文档库 最新最全的文档下载
当前位置:文档库 › 数字信号处理英文文献及翻译整理版.docx

数字信号处理英文文献及翻译整理版.docx

数字信号处理英文文献及翻译整理版.docx
数字信号处理英文文献及翻译整理版.docx

数字信号处理

一、导论

数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。

由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。

DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。

在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。

二、信号采样

随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。

奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。

数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。

三、时间域和空间域

在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如:

一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

“因果”滤波器只使用以前的样本的输入或输出信号;而“非因果”滤波器使用未来的输入样本。一个非因果滤波器通常可以通过增加一个延迟将它变成了一个因果滤波器。

“时间不变”滤波器随着时间的推移性具有稳定特性;其他滤波器如随时间变化的自适应滤波器。

一些滤波器是“稳定”的,别的是“不稳定的”。一个稳定的滤波器产生的输出信号随时间收敛于一个恒定值,或在一个有限的时间间隔内是有界的。一种不稳定的滤波器可以产生一个没有增长界限的输出,甚至零输入有界。

“有限脉冲响应(FIR)”滤波器只使用于输入信号,而“无限脉冲响应滤波器(IIR)”使用于输入信号和输出信号之前的样品。FIR滤波器总是稳定的,而IIR滤波器可能是不稳定的。

大多数滤波器可以被描述在z域(频域的一个超集)的传递函数。如果它是一个FIR滤波器的脉冲响应和阶跃响应,滤波器也可以被描述为一个差分方程,或对零点和极点的收集。一个FIR滤波器的输出是通过对任何给定的输入与脉冲响应的卷积计算得到的。滤波器也可以被用来推导出一个样品的处理算法的方块图利用硬件指令实现滤波器所代表。

四、频域

信号通常是通过傅立叶变换将其从时间或空间域转换到频率域。傅里叶变换将信号转换信息和相位分量级的每个频率。通常的傅里叶变换转换为功率谱,这是大小的每个频率分量的平方。

在频域对信号分析的最常见的用途是信号特性分析。工程师可以研究频谱来确定哪一频率的存在于输入信号中。

滤波,特别是在非实时的工作也可以被转换到频域实现,应用滤波器,然后转换回时域。这是一个快速,O(nlogn)操作,可以基本上给出任何滤波器的形状包括砖墙滤波器优良的逼近。

有一些常用的频域变换。例如,倒谱转换信号的频域傅立叶变换,取对数,然后将另一个傅里叶变换。这强调的频率成分的幅度较小而保留的频率分量的大小顺序。频域分析又称谱或谱分析。

五、信号处理

信号通常需要以不同的方式进行处理。例如,从一个传感器的输出信号可能被污染的多余电“噪音”。电极连接到一个病人的胸部时,心电图是测量由心脏和其他肌肉的活动引起的微小的电压变化。由于电的干扰从电源的强烈影响,信号通常是采用“总管拾取”。处理信号的滤波电路可以消除或至少降低信号的不需要的部分。现在,越来越多的的情况下,是由DSP技术来进行信号的滤波以提高信号质量或提取重要信息,而不是模拟电子技术。

六、DSP的发展

数字信号处理的发展从1960年代的大型数字计算机的数字运算应用程序的使用快速傅立叶变换(FFT),它允许一个信号的频谱可以快速计算。这些技术在当时没有被广泛使用,因为合适的计算设备通常仅在大学及其他科研机构可以使用。

七、数字信号处理器(DSP)

在20世纪70年代末和20世纪80年代初微处理机的介绍使DSP技术在更广泛的范围内得到了使用。然而,通用微处理器如Intel x86的家庭并不适合于DSP的计算密集型的需求,随着20世纪80年代DSP重要性的增加导致几个主要的电子产品制造商(如德克萨斯仪器,模拟设备和摩托罗拉)去开发数字信号处理器芯片,专门的微处理器,专门设计用于在数字信号处理要求的操作的类型的架构。(注意,缩写DSP数字信号处理的不同的意思,这个词用于处理数字信号,多种技术或数字信号处理器,一种特殊类型的微处理器芯片)。像一个通用微处理器,DSP是一种具有其自己的本地指令代码的可编程器件。DSP芯片是能够每秒进行数以百万计的浮点运算,像他们同类型的更著名的通用器件,更快和更强大的版本正在不断被引入。DSP也可以嵌入在复杂的“系统芯片”装置,通常包括模拟和数字电路。

