文档库 最新最全的文档下载
当前位置:文档库 › 液压圆锥破碎机机械毕业设计说明书

液压圆锥破碎机机械毕业设计说明书

液压圆锥破碎机机械毕业设计说明书
液压圆锥破碎机机械毕业设计说明书

目录

第一章绪论

1.1 SMH系列液压圆锥破碎机简介及其优点 (2)

1.2 本论文设计思路 (3)

第二章液压系统的设计计算步骤与技术要求

2.1设计计算步骤 (4)

2.2明确设计要求 (4)

第三章执行器的配置及动作顺序的确定

3.1执行器的配置 (5)

3.2 动作顺序的确定 (6)

第四章负载分析和运动分析

4.1 负载分析 (6)

4.2 负载计算 (7)

4.3 运动分析 (8)

第五章确定主要参数,编制液压执行器工况图

5.1 初选执行器的设计压力 (9)

5.2计算和确定液压缸的主要结构尺寸与液压马达的排量 (9)

5.3 计算液压执行器的最大流量 (11)

5.4 编制液压执行器的工况图 (12)

第六章液压系统图的拟定

6.1 制定液压回路方案 (13)

6.2 液压系统的合成及原理草图的绘制…………………………………………

第七章元件选型与设计

7.1 液压泵的选择…………………………………………………………………

第一章绪论

1.1SMH系列液压圆锥破碎机简介及其优点

SMH系列液压圆锥破碎机简介:

SMH 系列液压圆锥破碎机是经过吸收了当今世界先进破碎技术研制出的具有先进水平的圆锥破碎机,广泛应用于冶金、建筑、水电、交通、化工、建材工业中,适合破碎坚硬、中等硬度以上的各种矿石和岩石。SMH 系列液压圆锥破碎机是高性能圆锥破碎机,在设计中将转速、冲程以及破碎腔型进行了优化组合,使其实现了粒间层压破碎,显著提高了产量,产品形状也大为改善。

液压圆锥破碎机特点与技术优势:

SMH系列液压高效液压圆锥破碎机具有比一般液压圆锥破碎机更大的优越性:

1、破碎比大、生产效率高

将更高的转速与冲程结合,使SMH破碎机的额定功率和通过能力大大提高,提高了破碎比和生产效率。该液压圆锥破碎机将破碎冲程、破碎速度以及破碎腔形状的完美组合设计,比老式弹簧圆锥破的产量高35%~60%。

2、易损件消耗少、运行成本低

结果合理,破碎原理及技术参数先进,运转可靠,运行成本低;破碎机的所有部件均有耐磨保护,将维修费用降低到最低限度,一般使用寿命可提高30%以上。

3、层压破碎、成品粒形优异

通过采用粒间层压原理设计的特殊破碎腔及与之相匹配的转速,取代传统的单颗粒破碎原理,实现对物料的选择性破碎,显著提高了产品细料比例和立方体含量,极大程度上减少了针片状物料。

4、液压保护及液压清腔、自动化程度高、减少停机时间

液压调节排料口和过载保护使破碎机运转水平得到很大提高,使维修更简单、操作更方便、停机时间更短;SMH系列圆锥破碎机双向过铁释放液压缸能够让铁块通过破碎腔,该机在发生过铁及瞬时闷车的情况下,能液压起顶,自动排料,大大降低了原弹簧圆锥破碎机需停机进行人工排料的烦恼,而许多其它厂家的破碎机却会因过铁卡死而停机。

5、稀有润滑、可靠先进、提高使用寿命

独特的稀油润滑系统设计,大大提高了设备使用寿命。高性能非接触式迷宫密封件无磨损,提高了阻挡粉尘的可靠性,从根本上消除了原弹簧圆锥破碎机油水混合等常见故障。

6、多种破碎腔型、应用灵活、适应性强

SMH圆锥破碎机只须更换定锥衬板、动锥衬板,破碎腔形可从标准超粗腔型到短头超细腔型任意变换,适应大范围产品粒度要求。

7、维修简便、操作使用方便

SMH圆锥破碎机所有零件都可以从顶部或侧面拆装和维护,动锥和定锥拆装方便,无需拆装机架、紧固螺栓,因而SMH圆锥破碎机日常更换衬板更便捷。利用液压马达,使破碎机生产效率最佳。

8、它提供更高的生产能力、最佳的产品粒形,而且易于自动控制,具有最大可靠性和灵活性,真正为用户创造更多价值。

本文由闰土服务机械外文文献翻译成品淘宝店整理

圆锥破碎机的生产能力表可作为正常发挥SMH系列圆锥破碎机生产能力的参照。破碎机是生产线中的一个组成部分。因此它的性能受给料机、皮带机、振动筛、电动机、传动部件及给料仓是否正确选择和操作影响。所以使用时注意以下因素可提高破碎机的生产能力和性能。

1.针对所破碎的物料正确的选择破碎腔;

2.给料粒度配比适当;

3.在破碎腔360°范围内给料分布均匀;

4.自动控制装置;

5.破碎机排料去通畅;

6.输送带的规格与破碎机的最大出力能力相适应;

