为d (u ,v ),如果结点u 和v 是不连通的,则规定它们之间的距离d (u ,v )=∞. 由此定义知无向图G 中的结点的距离具有以下性质: 1)对任意u ,v ∈V ,d (u ,v )Ε0,d (u ,v )=0当且仅当当且仅当u =v (非负性); 2)对任意u ,v ∈V ,d (u ,v )=d (v ,u )(对称性) 3)对任意u ,v ,w ∈V ,d (u ,w )Φd (u ,v )+d (v ,w )(三角不等性). 定义3[2] 任意一点A ∈R 2,任意一点集E

点集拓扑学教学大纲

《点集拓扑学》教学大纲 一、课程的教学目的和任务 本课程为数学系师范成人专升本选修课程,课程内容为点集拓扑学的一些基本概念、基本理论和基本方法。通过本课程的学习要求学生在掌握基本内容和基本方法的前提下,能以一般的观点总结和提高在一、二年级所学过的课程中有关的概念、理论和方法,进一步培养和提高学生的抽象思维和逻辑推理能力,同时,为进一步学习拓扑学、几何学、泛函和微分方程等课程提供所需用的最基础的知识。本课程总课时为72学时,习题课及机动课时约占总课时的四分之一。由于点集拓扑学是一门理论性强且较为抽象的课程,同时作为几何学的一个分支它的许多概念又有直观的几何背景,因此在教学中特别要注意概念的引入、具体例子和反例的选配,以便更好地阐明各个基本概念的含义从而使学生能准确把握各个基本概念,同时搞清这些例子和反例也是加深理解抽象概念的重要途径之一。带*号的内容可根据学生实际情况自由舍取。 二、课程内容及学时分配建议 第一章集合论的基本知识*12学时这部分内容是研究后续内容的一个知识平台,应该熟练掌握。如果学生对集合论内容熟悉且知识够用可采用复习方式,否则应采用讲授方式。 1.集合的基本概念及运算(包括集族的概念和运算) 2.关系、等价关系和映射 3.可数集与不可数集、基数 4.选择公理* 第二章拓扑空间和连续映射20学时这一部分重点在于建立拓扑结构,理解拓扑空间的概念,掌握拓扑空间的基本性质,为进一步学习拓扑性质打好基础。在教学中应多给一些具体的例子从具体到抽象并通过度量空间的模形来突破抽象空间建立的难点。 1. 度量空间 (1)度量空间的定义和例子 (2)连续函数的ε-δ定义与开集的刻划

答案-拓扑学基础a

东 北 大 学 秦 皇 岛 分 校 课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷 授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页 一、填空题:(每空2分,共20分) 1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ?,{,,{1}}X ?, {,,{2}}X ?,{,,{3}}X ?。 (注:答案不唯一,正确即可) 2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。 ( 3.字母Y 的割点个数为 无穷 。字母T 中指数为3的点个数为 1 。 4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。 二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B ) A 连通空间一定是道路连通空间 B 道路连通空间一定是连通空间 C 道路连通空间一定局部道路连通 D 以上说法都不对 2.下列说法正确的是( A ) A 紧空间的闭子集紧致 B 紧致空间未必局部紧致 } C 有限空间一定不紧致 D 列紧空间是紧致空间 3.下列说法错误的是( A ) A 离散空间都是1T 空间 B 2T 空间中单点集是闭集 C 赋予余有限拓扑不是2T 空间 D 第二可数空间可分 4.下列不具可乘性的是( D ) A 紧致性 B 连通性 C 道路连通性 D 商映射 三、计算题:(共16分) - 1.在上赋予余有限拓扑,记 为有理数集合,[0,1]I =。试求'和I 。 (4分) 答:'= ,I =。 2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。(8分) 答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。 3.在 上赋予欧式拓扑。(4分) { (1)计算道路2t α=与1t β=+的乘积αβ在1 3 处的值。 答:αβ在13处的值是4 9 。 装 订 线 装 订 线 内 不 要 答 题 学 号 姓 名 班 级