8、数字信号处理器的应用

DSP技术是当今普遍在手机,多媒体计算机,录像机,CD播放器,硬盘驱动器和控制器的调制解调器等设备,并将很快在电视和电话业务中取代模拟电路。DSP的一个重要的应用是信号的压缩和解压。信号压缩用于数字蜂窝电话,在每一个地方的“单元”让更多的电话同时被处理。DSP信号压缩技术不仅使人们可以相互交谈,而且可以通过使用安装在计算机上的小的摄像机使人们通过显示器看见对方,而这些只需要将传统的电话线连接在一起。在音频CD系统,DSP技术来执行复杂的错误检测和校正原始数据,因为它是从光盘读取。

虽然一些潜在的DSP技术的数学理论,如傅立叶和希尔伯特变换,数字滤波器的设计和信号压缩,可以相当复杂,而数值运算所需的实际实现这些技术是非常简单的,主要包括操作可以在一个便宜的四功能的计算器上进行操作。一种DSP芯片的结构设计进行这样的操作非常快,处理的样品每秒数以亿计,提供实时的性能:即,能够处理一个实时的信号,因为它是采样,然后输出信号的处理,例如扬声器或视频显示。所有的DSP应用前面提到的实例,如硬盘驱动器和移动电话,要求实时操作。

主要电子产品制造商已投入巨资在DSP技术。因为他们现在发现在大众市场的产品应用中,DSP芯片的电子装置占有世界市场的很大比例。销售额每年数十亿美元,并可能继续快速增长。

DSP主要应用的音频信号处理,音频压缩,数字图像处理,视频压缩,语音处理,语音识别,数字通信,雷达,声纳,地震,和生物医学。具体的例子是在数字移动电话的语音压缩与传输,空间匹配均衡的音响、扩声领域,良好的天气预测,经济预测,地震数据处理,和工业过程控制分析,计算机生成的动画电影中,医学影像如CAT扫描和MRI,MP3压缩,图像处理,高保真度扬声器分频器和均衡,并与电吉他放大器使用的音频效果。

九、数字信号处理的实验

数字信号处理是经常使用专门的微处理器,如dsp56000,TMS320,或SHARC。这些通常处理数据使用定点运算,虽然某些版本可以使用浮点算法和更强大。更快的应用FPGA可能从慢启动流处理器应用Freescale公司的出现,传统的较慢的处理器如单片机可能是适当的。

【英文原文】

Digital Signal Processing

1、Introduction

Digital signal processing (DSP) is concerned with the representation of the signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, digital image processing, signal processing for communications, biomedical signal processing, seismic data processing, etc.

Since the goal of DSP is usually to measure or filter continuous real-world analog signals, the first step is usually to convert the signal from an analog to a digital form, by using an analog to digital converter. Often, the required output signal is another analog output signal, which requires a digital to analog converter. Even if this process is more complex than analog processing and has a discrete value range, the stability of digital signal processing thanks to error detection and correction and being less vulnerable to noise makes it advantageous over analog signal processing for many, though not all, applications.

DSP algorithms have long been run on standard computers, on specialized processors called digital signal processors (DSP)s, or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today there are additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors, among others.

In DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space.

2、Signal Sampling

With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog to digital converter (ADC). Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of signals is partitioned into equivalence classes and quantization is carried out by replace the signal with representative signal values are approximated by values from a finite set.

The Nyquist-Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the samples if the sampling frequency is greater than twice the highest frequency of the signal. In practice, the sampling frequency is often significantly more than twice the required bandwidth.

A digital to analog converter (DAC) is used to convert the digital signal back to analog signal.

The use of a digital computer is a key ingredient in digital control systems.

3 、Time and Space Domains

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Filtering generally consists of some transformation of a number of surrounding samples around the current sample of the input or output signal. There are various ways to characterize filters, for example: A “linear” filter is a linear transformation of input samples; other filters are “non-linear.” Linear filters satisfy the superposition condition, i.e. if an input is a weighted linear combination of different signals, the output is an equally weighted linear combination of the corresponding output signals.

A “causal” filter uses only previous samples of the input or output signals; while a “non-causal”filter uses future input samples. A non-causal filter can usually be changed into a causal filter by adding a delay to it.

A “time-invariant” filter has constant properties over time; other filters such as adaptive filters change in time.