7.适当的选择预先筛分和闭路筛分的筛子规格。

1.2本论文设计思路

液压系统设计是指组成一个新的能量传递系统,以完成一项专门的任务。

液压系统因使用领域和用途的不同,类型繁多,可按多种方式进行分类。但按工作特征不同分为传动系统和控制系统两大类。液压传动系统一般为不带反馈的开环系统,以传递动力为主,以信息传递为次,追求传动的特性的完善。系统的工作特性由各组成液压元件的特性和它们的相互作用来确定,其工作质量受工作条件变化的影响较大。液压传动系统应用较为普遍,大多数工业设备液压系统属于此类。

液压控制系统多为采用伺服阀等电液控制阀组成的带反馈的闭环系统,以传递信息为主,传递动力为次,追求控制特性的完善。由于加入了检测反馈,故系统可用一般元件组成精确的控制系统,其控制质量受工作条件变化的影响较小。液压控制系统在高精数控机床、冶金、航空、航天等领域应用广泛。

液压传动系统的设计与主机的设计是紧密联系的,二者往往同时进行。本论文主要设计液压圆锥破碎机的液压系统部分,主机设计省略。但从实际出发,结合机械、电气、气动等各种传动形式,充分发挥液压传动的特点。设计的液压系统首先满足主机的工作、液压系统的循环要求,其次力求结构组成简单、体积小、重量轻、工作安全可靠、使用维护方便、经济性好。设计中把握效能和安全二者和谐的结合。

第二章

液压系统的设计计算步骤与技术要求

2.1设计计算步骤

如图:

液压传动系统设计一般流程

2.2明确设计要求

主机的技术要求是设计液压系统的依据和出发点。

(1)

A、主机的工艺目的:应用于冶金、建筑、水电、交通、化工、建材工业中,适合破碎坚硬、中等硬度以上的各种矿石和岩石。

B、结构布局:结合实际工作条件,采用立式结构

C、使用条件:连续运转、每天工作8~12小时

D、工作环境条件:室外工作、高冲击振动、室外环境温度、中等湿度

(2)

需采用液压传动的系统机构:主机润滑系统、主机调节系统、主机工作故障排除。

液压

(3)液压驱动机构的运动特性:主机调整机构运动形式回转运动、直线运动。

(4)液压驱动机构工作负载的性质及大小:变值负载、大小由液压马达、柱塞泵提供(5)原动机相关参数

如表2.1

(6

如表:2.2

第三章执行器的配置

执行器的配置

液压执行器的具体形式、数量和安装位置及其与主机的机械连接关系和方式,对主机的设计有很大影响,在考虑设备的总体方案时,同时确定液压执行器的形式、数量和动作顺序以及执行器的工作范围、尺寸、质量和安装等限制条件。液压缸、液压马达和摆动液压马达是液压系统中的三类执行器,其具体形式、特点与适用如表3.1(a、b、c)

3.1(c)

3.2 动作顺序的确定

典型动作循环:

典型动作循环图

第四章负载分析和运动分析

负载分析和运动分析是确定液压系统主要参数的基本依据,包括每个执行器在各自工作循环中的负载和速度随时间或位移的变化规律分析,并用负载循环图和运动循环图表示,以便了解运动过程的本质,查明每个执行器在其中的负载、位移及速度的变化规律。

4.1 负载分析

液压执行器的负载包括工作负载和摩擦负载两类,工作负载又有阻力负载、超越负载和惯性负载三种类型。摩擦负载又有静摩擦负载和动摩擦负载两种类型。执行器的负载大小可由主机规格确定,也可用实验方法或理论分析计算得到。理论分析确定负载时,必须仔细考虑各行器在一个循环中的工况及相应的负载类型。

液压执行器在工作过程中,一般要经历启动、加速、恒速、和减速制动等负载工作,各工

表4.2

4.2 负载计算

工作负载,由公式:

F=G

G=mg

其中,g为重力加速度,m为质量。

由此计算得出工作负载F大小42000N

由于液压系统中,锁紧装置和过铁释放清理回路装置以及调整马达回路都作用于同一个机械部件,即为工作负载,因此柱塞缸和活塞缸以及液压马达的负载大小F1、F2、F3均为42000N 即

F1=42000N

F2=42000N

F3=42000N

根据计算出的外负载,由主机工作过程,结合循环周期绘制负载循环图4.4(F-t图)

图4.4(F-t图)液压缸的负载、速度循环图

4.3 运动分析

运动循环图即速度循环图见图4.4,放映了执行器机构在一个工作循环中的运动规律。绘制速度循环图是为了计算液压执行器的惯性负载及绘制其负载循环图,因而绘制速度循环图通常与负载循环图同时进行。

第五章确定主要参数,编制液压执行器工况图

液压系统的主要参数是压力和流量,它们是选择系统方案及选择液压元件的主要依据。压力决定于外负载,流量取决于液压执行器的运动速度和机构尺寸。

通常,首先选择执行器的设计压力,并按最大负载和选定的设计压力计算液压执行器的主要结构尺寸,然后根据对执行器的速度(或转速)要求,确定其输入流量。压力和流量一经确定,即可确定其功率,并作出液压执行器的工况图(一个循环周期内,液压执行器的工作压力、输入流量及输入功率对时间的变化曲线图)。