拓扑学测试题

拓扑学测试题一 一、选择题(每小题2分,共10分) 下列拓扑性质中,不满足连续不变性的是( ) A. 列紧 B. 序列紧 C. 可数紧 D. 紧致 下列拓扑性质中,没有遗传性的是( ) A. 1T 空间 B. 2T 空间 C. 3T 空间 D. 4T 空间 下列拓扑性质中,有限积性不成立的是( ) A. 1T 空间 B. 2T 空间 C. 3T 空间 D. 4T 空间 设X 多于两点, 21,ττ是X 的两个拓扑,则下列命题不成立的是( ) (A) 21ττ?是X 的某个拓扑的基; (B) 21ττ?是X 的一个拓扑; (C) 21ττ?是X 的一个拓扑; (D) 21ττ?是X 的某个拓扑的基。 设A 为度量空间 ),(d X 的任一非空子集,则下列命题不成立的是( ) (A) x 为A 的边界点当且仅当 (,)(,)0d x A d x X A =-= (B) x 为A 的聚点当且仅当 (,)0d x A = (C) x 为A 的内点当且仅当 (,)0d x X A ->; (D) A x ∈当且仅当 0),(=A x d . 二、 二、判断题(每小题5分,共25分) 三、 仿紧空间是度量空间.() 四、 商映射一定是闭映射或开映射. () 五、 局部道路连通空间不一定是道路连通空间. ()

六、 连通空间一定是局部连通空间. () 七、 若 11:f S →连续,则 1t ?∈,使 1()f t -不可数. () 八、 三、解答题(第1小题10分,第2小题15分,共25分) 九、 举例说明拓扑空间中的有限子集可以有聚点. 十、 设 {}0,1,2X =,试写出 X 上的所有拓扑. 十一、 四、证明题(每小题10分,共40分) 十二、 若 X 满足 1T 公理,则 X 中任一子集的导集都是闭集. 十三、 证明欧氏平面除去可数个点后仍是道路连通的. 十四、 证明至少有两个点的T 4空间的连通子集一定是不可数集. 十五、 证明 X 为Hausdorff 空间当且仅当 {(,)|}x x x X ?=∈是 X X ?的闭集. 答案 一 、 选择题 1、A 2、D 3、D 4、C 5、B 二 、 是非题 1、ⅹ 2、ⅹ 3、√ 4、ⅹ 5、√ 三 、 解答题 1. 举例说明拓扑空间中的有限子集可以有聚点. 解 例如 {}0,1X =, {},0,X τ=?, {}{}01'=. 2. 设 {}0,1,2X =,试写出X 上的所有拓扑. 解 2个开集的共有1个:{Φ,{0,1,2}}, 3个开集的共有6个: {Φ,{0},{0,1,2}},{Φ,{1},{0,1,2}},{Φ,{2},{0,1,2}},{Φ,{1,2},{0,1,2}},{Φ,{0,1},{0,1,2}},{Φ,{0,2},{0,1,2}} 4个开集的共有9个: {Φ,{0},{0,1},{0,1,2}},{Φ,{0},{0,2},{0,1,2}},

点集拓扑学练习题

练习(第二章)参考答案: 一.判断题(每小题2分) 1.集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × ) 2.拓扑空间中任两点的距离是无意义的.( √ ) 3.实数集合中的开集,只能是开区间,或若干个开区间的并.( × ) 、T 2是X 的两个拓扑,则T 1UT 2是一个拓扑.( × ) 5.平庸空间中任一个序列均收敛,且收敛于任一个点。( √ ) 6.从(X ,T 1)到(X ,T 2)的恒同映射必是连续的。( × ) 7.从离散空间到拓扑空间的任何映射都是连续映射( √ ) 8.设12, T T 是集合X 的两个拓扑,则12 T T ?不一定是集合X 的拓扑( × ) 9.从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( √ ) 10.设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ ) 11.设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( × ) 12.设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( √ ) 二.填空题:(每空格3分) 1、X=Z +,T={Z 1,Z 2,…Z n …},其中 Z n ={n,n+1,n+2,…}, 则包含3的所有开集为 321,,Z Z Z 包含3的所有闭集为 ,...,,,/ 6/5/41Z Z Z Z 包含3的所有邻域为 3321}1{,,,Z Z Z Z ? 设A={1,2,3,4,5} 则A 的导集为{1,2,3,4} ,A 的闭包为{1,2,3,4,5}