Some filters are “stable”, others are “unstable”. A stable filter produces an output that converges to a constant value with time, or remains bounded within a finite interval. An converges to a constant value with time, or remains bounded within a finite interval. An unstable filter can produce an output that grows without bounds, with bounded or even zero input.

A “Finite Impulse Response” (FIR) filter uses only the input signal, while an “Infinite Impulse Response” filter (IIR) uses both the input signal and previous samples of the output signal. FIR filters are always stable, while IIR filters may be unstable.

Most filters can be described in Z-domain (a superset of the frequency domain) by their transfer functions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse response or step response. The output of an FIR filter to any given input may be calculated by convolving the input signal with the impulse response. Filters can also be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instructions.

4、Frequency Domain

Signals are converted from time or space domain to the frequency domain usually through the Fourier transform. The Fourier transform converts the signal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present

in the input signal and which are missing.

Filtering, particularly in non real-time work can also be achieved by converting to the frequency domain, applying the filter and then converting back to the time domain. This is a fast, O (n log n) operation, and can give essentially any filter shape including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the frequency components with smaller magnitude while retaining the order of magnitudes of frequency components. Frequency domain analysis is also called spectrum or spectral analysis.

5、Signal Processing

Signals commonly need to be processed in a variety of ways. For example, the output signal from a transducer may well be contaminated with unwanted electrical “noise”. The electrodes attached to a patient’s chest when an ECG is taken measure tiny electrical voltage changes due to the activity of the heart and other muscles. The signal is often strongly affected by “mains pickup”due to electrical interference from the mains supply. Processing the signal using a filter circuit can remove or at least reduce the unwanted part of the signal. Increasingly nowadays, the filtering of signals to improve signal quality or to extract important information is done by DSP techniques rather than by analog electronics.

6、Development of DSP

The development of digital signal processing dates from the 1960’s with the use of mainframe digital computers number-crunching applications such an the Fast Fourier Transform (FFT), which allows the frequency spectrum of a signal to be computed rapidly. These techniques are not widely used at that time, because suitable computing equipment was generally available only in universities and other scientific research institutions.

7、Digital Signal Processors (DSPs)

The introduction of the microprocessor in the late 1970’s and early 1980’s made it possible for DSP techniques to be used in a much wider range of applications. However, general-purpose microprocessors such as the Inter x86 family are not ideally suited to the numerically-intensive requirements of DSP, and during the 1980’s the increasing importance of DSP led several major electronics manufacturers (such as Texas Instruments, Analog Devices and Motorola) to develop Digital Signal Processor chips-specialised microprocessors with architectures designed specifically for the types of operations required in digital signal processing.(Note that the acronym DSP can variously mean Digital Signal Processing, the term used for a wide range of techniques for processing signals digitally, or Digital Signal Processor, a specialized type of microprocessor chip). Like a general-purpose microprocessor, a DSP is a programmable device, with its own native instruction code. DSP chip are capable of carrying out millions of floating point operations per second, and like their better-known general-purpose cousins, faster and more powerful versions are continually being introduced. DSPs can also be embedded within complex “system-on-chip” devices, often containing both analog and digital circuitry.

8、Applications of DSP

DSP technology is nowadays commonplace in such devices as mobile phones, multimedia computers, video recorders, CD players, hard disc drive controllers and modems, and will soon replace analog circuitry in TV sets and telephones. An important application of DSP is in signal compression and decompression. Signal compression is used in digital cellular phones to allow a greater number of calls to be handled simultaneously within each local “cell”. DSP signal compression technology allows people not only to talk to one another but also to see one anther on their computer screens, using small video cameras mounted on the computer monitors, with only a conventional telephone line linking them together. In audio CD systems, DSP technology is used to perform complex error detection and correction on the raw data as it is read from the CD.

Although some of the mathematical theory underlying DSP techniques, such as Fourier and Hilbert transforms, digital filter design and signal compression, can be fairly complex, the numerical operations required actually to implement these techniques are very simple, consisting mainly of operations that could be done on a cheap four-function calculator. The architecture of a

DSP chip is designed to carry out such operations incredibly fast, processing hundreds of millions of samples every second, to provided real-time performance: that is , the ability to process a signal “live” as it is sampled and then output the processed signal, for example to a loudspeaker or video display. All of the practical examples of DSP applications mentioned earlier, such as hard disc drives and mobile phones, demand real-time operation.