5.1 初选执行器的设计压力

液压执行器设计压力的选取,主要应考虑如下因素:执行器及其他液压元件、辅件的尺寸、质量、加工工艺性、成本、货源及系统的可靠性和效率等。设计压力可以按负载大小来选取

表5.1 按负载选择工作压力

表5.2 按主机类型选择液压执行器的设计压力

由第四章的液压执行器的负载力42000N参考表5.1和表5.2初步选择设计压力5MPa。

5.2 计算和确定液压缸的主要结构尺寸与液压马达的排量

液压缸的缸筒内经、活塞杆直径及有效面积或液压马达的排量是其主要结构参数。计算方法是:先由最大负载和选取的设计压力及估取的机械效率算出有效面积或排量,然后再检验

表5.3 计算和校验液压执行器主要结构参数的公式

表5.4液压执行器的背压力

当计算液压缸的结构参数时,还需要确定活塞杆直径与液压缸内经的关系,以便在计算出液压缸内经D时,利用这一关系获得活塞杆的直径d。通常是由液压缸的往返速度比λ确定

这一关系,即d=d的计算公式如表5.6所列。

表5.6 根据往返速度比计算活塞杆直径d的公式

液压缸内经D和活塞杆直径d的最后确定值,应按GB/T 2348-1993(液压缸、气缸内经及活塞杆外径系列(表5.7)就近圆整为标准值;液压马达排量Vm的最后确定值,应按GB/T 2347-1980(液压泵及马达公称排量系列)(表 5.8)就近圆整为标准值,以便选用标准缸和

表5.6 液压缸的内经和活塞杆外径尺寸系列(GB/T 2348-1993)/mm 注:括号的尺寸为非优先采用值。

表5.7 液压泵及马达公称排量系列(GB/T 2347-1980) /1

ml r -?

注:1、括号内公称排量值为非优先选用者。2、超出本系列9000ml/r 的公称排量应按GB/T 321-1980《优先数和优先数系》中R10数系选用。 5.3 计算液压执行器的最大流量 1、液压缸的最大流量max q 为

max q =max Av 5.1 公式中,A 为液压缸的有效面积(A1或A2);m a x v 为液压缸的最大速度,由速度循环图查取。 由表5.3当无杆腔为工作腔时,由公式

1122max /cm p A p A F η-= 5.2

即1250.542000/0.9A A -=

由公式

d =

由公式5.1、5.2、5.3得出max q 为9953

/m s 2、液压马达的最大流量max q

max max q Vn = 5.4 公式中,V 为液压马达的排量;max n 为液压马达的最高转速,由转速循环图查取。 由表5.3液压马达计算公式

max /()m mm V T p η= 5.5 5.4 编制液压执行器的工况图

液压执行器的工况图包括压力循环图(p-t 图)、流量循环图(q-t 图)和功率循环图(P-t 图),它反映了一个系统循环周期,液压系统对压力、流量及功率的需要量、变化情况及峰值所在的位置,是拟定液压系统、进行方案对比及为均衡功率分布而调整或修改设计参数,以及选择、设计液压元件的基础。P-t 图(工作压力p1对时间t 变化的曲线图)是根据液压执行器的负载循环图和主要结构参数进行设计计算和编制的。表5.9是液压执行器工作压力(入口压力或负载压力)p1的计算公式。q-t 图可利用液压缸速度循环图或液压马达转速循环图和式5.1或式5.4进行计算和编制的。将执行器的q-t 图叠加,绘出系统总的q-t 图(见图5.10)。p-t 图可由P-t 图和q-t 图并根据液压功率P=pq 绘出。图5.11所示为液压缸的工况图。

图5.10 双缸系统的流量循环图

图5.11 液压缸的工况图

第六章液压系统图的拟定

6.1制定液压回路方案

液压系统图从油路原理上具体体现了设计任务书的各项要求,因此液压系统图的拟定是整个液压系统设计中最主要的一环。在拟定液压系统图的过程中,首先通过分析对比选择出各种合适的液压回路方案,然后将这些回路组合成完整的液压系统。液压系统图的拟定常采用经验法,也可用逻辑法。本液压系统图采用经验法。

制定液压图,构成液压系统的回路有主回路(直接控制液压执行器的部分)和辅助回路(保持液压系统连续稳定的运行状态的部分)两大类,每一类中按照具体功能还可以进一步详细分类,这些回路的具体结构形式参阅相关手册。通常根据系统的技术要求及工况图,参考这些现有成熟的各种回路及同类主机的先进回路进行选择。选择工作先从液压源回路和对主机

性能起决定影响的回路开始。

此液压系统属于工程机械液压系统,具有多执行器换向及复合动作为主的主机,则液压系统从选择功率调节及多路换向回路开始,再考虑其他回路。

其中其它回路的考虑:有间歇及空载运行要求的系统应考虑卸荷回路;有可能发生工作部件飘移、下滑、超速等现象的系统,应考虑锁紧、平衡、限速等回路;有快速运动部件的系统要考虑制动与缓冲回路;多执行器的系统要考虑顺序动作、同步动作和互不干扰回路;为了防止因操作者误操作或液压元件失灵产生误动作,应考虑误动作防止回路,以确保人身和设备在异常负载、断电、外部环境条件急剧变化情况时的安全性。

(1)调速方案和方向控制方案的拟定

在液压执行器确定之后,其运动方向和运动速度的控制量是拟定液压系统的核心问题。方向控制阀用换向阀会插装阀来实现,对于一般中小流量的液压系统,大多采用换向阀实现所要求的各个动作。可根据系统工作循环、动作变换性能和自动化程度等要求,确定换向阀的形式、位数、通路数、中位机能和操纵方式并选择合适的换向回路。例如简单的往复直线运动机构,采用标准的普通换向阀进行换向即可;对于高压大流量系统,现多采用盖板式插装阀与先导控制阀的逻辑组合来实现方向控制。