2、设X 为度量空间,x ∈X,则d ({x})=? 3、在实数空间R 中,有理数集Q 的导集是____ R ____. 4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ; 答案: ({})U A x φ?-≠ 5、设A 是有限补空间X 中的一个无限子集,则()d A = ; A = ; 答案:X ;X 6、设A 是可数补空间X 中的一个不可数子集,则()d A = ; A = ; 答案:X ;X 7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ; 答案:{2} 三、单项选择题(每题2分) 1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T ③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③ 2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④ 3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( ) ①φ ② X ③ {,}a b ④ {,,}b c d 答案:②

基础拓扑学讲义11的习题答案

习题 2、1、18 记S 就是全体无理数的集合,在实数集R 上规定子集族 {} 1\A ,A S U U τ=?是E 的开集、 (1)验证τ就是R 上的拓扑; (2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ就是满足1C 公理的可分空间; (4)证明τ在S 上诱导的子空间拓扑s τ就是离散拓扑,从而(),s S τ就是不可分的; (5)说明 (),R τ不满足2 C 公理。 证明:(1)○ 1,A U R R U A ττ=?=?? ??∈?∈??=?=??? 所以R 与?都含在τ中 ○ 2()U A U A λλλλλλλ∈Λ ∈Λ ∈Λ -= - ()0 000,,,x U A x U A x U x A x U x A x U A λλλ λλλλλλλλλλ λλλ∈Λ ∈Λ ∈Λ ∈Λ ∈Λ ?∈ -??∈Λ∈-?∈??∈ ? ?∈ - 使 U A λλλλτ∈Λ ∈Λ - ∈ ∴τ中任意多个成员的并集仍在τ中 ○3() ()()() 11221212\\\U A U A U U A A = () ()()() 11221122 11221212121 2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ?∈?∈-∈-?∈?∈??∈??∈ ()()1212\U U A A τ∈ ∴τ中两个成员的交集仍在τ中 综上所述:τ就是R 上的拓扑 (2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A 这样我们就可以在1 E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈

拓扑学在建筑中的应用

拓扑学在建筑中的应用 数学与系统科学学院 蒋玉莹 09304011

空间组织的清晰性 “对我们而言,清晰地解释每个项目的内在关系是十分重要的……以最简洁与直接的方式,而非通过图形或者形式来表现概念。评判一个方案是否简洁,概念必须得以清晰阅读。”(妹岛和世,2004) “通常,体量上的透明与轻巧并非最终目的,我们致力于将各构成部分以一种清晰的方式来组织。”(SANAA,2005) 妹岛和西泽是我接触建筑拓扑学首先出现在我眼前的两位建筑师。因为是首次接触到建筑拓扑学,所以评论家的观点对我有着非常重要的影响。评论家反复地将妹岛和西泽的建筑学冠以简洁、朴素(austerity)、纯粹几何的特征。话虽如此,在我看来还是该定义这些特征在他们作品中的含义。总的来说,热衷简洁的建筑师常被称为极简主义者(minimalist)。10多年前,Atan Allen就认为妹岛不应被归类为本质主义者的极简主义(essentialist minimalism),本质主义者们总想着去除作品中不必要的成分(component)以显现理想形式。实际上,妹岛和西泽都不能被称为极简主义者,如开篇的引言,他们并非像要构筑理想形式,而是要让概念——空间或者构成要素的组织——明晰。 这两位建筑师的作品也常被冠以“非物质性”(immateriality)、“轻巧”、“透明”。然而,就前两个特征而言,应该说他们的作品看起来是“非物质的”与“轻巧”的,而非真正的非物质。虽然常使用透明的玻璃,他们总是强调物质上的透明性并非他们设计的最终目的。“透明性意味着创造各种关系,它并非只是被看穿。透明性也意味着清晰性,不仅在视觉方面,更指概念方面。” 妹岛和西泽在一些访谈与出版物中表达过一些观点,其中,追求清晰的空间组织并清晰地展现出来是最明确的设计目的,这使得他们以简单方案的方式来做项目,只画线条,没有厚度,也没有对物质的期待,线条勾勒出空间轮廓、明确总平面。 在方案中,他们用“最简单与直接的方式”来组织基本的空间关系,从而呈现出关于拓扑学(topological issue)议题的基本组织形式:群集或分区(clustering or compartmentalisation)、集中或分散(concentration or dispersal)、紧凑或分裂(compactness or breakup)、缝隙或封闭(aperture or closure)、室外或室内、限制与联系、连续与断裂。他们想象的便是这些有关空间限定与关系的几何学基础议题,而非几何本身。妹岛和西泽作品可被看作是建筑拓扑学的指南手册。 群集与分区的非层级性特征 “在阿尔梅勒剧院,每一种材料,都给予同等的重视”。 “在日本传统建筑中,每一部分都有着相同的权重”。 “我们努力设计一个没有等级性的平面——从头到尾。我们的平面重视表现出自由的移动……光线散布在每个角落也表示从等级性中释放出来”。