The major electronics manufacturers have invested heavily in DSP technology. Because they now find application in mass-market products, DSP chips account for a substantial proportion of the world market for electronic devices. Sales amount to billions of dollars annually, and seem likely to continue to increase rapidly.

The main applications of DSP are audio signal processing, audio compression, digital image processing, video compression, speech processing, speech recognition, digital communications, RADAR, SONAR, seismology, and biomedicine. Specific examples are speech compression and transmission in digital mobile phones, room matching equalization of sound in hi-fi and sound reinforcement applications, weather forecasting, economic forecasting, seismic data processing, analysis and control of industrial processes, computer-generated animations in movies, medical imaging such as CAT scans and MRI, MP3 compression, image manipulation, high fidelity loudspeaker crossovers and equalization, and audio effects for use with electric guitar amplifiers.

9、Implementation

Digital signal processing is often implemented using specialized microprocessors such as the DSP56000, the TMS320, or the SHARC. These often process data using fixed-point arithmetic, although some versions are available which use floating point arithmetic and are more powerful. For faster applications FPGAs might be emerge from companies including Freescale and startup Stream Processors Inc. For slow applications, a traditional slower processor such as a microcontroller may be adequate.

化工英文文献翻译

Heavy Oil Development Technology of Liaohe Oilfield Han Yun (Scientific Research Information Department Exploration&Development Research Institute,Liaohe Oilfield Company) Liaohe Oilfield,the largest heavy oil production base in China,features in various reservoir types,deep burial,and wide range of crude oil viscosity.For many years,a series of technologies have been developed for different oil products and reservoir types of the oilfield,of which water flooding,foam slug drive,steam stimulation,steam drive,and SAGD are the main technologies. After continuous improvement,they have been further developed and played an important role in the development of heavy oil in the oilfield. Liaohe Oilfield is abundant in heavy oil resources,46%of the total proved reserves of Liaohe Oilfield Company. Horizontally the resources concentrates in the West Depression and the southern plunging belt of the Central Uplift in Liaohe Rift. Vertically,it is mainly distributed in Paleocene Shahejie Formation(ES). The distinctive geological feature of Liaohe 0ilfield is manifested in three aspects:first,the heavy oil reservoirs are deeply buried and 80%of them are buried more than 900m deep;second,the heavy oil viscosity ranges widely.For most of the reservoirs.the dead oil viscosity ranges in 100~100000mPa·s with the maximum 650000mPa·s.Third the reservoir types are various with complicated oil—water relationship,most of the reservoirs are edge water and bosom water reservoirs and there are also edge water reservoirs,top water reservoirs and bosom water reservoirs.For more than 20 years of development,Liaohe Oilfield has developed series of heavy oil development technologies for different oil products and different types of reservoirs,such as water flooding, foam slug drive,steam stimulation steam drive and SAGD.The most difficult issues have been overcome in the development of the super

英文文献

英文文献 1 Introduction Following the immensely successful first-generation Cyclone device family, Altera Cyclone II FPGAs extend the low-cost FPGA density range to 68,416 logic elements (LEs) and provide up to 622 usable I/O pins and up to 1.1 Mbits of embedded memory. Cyclone II FPGAs are manufactured on 300-mm wafers using TSMC's 90-nm low-k dielectric process to ensure rapid availability and low cost. By minimizing silicon area, Cyclone II devices can support complex digital systems on a single chip at a cost that rivals that of ASICs. Unlike other FPGA vendors who compromise power consumption and performance for low-cost, Altera’s latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher performance and half the power consumption of competing 90-nm FPGAs. The low cost and optimized feature set of Cyclone II FPGAs make them ideal solutions for a wide array of automotive, consumer, communications, video processing, test and measurement, and other end-market solutions. Reference designs, system diagrams, and IP, found at https://www.wendangku.net/doc/f511946157.html,, are available to help you rapidly develop complete end-market solutions using Cyclone II FPGAs. Low-Cost Embedded Processing Solutions Cyclone II devices support the Nios II embedded processor which allows you to implement custom-fit embedded processing solutions. Cyclone II devices can also expand the peripheralset, memory, I/O, or performance of embedded processors. Single or multiple Nios II embedded processors can be designed into a Cyclone IIdevice to provide additional co-processing power or even replace existing embedded processors in your system. Using Cyclone II and Nios II together allow for low-cost, high-performance embedded processing solutions, which allow you to extend your product's life cycle and improve time to market over standard product solutions Low-Cost DSP Solutions Use Cyclone II FPGAs alone or as DSP co-processors to improve price-to-performance ratios for digital signal processing (DSP) applications. You can implement high-performance yet low-cost DSP systems with the following Cyclone II features and design support: ■ Up to 150 18 × 18 multipliers ■ Up to 1.1 Mb it of on-chip embedded memory ■ High-speed interfaces to external memory