系统的调速方式因其使用的原动机不同而有油门调速、变频调速和液压调速三种不同方案。

油门调速方案,主要用于以内燃机为原动机的主机(如车辆与工程机械、农业机械等)的液压系统中,通过调节内燃机的油门大小,改变发动机的转速(即液压泵的转速),从而达到改变液压泵的输出流量,实现液压执行器的调速要求。此种方案的调速范围因受发动机最低转速的限制,故常需要和液压调速相配合。

变频调速方案,用于以变频器控制的交流异步电动机作为原动机的机械设备,通过改变电动机亦即定量泵的转速从而改变泵的输出流量,实现液压执行器的调速要求。此种调速方案,液压泵的动、静特性良好。

液压调速方案主要用于以固定频率为电源的电动机作为原动机的机械设备,其液压系统只采用液压调速。液压调速包括节流调速、容积调速、容积-节流联合调速三种方案(见表6.1),具体选用时应根据工况图中压力、流量和功率的大小以及系统对温升、效率和速度平稳性的要求来进行。

(2)油路循环方式的拟定

液压系统的油路循环方式有开式和闭式两种,其比较见表 6.2.油路方式主要采取决于液

(3)动力源方案的拟定

液压系统的工作介质完全由液压源提供,液压源的核心是液压泵。也雅苑形式与调速方案有关,当采用节流阀调速时,只能采用定量泵做动力源;当采用容积调速时,可采用定量泵或变量泵做动力源;当采用容积-节流联合调速时,必须采用变量泵做动力源。

动力源中泵的数量视执行器的工况图而定,要考虑到系统的温升、效率及可能的干扰等。例如,对于快慢速交替工作的系统(如组合机床液压系统),其q-t图中最大和最小流量相差较大,且最小流量持续时间较长,因此,从降低系统发热和节能角度考虑,可采用差动缸和单泵供油的方案,也可采用高低压双泵供油或单泵加蓄能器供油方案。对于有多级速度变换要求的系统(如塑料机械液压系统),可采用由三台以上定量泵组成的数字泵动力源。对于执行机构工作频繁、复合动作较多、流量需求变化大的系统(如挖掘机系统),则可采用双泵双回路全功率变量或分工率变量组合供油方案,等等。从防干扰角度考虑,对于多执行器的液压系统,宜采用多泵多回路供油方案。

(4)压力控制方案的制定

定量泵供油的节流调速系统,系统压力采用溢流阀(与泵并联)进行恒压控制。容积调速或容积-节流联合调速系统,系统最高压力由安全阀限定,如果各回路压力要求不同,则可采用减压阀来控制。若在系统不同的工作阶段需要两种以上工作压力,则可通过先导式溢流阀的遥控口,用换向阀接通远程调压溢流阀以获取多级压力;系统等待工作期间,应尽量使液压泵卸载。

(5)顺序动作控制方案的制定

主机各执行机构的动作顺序,根据主机类型不同,有的按固定程序进行,有的则是随机的或人为的。动作顺序随机的多执行器系统(工程机械液压系统),往往采用手动多路换向阀来控制;如果操纵力过大,则可采用手动或伺服控制。对于一般功率不大、动作顺序有严格要求而变化不多的系统,例如加工机械各执行机构的顺序动作多采用行程控制,当工作部件移动到一定位置时,通过电气行程开关发出电信号给电磁铁推动电磁换向阀或直接压下行程换向阀来控制连续动作。行程开关安装较为方便,行程阀需连接相应油路,故值适用于管路连接比较方便的场合。

此外,还有压力控制、时间控制等。压力控制多用在带有液压夹具的机床、挤压机等场合。当某一执行器完成预定动作时,回路中的压力达到一定数值,通过打开顺序阀使压力油通过

或压力继电器发信,来启动下一个动作。时间控制的例子是,液压泵空载启动并由延时继电器计时,经过一段时间(延时),当泵正常运转后,延时继电器发出信号使卸荷阀关闭,建立起正常的工作压力。

(6)辅助回路方案的制定

净化装置是液压系统中不可缺少的部分,一般泵的入口要设置粗过滤器,进入系统的油液根据保护元件的要求,通过相应的精过滤器再次过滤。为了防止系统中的杂质流回油箱,可在回油路上设置磁性或其他形式的过滤器。

根据液压设备的工作环境及对温升的要求,可考虑设置冷却器、加热器等温控设备。

根据系统压力调整和观测的要求,在液压泵出口、各压力控制元件等处应设置测压点,多个测压点(一般不少于6个)可共用一块压力表,通过压力表开关实现测压点的转换,从而减少压力表的数量。当根据工作需要将压力调整好后,可关闭压力表开关,使压力表指针回零,实现压力表的保护。

6.2 液压系统的合成及原理草图的绘制

根据上诉各液压回路的拟定,结合实际生产经验,参考相关资料,在确定了满足系统要求的主液压回路和必要的辅助回路方案之后,即可将它们组合成一个完整的液压系统并绘制出原理草图。如图6.3

图6.3 圆锥破碎机液压系统原理图

6.3原理简述

1.液压圆锥破碎机液压系统原理:

此液压系统控制3个基本回路的动作:一是定锥液压锁紧液压缸的动作;二是调整动、定锥间隙的液压马达的动作;三是过铁释放和清理时液压缸的动作。

2.动作顺序

锁紧缸装在锁紧环和调整环之间.它可将位于调整环上部的锁紧环支起.保证破碎过程中液压缸加压时.使定锥位于调整环里的破碎位置。

当需要调整动、定锥之间的间隙时.将锁紧液压缸的压力释放.装在调整环上的马达开始起动.马达上的齿轮使驱动环与调整帽啮合.以转动定锥.可自动调节。

过铁释放缸和主机架下部相连.并与调整环固定在一起.使调整环与主机架稳固接触以克服正常的破碎力不正常的操作或非破碎物通过破碎机时产生过大的破碎力使调整环向上升起,一旦过载消失或过铁通过破碎机,破碎机恢复正常。为了清理破碎机,需将调整环脱离主机架。

3.液压系统工作原理过程说明

由上述所需控制部份确定原理如图所示。此液压系统采用定量柱塞泵为动力源,它是将原动机供给的机械能转变为工作介质(液压油)的压力能,在此期间各液压阀控制和调节系统中工作介质的压力,流量和方向,保证执行部份(各液压缸和马达)来完成预定的运动规律。

此回路中电磁溢流阀调节系统最高使用的压力20Mpa。

锁紧回路采用蓄能器保压、零泄漏电磁阀泄压的控制。由于锁紧缸在工作过程中始终处于保压状态,采用蓄能器保压可防止柱塞泵频繁起停.从而延长了柱塞泵的使用寿命。因锁紧缸为柱塞缸,所以采用零泄漏电磁阀通电泄压后靠支撑部分的自重来复位。调整马达回路采用梭阀来控制马达运转与停止由于主机的工作性质决定了马达需要带制动功能,因此用梭阀来控制马达的制动器.从而使马达能够实现通油运转断油制动的功能。

过铁释放、清理回路采用蓄能器吸收冲击。主机工作时由于不正常的操作或非破碎物通过破碎机时产生过大的破碎力使调整环向上升起.调整环上升时液压缸上半腔内的液压油将被挤入蓄能器中,进而压缩蓄能器内的氮气,过后,被压缩的氮气迫使液压油返回液压缸中,液压缸活塞杆退回.调整环重新回到原来的位置。此回路采用蓄能器吸收冲击简单,易行,可靠。

5.润滑系统草图拟定如图

6.4

图6.4 圆锥破碎机润滑系统

6、润换系统简述

该润滑站由油箱、油泵装置、过滤器(双筒网片式油滤器和磁性过滤器)、列管式冷却器及仪表、管道、阀门等组成,工作时.油液由泵从油箱吸出,经单向阀、双筒网片式油滤

器、冷却器,被直接送到设备的润滑点。油站的最高工作压力为0.4MPa.最低工作压力为0.1MPa.根据润滑点的要求,通过调节安全阀确定使用压力。当油站的工作压力超过安全阀的凋定压力时,安全阀将自动打开,多余的油液即流回油箱。

稀油站的机构特点:

(1)设有备用泵。稀油站有两台油泵,一台工作。一台备用.正常情况下工作油泵运行.当系

统压力低于调定值时.备用油泵投入工作保证向主机继续供润滑油。

(2)双筒网片式油滤器放在冷却器之前。油在油滤器中的通油能力与其黏度油关。黏度大,通油能力差反之通油能力好温度高,黏度下降,通油能力好过虑的效果也好.先过虑后冷却即达到此目的

(3)采用双筒网片式油滤器。双筒网片式油滤器有两组过虑滤芯。一组滤芯工作,一组滤芯备用。当工作滤芯需要更换时.用转换阀使备用滤芯工作.即可取出原工作滤芯,更换滤片。此油滤器结构紧凑,接管简单不设旁路.更换方便。

(4)采用GLL型列管式油冷却器。GLL型列管式冷却器阻力降大大小于板式换热器

(5)回油口设有磁性过虑器可将回油中的细小铁磁物质吸附过虑.保证油的纯度。

表 6.5

第七章元件选型与设计

液压系统的组成元件

圆锥破碎机设计说明书

1 绪论 引言 随着社会的进步,原材料消耗不断增加,导致富矿资源日益枯竭,矿石品位日趋贫化。以我国冶金矿山为例,铁矿石平均品位31%、锰矿石品位22%。绝大多数的原矿需要破碎和选矿处理后才能成为炉料。破磨作业是选矿的龙头,也是能耗、钢耗的大户。因此,节能、降耗是破磨设备研究的主题,“多碎少磨”是节能、降耗的重要措施,其关键问题是降低破碎产品的最终粒度。圆锥破碎机的生产效率高,排料粒度小而均匀,可将矿岩从350mm破碎到10mm以下的不同级别颗粒,可以满足入磨粒度的需要,成为金属矿山选矿厂的主要破碎设备。 破碎机的发展与人类社会的进步和科学技术的水平密切相关。随着科学技术的发展,各学科间相互渗透,各行业间相互交流,广泛使用新结构、新材料、新工艺,目前破碎机正向着大型、高效、可靠、节能、降耗和自动化方向发展。 历史发展 圆锥破碎机诞生于20世纪初叶。弹簧式圆锥破碎机是由美国密尔沃基城西蒙斯(Symons)兄弟二人研制的,故称之为西蒙斯圆锥破碎机。其结构为主轴插入偏心套,用偏心套驱动动锥衬板,从而使矿岩在破碎腔内不断地遭到挤压和弯曲而破碎。破碎效果差,振动大,弹簧易损坏。用大型螺旋套调整排矿口大小,调整困难,过载保护用弹簧组,可靠性差。多年来,虽然不断改进,结果日趋完善,但其工作原理和基本构造变化不大。 20世纪40年代末,美国Allis Chalmers公司首先推出底部单缸液压圆锥破碎机,是在旋回式破碎机基础上发展起来的陡锥破碎机。该机采用液压技术,实现了液压调整排矿口和过载保护,简化了破碎机结构,减轻了重量,提高了使用性能。 20世纪50-60年代,法国Dragon公司的子公司Babbitless公司和日本神户制钢有限公司等推出上部单缸、周边单缸液压圆锥破碎机。 20世纪70-80年代,美国Allis Chalmers公司在底部单缸液压圆锥破碎机的基础上推出高能液压圆锥破碎机;Nordberg公司推出旋盘式圆锥破碎机,适用于中硬物料的破碎,其给料粒度小,偏心距小,破碎力不大。之后,相继又推出超重型短头圆锥破碎