不量尺寸的几何──拓扑学

不量尺寸的几何──拓扑学 拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论──不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应

具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是 错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想

拓扑学发展史

拓扑学发展史及其应用 【摘要】 【关键字】拓扑学、 【正文】 一、什么是拓扑学 拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起 源于希腊语Τοπολογ的音译。Topology 原意为地貌,于19世纪中期由科学家引入, 当时主要研究的是出于数学分析的需要而产 生的一些几何问题。发展至今,拓扑学主要研 究拓扑空间在拓扑变换下的不变性质和不变 量。拓扑学是数学中一个重要的、基础的分 支。起初它是几何学的一支,研究几何图形在 连续变形下保持不变的性质(所谓连续变形, 形象地说就是允许伸缩和扭曲等变形,但不许 割断和粘合);现在已发展成为研究连续性现象的数学分支。 学科方向 由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。在拓扑学的孕育阶段,19世纪末,就拓扑 拓扑学 已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。 数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。[英topology] 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图

形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。 拓扑学由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡七桥问题 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十

《点集拓扑学》第5章 §5.2 可分空间

§5.2可分空间 本节重点: 掌握可分空间的定义及可分空间与第二可数性公理空间的关系,与度量空间的关系; 掌握稠密子集的定义及性质. 定义5.2.l 设X是一个拓扑空间,D X.如果D的闭包等于整个拓扑空间X,即=X,则称D是X的一个稠密子集. 以下定理从一个侧面说明了讨论拓扑空间中的稠密子集的意义. 定理5.2.1 设X是一个拓扑空间,D是X中的一个稠密子集.又设f,g:X→Y都是连续映射.如果,则f=g(本定理说明两个映射只须在稠密子集上相等,就一定在整个空间相等) 证明设.如果f≠g,则存在x∈X使得 f(x)≠g(x).令:ε=|f(x)-g(x)|, 则ε>0.令 =(f(x)-ε/2,f(x)+ε/2) =(g(x)-ε/2,g(x)+ε/2) 则根据映射f和g的连续性可知都是x的邻域,从而U =也是x的一个邻域.由于子集D是稠密的,所以U∩D≠.对于任意一个y∈U∩D,我们有, f(y)=g(y)∈,矛盾. 我们也希望讨论有着较少“点数”稠密子集的拓扑空间,例如具有有限稠密点集的拓扑空间.但这类拓扑空间比较简单,大部分我们感兴趣的拓扑空间都不是这种情形,讨论起来意思不大.例如一个度量空间如果有一个有限的稠密子集的话,那么这个空间一定就是一个离散空间.相反,后继的讨论表明,许多重要的拓扑空间都有可数稠密子集.