《化学工程与工艺专业英语》课文翻译 完整版

Unit 1 Chemical Industry 化学工业 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin‘s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939). 1.化学工业的起源 尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。这方面所取得的成绩对德国很有帮助。特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。这种深刻的改变一直持续到战后(1918-1939)。 date bake to/from: 回溯到 dated: 过时的,陈旧的 stand sb. in good stead: 对。。。很有帮助

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

fpga英文文献翻译

Field-programmable gate array (现场可编程门阵列) 1、History ——历史 FPGA业界的可编程只读存储器(PROM)和可编程逻辑器件(PLD)萌芽。可编程只读存储器(PROM)和可编程逻辑器件(PLD)都可以分批在工厂或在现场(现场可编程)编程,然而,可编程逻辑被硬线连接在逻辑门之间。 在80年代末期,为海军水面作战部提供经费的的史蒂夫·卡斯尔曼提出要开发将实现60万可再编程门计算机实验。卡斯尔曼是成功的,并且与系统有关的专利是在1992年发行的。 1985年,大卫·W·佩奇和卢文R.彼得森获得专利,一些行业的基本概念和可编程逻辑阵列,门,逻辑块技术公司开始成立。 同年,Xilinx共同创始人,Ross Freeman和Bernard Vonderschmitt发明了第一个商业上可行的现场可编程门阵列——XC2064。该XC2064可实现可编程门与其它门之间可编程互连,是一个新的技术和市场的开端。XC2064有一个64位可配置逻辑块(CLB),有两个三输入查找表(LUT)。20多年后,Ross Freeman进入全国发明家名人堂,名人堂对他的发明赞誉不绝。 Xilinx继续受到挑战,并从1985年到90年代中期迅速增长,当竞争对手如雨后春笋般成立,削弱了显著的市场份额。到1993年,Actel大约占市场的18%。

上世纪90年代是FPGA的爆炸性时期,无论是在复杂性和生产量。在90年代初期,FPGA的电信和网络进行了初步应用。到这个十年结束时,FPGA行业领袖们以他们的方式进入消费电子,汽车和工业应用。 1997年,一个在苏塞克斯大学工作的研究员阿德里安·汤普森,合并遗传算法技术和FPGA来创建一个声音识别装置,使得FPGA的名气可见一斑。汤姆逊的算法配置10×10的细胞在Xilinx的FPGA芯片阵列,以两个音区分,利用数字芯片的模拟功能。而今,该遗传算法应用到FPGA中设备的配置上被称为演化硬件。 2、Modern developments ——现代的发展 最近的趋势是通过组合逻辑块和嵌入式微处理器和相关外设传统的FPGA 互连,形成一个完整的“可编程片上系统”,采取粗粒度的架构方法实现了这一步。这项工作反映了由宝来先进系统集团的Ron Perlof 和Hana Potash在单一芯片SB24上结合可重构CPU架构的体系结构。这项工作是在1982年完成的,这种混合动力技术可以在Xilinx公司的Virtex-II Pro和Virtex-4设备中看到,包括嵌入式FPGA的逻辑结构中的一个或多个PowerPC处理器。Atmel 的FPSLIC是另一个这样的设备,它使用的是组合了Atmel可编程逻辑架构的AVR处理器。Actel的SmartFusion器件集成了配置有Cortex-M3硬处理器内核(最大闪存和512KB为64KB RAM)的ARM架构和模拟外设,如多通道ADC和DAC的基于闪存的FPGA架构。 使用硬宏处理器的另一种方法是利用在FPGA逻辑中实现的软核处理器。