液压圆锥破碎机液压系统及润滑系统原理方案

液压圆锥破碎机液压系统及润滑系统原理方案液压圆锥破碎机为了分离、筛选有用矿物,矿石、物料的破碎成为许多行业不可缺少的工艺过程。最近我公司在引进国外技术的基础上研制开发出PY系列液压圆锥破碎机。这类破碎机较以往的颚式破碎机、反击式破碎机等具有显著的特点。此类破碎机采用了先进的液压技术.能够实现破碎机的自动控制.正逐步取代弹簧式圆锥破碎机。 1.液压圆锥破碎机液压系统原理 1.1液压圆锥破碎机主要液压控制部分 此液压系统控制3个基本回路的动作。一是定锥液压锁紧液压缸的动作,二是调整动、定锥间隙的液压马达的动作。三是过铁释放和清理时液压缸的动作。 锁紧缸装在锁紧环和调整环之间,它可将位于调整环上部的锁紧环支起,保证破碎过程中液压缸加压时,使定锥位于调整环里的破碎位置。

当需要调整动、定锥之间的间隙时,将锁紧液压缸的压力释放,装在调整环上的马达开始起动,马达上的齿轮使驱动环与调整帽啮合.以转动定锥,可自动调节。 过铁释放缸和主机架下部相连,并与调整环固定在一起。使调整环与主机架稳固接触以克服正常的破碎力。不正常的操作或非破碎物通过破碎机时产生过大的破碎力使调整环向上升起。一旦过载消失或过铁通过破碎机,破碎机恢复正常。为了清理破碎机,需将调整环脱离主机架。 1.2液压系统原理确定 由上述所需控制部分确定原理如图1所示。此液压系统采用定量柱塞泵为动力源.它是将原动机供给的机械能转变为工作介质(液压油)的压力能,在此期间各液压阀控制和调节系统中工作介质的压力、流量和方向,保证执行部分(各液压缸和马达)来完成预定的运动规律。此回路中电磁溢流阀调节系统最高使用的压力20MPa。 锁紧回路采用蓄能器保压、零泄漏电磁阀泄压的控制。由于锁紧缸在

破碎机毕业设计-开题报告

本科毕业设计 开题报告 题目:立轴冲击破碎机动力箱及落料腔的结构设计院(部):机电工程学院 专业:机械工程及自动化 班级:机械091 姓名:张常亮 学号:20 指导教师:王全景 完成日期:2013年4月 山东建筑大学毕业设计开题报告表

国破碎机械制造业总体规模已进入国际生产大国行列但总体竞争和发展后劲仍无法与发达国家相抗衡目前国内高端用户和出口产品配套的基础零部件主要依靠进口随着出口贸易磨擦的加大势必要受到国外竞争对手和供应商的制约。因此破碎机械今后振兴发展的重心应放到基础技术和基础部件上来提高主自开发水平。大型机械设备其中锤式破碎机、破石机、颚式破碎机、大型磨粉机等设备已经远销哥伦比亚、美国、沙特等地区取得了客户的好评特别是制砂机碎石机设备得到了外商的大力赞赏。目前我国破碎制造行业市场非常广泛包括化工、矿山、建筑、水利、冶金、煤矿、玻璃等各个行业。在中国最重要的应用领域是水泥行业、铺路和矿山应用在这两个行业的破碎机各约占整个行业的30%左右。目前国际上各国对破碎机的发展抱有较大期望同时也取得了一定的成效。尤其是美国、日本、德国在破碎机的研究开发与利用已经达到了一个较高的水平。破碎机广泛应用于资源开采、工程机械、城市建设、材料分解等多项领域涉及包括化工、矿山、建筑、水利、冶金、煤矿、玻璃等各个行业。国内近几年由于经济的稳定快速发展、以及西部大开发的深入进行对破碎机的需求大量增加。另一方面,随着国家继续扩大内需基础设施建设步伐的加大这就带动了破碎机的的蓬勃发展。但是一定程度上我们对破碎机的研究开发与利用还远没有达到预期的效果破碎技术的水平相对有限。为了进一步提高破碎水平生产出就有高质量和高技术含量的破碎机尽快缩小与国外先进水平的差距我们不得不对破碎机进行更加深入的研究。 立轴冲击式破碎机的现状和发展趋势 立轴冲击式破碎机又称制砂机,是结合国内制砂生产方面的实际情况,研制开发出具有国内、国际、领先水平的高效碎石设备。它广泛适用于各种岩石、磨料、耐火材料、水泥熟料、石英石、铁矿石、混凝土骨料等多种硬、脆物料的中碎、细碎(制砂粒)。对建筑用砂、筑路用砂石优为适宜。由进料、分料器、涡动破碎腔等七部分组成。 近20年来立轴式冲击破碎机的生产厂家有了很大的发展。过去一直是供应