定义5.2.2 设X是一个拓扑空间.如果X中有一个可数稠密子集,则称X是一个可分空间. 定理5.2.2 每一个满足第二可数性公理的空间都是可分空间. 证明设X是一个满足第二可数性公理的空间,B是它的一个可数基.在B中的每一个 非空元素B中任意取定一个点∈B.令 D={|B∈B,B≠} 这是一个可数集.由于X中的每一个非空开集都能够表示为B中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D有非空的交,所以可数集D是X的一个稠密子集. 包含着不可数多个点的离散空间一定不是可分的.这是因为在这样一个拓扑空间中,任何一个可数子集的闭包都等于它的自身而不可能等于整个空间. 可分性不是一个可遗传的性质,也就是说一个可分空间可能有子空间不是可分的.例子见后面的例5.2.1.然而由于满足第二可数性公理是一个可遗传的性质,因此根据定理5.2.2我们立即得到: 推论5.2.3 满足第二可数性公理的空间的每一个子空间都是可分空间. 特别,n维欧氏空间中的每一个子空间(包括它自己)都是可分空间. 例5.2.1 设(X,T)是一个拓扑空间,∞是任何一个不属于X的元素(例如我们可以取∞=X).令X*=X∪{∞}和T*={A∪{∞}|A∈T}∪{}.容易验证(请读者自己证明)(X*,T*)是一个拓扑空间. 我们依次给出以下三个论断: (1)(X*,T*)是可分空间.这是因为∞属于(X*,T*)中的每一个非空开集,所以单点集{∞}是(X*,T*)中的一个稠密子集. (2)(X*,T *)满足第二可数性公理当且仅当(X,T)满足第二可数性公理. 事实上,B是(X,T)的基当且仅当B*={B∪{∞}|B∈B}是(X*,T*)的一个基,而B 与B*有相同的基数则是显然的. (3)(X,T)是(X*,T*)的一个子空间.因为T*T.