污水处理 英文文献3 翻译

丹宁改性絮凝剂处理城市污水 J.Beltrán-heredia,J.ánche z-Martin 埃斯特雷马杜拉大学化学工程系和物理化学系,德埃娃儿,S / N 06071,巴达霍斯,西班牙 摘要 一种新的以丹宁为主要成分的混凝剂和絮凝剂已经过测试用以处理城市污水。TANFLOC 证实了其在浊度的去除上的高效性(接近100%,取决于剂量),并且近50%的BOD5和COD 被去除,表明TANFLOC是合适的凝集剂,效力可与明矾相媲美。混凝絮凝剂过程不依赖于温度,发现最佳搅拌速度和时间为40转/每分钟和30分钟。多酚含量不显著增加,30%的阴离子表面活性剂被去除。沉淀过程似乎是一种絮凝分离,所以污泥体积指数和它随絮凝剂剂量的改变可以确定。证明TANFLOC是相当有效的可用于污水处理的混凝絮凝剂。 关键词: 基于丹宁的絮凝剂城市污水絮凝天然混凝剂 1.简介 人类活动是废物的来源。特别是在城市定居点,来自家庭和工业的废水可能是危险有害的产品[ 1 ],需要适当的处理,以避免对环境[ 2 ]和健康的影响[ 3,4 ]。2006年12月4日联合国大会通过决议宣布2008为国际卫生年。无效的卫生基础设施促使每年220万人死于腹泻,主要在3岁以下儿童,600万人因沙眼失明,两亿人感染血吸虫病,只是为了给出一些数据[ 5 ]。显然,他们中的大多数都是在发展中国家,所以谈及城市污水,必须研究适当的技术来拓宽可能的处理技术种类。 在这个意义上,许多类型的水处理被使用。他们之间的分歧在于经济和技术特点上。了摆脱危险的污染[ 6 ],一些令人关注的论文已经发表的关于城市污水处理的几种天然的替代方法,包括绿色过滤器、化学初步分离、紫外消毒[ 7 ]和多级程序[ 8 ]。 几个以前的文件指出了城市污水管理[9,10]的重要性。这种类型的废物已成为社会研究的目标,因为它涉及到几个方面,都与社会结构和社会组织[11 ]相关。根据这一维度,必须认识到废水管理作为发展中国家的一种社会变化的因素,事关污水处理和生产之间的平衡,是非常重要的,一方面,人类要发展,另一方面,显而易见。 对水处理其它程序的研究一直是这和其他文件的范围。几年来,研究者关注的是发展中国家间的合作,他们正在致力于水处理的替代过程,主要考虑可持续发展,社会承受能力和可行性等理念。在这个意义上,自然混凝絮凝剂这一广为传播,易于操作的资源即使是非专业人员也不难操作。有一些例子,如辣木[ 14 ]和仙人掌榕[ 15 ]。丹宁可能是一个新的混凝剂和絮凝剂。 一些开拓者已经研究了丹宁水处理能力。 ?zacar和sengil [ 16 ]:从瓦罗NIA获得的丹宁,从土耳其的autoctonous树的果壳中获得丹宁,并用于他们的–污水混凝絮凝过程。他们表明,丹宁有很好的效果,结合Al2(SO4)3可进一步提高污泥去除率。 詹和赵[ 17 ]试着用丹宁为主要成分的凝胶作为吸收剂除去水中的铝,丹宁凝胶改进了金属去除过程,一定意义上也可参照Nakano等人的[ 18 ],Kim 和Nakano[ 19 ]。 ?zacar和sengil [ 20 ]加强以前的文章给出了关于三卤甲烷的形成和其他不良化合物特殊的数据,以及处理后的水质安全。他们始终使用丹宁与Al2(SO4)3的组合。 帕尔马等人将丹宁从辐射松的树皮为原位提取,用于重金属去除中聚合固体。树皮本

Manufacturing Engineering and Technology(机械类英文文献+翻译)

Manufacturing Engineering and Technology—Machining Serope kalpakjian;Steven R.Schmid 机械工业出版社2004年3月第1版 20.9 MACHINABILITY The machinability of a material usually defined in terms of four factors: 1、Surface finish and integrity of the machined part; 2、Tool life obtained; 3、Force and power requirements; 4、Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone. Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below. 20.9.1 Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in

中英文文献以及翻译(化工类)

Foreign material: Chemical Industry 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939). Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins. The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals which

数字信号处理英文文献及翻译

数字信号处理 一、导论 数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。 由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。 DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。 在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。 二、信号采样 随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。 奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。 数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。 三、时间域和空间域 在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如: 一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