圆锥破碎机的工作原理及原理图

1、圆锥破碎机工作原理 圆锥破碎机工作时,电动机的旋转通过皮带轮或联轴器、圆锥破碎机传动轴和圆锥破碎机圆锥部在偏心套的迫动下绕一周固定点作旋摆运动。从而使破碎圆锥的破碎壁时而靠近又时而离开固装在调整套上的轧臼壁表面,使矿石在破碎腔内不断受到冲击,挤压和弯曲作用而实现矿石的破碎。电动机通过伞齿轮驱动偏心套转动,使破碎锥作旋摆运动。破碎锥时而靠近又时而离开固定锥,完成破碎和排料。支撑套与架体连接处靠弹簧压紧,当破碎机内落入金属块等不可破碎物体时,弹簧即产生压缩变形,排出异物,实现保险,防止机器损坏。中鑫圆锥式破碎机在不可破异物通过破碎腔或因某种原因机器超载时,圆锥式破碎机弹簧保险系统实现保险,圆锥式破碎机排矿口增大。异物从圆锥破碎机破碎腔排出,如异物卡在排矿石可使用清腔系统,使排矿继续增大,使异物排出圆锥破碎机破碎腔。圆锥破碎机在弹簧的作用下,排矿口自动复位,圆锥式破碎机机器恢复正常工作。破碎腔表面铺有耐磨高锰钢衬板。排矿口大小采用液压或手动进行调整。 2、圆锥式破碎机工作原理图 3、圆锥碎石机性能特点 1.破碎力大、效率高、处理量高、动作成本低、调整方便、实用经济 2.零件选材与结构设计合理,使用寿命长 3.破碎产品的粒度均匀,减少了循环负荷 4.密封采用润滑脂密封,避免了给水及排水系统堵塞 4、圆锥破碎机技术参数:

型 号 破碎头 底部直 径(mm) 最大进 料料度 (mm) 出料调 整范围 (mm) 破碎产 量(t/h) 电机 功率 (KW) 偏心轴 转速 (r/min) 重量 (t) 外形尺寸(mm) PYB600 600 75 12-25 40 30 356 5 2234×1370×1675 PYD600 600 40 2-13 12-23 30 356 5.5 2234×1370×1675 PYB900 900 115 15-50 50-90 55 333 11.2 2692×1640×2350 PYZ900 900 60 5-20 20-65 55 333 11.2 2692×1640×2350 PYD900 900 50 3-13 15-50 55 333 11.3 2692×1640×2350 5、圆锥破碎机结构组成

圆锥破碎机说明及参数

h t t p : / / w w w . t w z g j x . c o m / p r o d u c t / y z p s j . h t m l 弹簧圆锥破碎机说明及参数 一、用途 弹簧圆锥破碎机广泛应用在冶金工业、建筑工业、化学工业及矽酸盐厂业中。适用于破碎中等以上硬度的各种矿石和岩石,如:铁矿石、铜矿石、石灰石、石英、花岗岩、砂岩等。 二、技术性能 三、外形图

h t t p : / / w w w . t w z g j x . c o m / p r o d u c t / y z p s j . h t m l 四、机器的结构和组成 1、弹簧圆锥破碎机工作时,电动机通过弹性联轴器,传动轴和一对锥齿轮带动偏心轴套转动,破碎圆锥心线在偏心套的适动下做旋摆运动。使破碎壁和轧臼壁时而靠近,时而远离,矿石在破碎腔内不断的受到积压与冲击,而被破碎。 2、弹簧圆锥破碎机由机架、传动轴、偏心套、碗型轴承、破碎圆锥、支承套、调整套、进料、弹簧、弹性联轴器、润滑、电器等部分组成。 五、机器的试车 (一)空运转试验 1、弹簧圆锥破碎机启动前,要检查主要连接处紧固情况,用手转动该机至少使偏心套转动2-3圈,应灵活、无卡住现象,方可开车。 2、启动前,先开动油泵,直到各润滑点得到润滑油后,方可开动弹簧圆锥破碎机。 3、空运转试验连续运转不得少于2小时。 4、空运转试验应符合下列要求: (1)破碎圆锥绕其中心线自转的转数不得超过15r/min. (2)锥齿轮不得有周期性的噪音。 (3)给油压力应在0.08-0.15Mpa范围内。 (4)回油温度不得超过50°。 (5)试验后,拆卸时弹簧圆锥破碎机各摩擦部分不应发生贴铜、烧伤和磨损等现象。 5、假如破碎圆锥转数产生不良现象,应当立即停车,进行检查修正。同事检查给油量,然后重新试验。 6、锥齿轮如有周期性噪音,必须检查锥齿轮的正确性,并检查锥齿轮间隙。 (二)负荷试验 1、空运转试验合格后,方可进行负荷试验。 2、负荷试验应连续进行24~48小时。 3、负荷试验开始进行先加入少量的矿石,然后逐渐增加到满载。 4、负荷试验应符合下列要求。 六、机器的维护 1、弹簧圆锥破碎机工作时,应注意的事项。 (1)矿石必须给在分配盘的中间,不准将矿石直接给如破碎腔内,否则将使机器过载和衬板磨损不均匀。正确的给矿条件:矿石被分配盘均匀的分散在破碎腔内。给的矿石不能高于扎臼壁的水平面。(2)最大给矿块尺寸不得等于给矿口尺寸,否则将使产量降低和衬板发生不正常磨损,有时会卡住上部引起主轴上端折断等事故。 (3)不准负荷启动,负荷启动定会造成事故。