数学游戏拓扑学

试一试吧,关于数学拓扑学的有趣游戏难题(37-46) 编者按:你知道多年的窗户玻璃为什么会变得上薄下厚吗?你有办法使曲别针自己勾在一起吗?你见过在水泥地上扔灯泡而不使灯泡摔破吗? 这里的游戏,妙就妙在无论是谁,几乎都没法在这些游戏中取胜。这些游戏初看很简单,似乎很容易做,但是真正做起来,往往事与愿违,办不到。你会玩得很开心,并从回答为什么办不到中学到许多有趣的科学知识。 首先奉劝各位读者,不要把这里的游戏跳过去!不少人觉得数学枯燥无味,似乎看见数字就讨厌。我们在这一章里不讲什么加、减、乘、除,因为加减乘除四则运算只不过是数学的一部分,其实,数学内容范围很广,连打赌都是数学研究的范畴,这一点你也许没有想到吧。打赌就是计算事情发生的可能性,科学上叫做概率,它是数学的一个分支——统计学所研究的问题。 数学上有几个数学分支是完全不用数字的。以拓扑学为例,这是一门非常有趣的学科,它是专门研究物体形状的一门数学。拓扑学中有许多有趣的问题,比如一张只有一面的纸,不用浆糊,把一个纸环剪成两个套在一起的纸环,等等。实际上拓扑学对于大家来讲并不陌生,你们大概都玩过迷宫游戏和拼七巧板吧,这些就是拓扑学研究的范围。来吧,让我们一起到一个新的数学天地中去游玩吧。 游戏三十七你能让两枚曲别针不勾在一起吗? 拿一张一元钱的钞票和两枚曲别针,把钞票卷成S 形。用曲别针短的那一头别住两层钞票,再用另一枚曲别针按同样的方法别住钞票的另一头。准备好了之后,两手分别抓住卷成S 形的钞票的两头,迅速把钞票拉直,两枚曲别针就会飞到空中自动勾在一起。 虽然原来钞票上的两枚曲别针并没有挨着,但钞票拉直后它们都奇妙地勾在一起了。这个现象在拓扑学上叫做曲线转移。原来那一元钱的钞票叠成的弧形,被拉直时,转移到曲别针上了。 如果你想把曲别针勾在一起的秘密弄个明白,你可以慢慢地把那一元钱的钞票拉直,也许会看出其中的奥妙。慢慢拉有时也能让曲别针勾在一起,但也有时勾不在一起。所以要想和别人玩这个游戏,一定得快拉。 游戏三十八一个古老的游戏。 这个游戏,几百年来迷惑了不少人,今天你要是玩这个游戏,可能还会有人与你打赌的。游戏看起来很简单,而它的原理却运用了拓扑学。 找一条内外两面颜色相同的腰带,把腰带内面向里对折。拿住对折处把它盘起来,盘起来的腰带当中呈一个S 形,内面形成一个S形,外面形成另一个S 形。在腰带内面的S 形当中插上一支铅笔,用一手抓住腰带的两端一拉,盘起来的腰带松开了,而铅笔仍然套在当中,现在你可以用魔术师的口气对观众说: “谁能象我刚才那样,使腰带套住铅笔吗?” 尽管你已经给大家作了示范表演,别人无论把铅笔插在哪里,盘起来的腰带拉直后,是无法套住铅笔的,铅笔总是跑到外面去了。下面就是这个游戏的窍门: 1、假如别人把铅笔插到腰带外面的S 中间,那你尽管抓好腰带的末端,腰带一松开,铅笔就出来了。 2、假如别人把铅笔插到腰带内面的S 中间,你就得把腰带的一端朝腰带原来卷紧的相反方向绕一圈,再抓住两头一拉,铅笔就自然地脱离圈套了。因为当腰带一端向相反方向转一圈时,原来朝里的一面,就变为朝外了,套住的铅笔自然就会脱出来了。 注意:碰到第二种情况时,就装着把腰带绕紧,否则人家会看出破绽。腰带用两面颜色一样的,就是这个原因(为了区分正反面,可把图画成两种不同颜色)。 游戏三十九你能把一张纸剪成两张吗? 找一张旧报纸,用剪刀把报纸剪出一张5 厘米宽的纸条,把纸条的一头翻个面,然后和另一头粘在一起,形成一个扭曲的纸圈。沿着5 厘米宽的纸圈的中心线把纸圈剪开,你能剪出两个纸圈吗? 剪完一圈,你会发现纸圈还是一个,不过比原纸圈长了一倍。这是什么原因呢?原来,这种扭曲的纸圈有一个奇妙的特点,它只有一个面,也就是没有正反面。这是千真万确的,不信你自己做一个这样的纸

点集拓扑学练习题及答案

点集拓扑学练习题 一、单项选择题(每题1分) 1、已知X {a,b,c,d,e},下列集族中,( )是X上的拓扑? ① T {X, ,{a},{ a,b},{ a,c,e}} ② T {X, ,{ a,b, c},{ a,b,d},{ a,b, c,e}} ③ T {X, ,{a},{a,b}} ④ T {X, ,{a},{ b},{ c},{ d},{ e}} 答案:③ 2、设X {a,b,c},下列集族中,( )是X上的拓扑? ①T {X, ,{a},{ a,b},{ c}} ②T {X, ,{a},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 3 、 已知X {a,b,c,d},下列集族中,' ( )是X上的拓扑? ①T {X, ,{a},{ a, b},{ a,c,d}} ②T {X, ,{a,b,c},{ a,b, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{b}} 答案:① 4、设X {a, b, c},下列集族中,()是X上的拓扑. ①T {X, ,{b},{ c},{ a,b}} ②T {X, ,{a},{ b},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 5、已 知 汨X {a,b,c,d},下列集 :族中, (( )是X上的拓扑? ①T {X, ,{a,b},{ a,c,d}} ②T {X, ,{a,b},{ a,c, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{ c},{ a,c}} 答案:④ 6、设X {a, b, c},下列集族 中 ,( )是X上的拓扑? ①T {X, ,{a},{ b},{ b,c}} ②T {X, ,{a,b},{ b, c}} ③T {X, ,{a},{a,c}} ④T {X, ,{a},{b},{c}} 答案:③ 7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=() ①?②X ③{b} ④{b, c, d} 答案:④