各专业的英文翻译剖析

哲学Philosophy 马克思主义哲学Philosophy of Marxism 中国哲学Chinese Philosophy 外国哲学Foreign Philosophies 逻辑学Logic 伦理学Ethics 美学Aesthetics 宗教学Science of Religion 科学技术哲学Philosophy of Science and Technology 经济学Economics 理论经济学Theoretical Economics 政治经济学Political Economy 经济思想史History of Economic Thought 经济史History of Economic 西方经济学Western Economics 世界经济World Economics 人口、资源与环境经济学Population, Resources and Environmental Economics 应用经济学Applied Economics 国民经济学National Economics 区域经济学Regional Economics 财政学(含税收学)Public Finance (including Taxation) 金融学(含保险学)Finance (including Insurance) 产业经济学Industrial Economics 国际贸易学International Trade 劳动经济学Labor Economics 统计学Statistics 数量经济学Quantitative Economics 中文学科、专业名称英文学科、专业名称 国防经济学National Defense Economics 法学Law 法学Science of Law 法学理论Jurisprudence 法律史Legal History 宪法学与行政法学Constitutional Law and Administrative Law 刑法学Criminal Jurisprudence 民商法学(含劳动法学、社会保障法学) Civil Law and Commercial Law (including Science of Labour Law and Science of Social Security Law ) 诉讼法学Science of Procedure Laws

机械专业中英文对照翻译大全.

机械专业英语词汇中英文对照翻译一览表 陶瓷ceramics 合成纤维synthetic fibre 电化学腐蚀electrochemical corrosion 车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining 车间workshop 工程技术人员engineer 气动夹紧pneuma lock 数学模型mathematical model 画法几何descriptive geometry 机械制图Mechanical drawing 投影projection 视图view 剖视图profile chart 标准件standard component 零件图part drawing 装配图assembly drawing

尺寸标注size marking 技术要求technical requirements 刚度rigidity 内力internal force 位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material 刚度准则rigidity criterion 垫圈washer 垫片spacer 直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch 齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint 曲柄crank 摇杆racker

化学实验方法外文文献翻译、中英文翻译、外文翻译

实验方法 辐射黑色体理论(Chao et al., 1961)和切削表面理论(Friedman and Lenz, 1970)。随着敏感的红外感光胶片的发展,在一个可被记录切削侧面温度场的工具(Boothroyd, 1961)和电视型红外线敏感的视频设备已被哈里斯等人使用(1980年),以热传感和半导体量子吸收的原则为基础的红外线传感器的不断发展,使得这些传感器的第二敏感性大于第一次,其时间常数很小太- 在微秒到毫秒的范围之内。图5.21显示了最新使用的第二类的例子。有两个传感器以及开始投入使用,一个是在1毫米至5毫米的波长范围的敏感型锑化铟,另外一个是从6毫米至13毫米的敏感型碲镉汞类型,通过与两个不同的探测器信号比较可以使用温度测量更敏感的方法。大部分金属切削温度已进行了调查和了解使得更好地了解这个过程。原则上,温度测量可能用于条件监测,例如,警告说如果是天气太热导致切割刀具后刀面磨损,然而,尤其是辐射能尺寸,在生产条件,校准问题以及确保辐射能量途径从伤口区到探测器不被打断的困难,使得以温度测量为目的方法不够可靠切削的另一种方式是监测声发射,这虽然是一个间接的方法,但研究过程的状态是一个值得考虑未来。 5.4 声发射 材料的活跃形变—例如裂缝的增长,变形夹杂物,快速塑性剪切,甚至晶界,位错运动都是伴随着弹性应力波的排放而产生。这就是声发射(AE)。排放的发

生在一个很宽的频率范围内,但通常是从10万赫到1兆赫。虽然波幅度很小,但是他们可以被检测到,通过强烈的压电材料如钛酸钡或压电陶瓷传感器制造从,(Pb(Zr x Ti1–x)O3; x = 0.5 to 0.6)。图5.22显示了传感器的结构。声波传送到压力传感器造成直接的压力E(△L/L),其中E是传感器的杨氏模量,L 是它的长度,△L是它的长度变化。应力产生电场 T = g33E(△L/L)(5.7a) g33是传感器材料的压电应力系数。传感器两端的电压是TL,然后 V= g33E△L(5.7b) g33和E的典型值分别是24.4 × 10-3Vm/ N和58.5GPa,以检测电压高达0.01毫伏,这是可能的。将这些值代入方程(5.7b)导致了检测△L的长度变化的可以小到7 × 10-15米:对于一个L = 10毫米的传感器来说,即相当于拥有7 ×10-13 图5.22显示的是声发射传感器的结构 实验理论方法

相关文档
相关文档 最新文档