基础拓扑学讲义1.1的习题答案

习题 记S 是全体无理数的集合,在实数集R 上规定子集族 {} 1\A ,A S U U τ=?是E 的开集. (1)验证τ是R 上的拓扑; (2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ是满足1C 公理的可分空间; (4)证明τ在S 上诱导的子空间拓扑s τ是离散拓扑,从而(),s S τ是不可分的; (5)说明 (),R τ不满足2 C 公理。 证明:(1)○ 1,A U R R U A ττ=?=?? ??∈?∈??=?=??? 所以R 和?都含在τ中 ○ 2()U A U A λλλλλλλ∈Λ ∈Λ ∈Λ -= - ()0 000,,,x U A x U A x U x A x U x A x U A λλλ λλλλλλλλλλ λλλ∈Λ ∈Λ ∈Λ ∈Λ ∈Λ ?∈ -??∈Λ∈-?∈??∈ ? ?∈ - 使 U A λλλλτ∈Λ ∈Λ - ∈ ∴τ中任意多个成员的并集仍在τ中 ○3() ()()() 11221 212\\\U A U A U U A A = () ()()() 11221122 11221212121 2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ?∈?∈-∈-?∈?∈??∈??∈ ()()1212\U U A A τ∈ ∴τ中两个成员的交集仍在τ中 综上所述:τ是R 上的拓扑 (2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A 这样我们就可以在1 E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈

点集拓扑学拓扑知识点

(点集拓扑学拓扑)知识点

————————————————————————————————作者:————————————————————————————————日期:

第4章 连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉 及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. §4.1 连通空间 本节重点: 掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子.在实数空间R 中的两个区间(0,l )和[1,2), 尽管它们互不相交,但它们的并(0,1)U [l ,2)=(0,2)却是一个“整体”;而另外两 个区间(0,1)和(1,2),它们的并(0,1)U (1,2)是明显的两个“部分”.产生上述 不同情形的原因在于,对于前一种情形,区间(0,l )有一个凝聚点1在[1,2)中;而对 于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用 术语来区别这两种情形. 定义4.1.1设A 和B 是拓扑空间X 中的两个子集.如果 ?=???)()(A B B A 则称子集A 和B 是隔离的. 明显地,定义中的条件等价于?=?B A 和 ?=?A B 同时成立,也就是说,A 与B 无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的, 而子集(0,l )和[1,2) 不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4.1.2 设X 是一个拓扑空间.如果X 中有两个非空的隔离子集A 和B 使得X=A ∪B ,则称X 是一个不连通空间;否则,则称X 是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4.1.1设X 是一个拓扑空间.则下列条件等价: (l )X 是一个不连通空间; (2)X 中存在着两个非空的闭子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (3) X 中存在着两个非空的开子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (4)X 中存在着一个既开又闭的非空真子集. 证明(l )蕴涵(2): 设(1)成立.令A 和B 是X 中的两个非空的隔离子集使得 A ∪ B =X ,显然 A ∩B=?,并且这时我们有 B B B A B B A B X B B =???=??=?=)()()( 因此B 是X 中的一个闭子集;同理A 也是一个X 中的一个闭子集.这证明了集合A 和B 满足条件(2)中的要求. (2)蕴涵(3).如果X 的子集A 和B 满足条件(2)中的要求,所以A 、B 为闭集, 则由于这时有A =B /和B=A ',因此A 、B 也是开集,所以A 和B 也满足条件(3)中的要

《点集拓扑学》第7章§7.1紧致空间

第7章 紧致性 §7.1 紧致空间 本节重点: 掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件); 掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的. 在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中. 定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间. 明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间. 例7.1.1 实数空间R不是一个紧致空间.这是因为如果我们设 A={(-n,n)R|b∈Z+},则A的任何一个有限子族 { },由于它的并为 (-max{},max{}) 所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖. 定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集. 根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的. 定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.(此定理表明开覆盖中的开子集可以是X的,也可以是Y的)

相关文档