简摆颚式破碎机毕业设计

第一章概述 破碎机械是对固体物料施加机械力,克服物料的内聚力,使之碎裂成小块物料的设备。 破碎机械所施加的机械力,可以是挤压力、劈裂力、弯曲力、剪切力、冲击力等,在一般机械中大多是两种或两种以上机械力的综合。对于坚硬的物料,适宜采用产生弯曲和劈裂作用的破碎机械;对于脆性和塑性的物料,适宜采用产生冲击和劈裂作用的机械;对于粘性和韧性的物料,适宜采用产生挤压和碾磨作用的机械。 在矿山工程和建设上,破碎机械多用来破碎爆破开采所得的天然石料,使这成为规定尺寸的矿石或碎石。在硅酸盐工业中,固体原料、燃料和半成品需要经过各种破碎加工,使其粒度达到各道工序所要求的以便进一步加工操作。 通常的破碎过程,有粗碎、中碎、细碎三种,其入料粒度和出料粒度,如表一所示。所采用的破碎机械相应地有粗碎机、中碎机、细碎机三种。 表一物料粗碎、中碎、细碎的划分(mm) 类别入料粒度出料粒度 粗碎中碎细碎 300~900 100~350 50 ~100 100~350 20~100 5~15 制备水泥、石灰时、细碎后的物料,还需进一步粉磨成粉末。按照粉磨程度,可分为粗磨、细磨、超细磨三种。 所采用的粉磨机相应地有粗磨机、细磨机、超细磨机三种。 在加工过程中,破碎机的效率要比粉磨机高得多,先破碎再粉磨,能显著地提高加工效率,也降低电能消耗。 工业上常用物料破碎前的平均粒度 D刁民破碎后的平均粒度d之比来衡量破碎过程中物料尺寸变化情况,比值i称为破碎比(即平均破碎比) i=D d 为了简易地表示物料破碎程度和各种破碎机的方根性能,也可用破碎机的最大进料口尺寸与最大出料口尺寸之比来作为破碎比,称为公称破碎比。 在实际破碎加工时,装入破碎机的最大物料尺寸,一般总是小于容许的最大限度进料口尺寸,所以,平均破碎比只相当于公称破碎比的0.7~0.9。 每各破碎机的破碎比有一定限度,破碎机械的破碎比一般是i=3~30。如果物料破碎的加工要求超过一种破碎机的破碎比,则必须采用两台或多台破碎机械串连加

2100标准型圆锥破碎机设计

1 绪论 1.1引言 随着社会的进步,原材料消耗不断增加,导致富矿资源日益枯竭,矿石品位日趋贫化。以我国冶金矿山为例,铁矿石平均品位31%、锰矿石品位22%。绝大多数的原矿需要破碎和选矿处理后才能成为炉料。破磨作业是选矿的龙头,也是能耗、钢耗的大户。因此,节能、降耗是破磨设备研究的主题,“多碎少磨”是节能、降耗的重要措施,其关键问题是降低破碎产品的最终粒度。圆锥破碎机的生产效率高,排料粒度小而均匀,可将矿岩从350mm破碎到10mm以下的不同级别颗粒,可以满足入磨粒度的需要,成为金属矿山选矿厂的主要破碎设备。 破碎机的发展与人类社会的进步和科学技术的水平密切相关。随着科学技术的发展,各学科间相互渗透,各行业间相互交流,广泛使用新结构、新材料、新工艺,目前破碎机正向着大型、高效、可靠、节能、降耗和自动化方向发展。 1.2历史发展 圆锥破碎机诞生于20世纪初叶。弹簧式圆锥破碎机是由美国密尔沃基城西蒙斯(Symons)兄弟二人研制的,故称之为西蒙斯圆锥破碎机。其结构为主轴插入偏心套,用偏心套驱动动锥衬板,从而使矿岩在破碎腔内不断地遭到挤压和弯曲而破碎。破碎效果差,振动大,弹簧易损坏。用大型螺旋套调整排矿口大小,调整困难,过载保护用弹簧组,可靠性差。多年来,虽然不断改进,结果日趋完善,但其工作原理和基本构造变化不大。 20世纪40年代末,美国Allis Chalmers公司首先推出底部单缸液压圆锥破碎机,是在旋回式破碎机基础上发展起来的陡锥破碎机。该机采用液压技术,实现了液压调整排矿口和过载保护,简化了破碎机结构,减轻了重量,提高了使用性能。 20世纪50-60年代,法国Dragon公司的子公司Babbitless公司和日本神户制钢有限公司等推出上部单缸、周边单缸液压圆锥破碎机。 20世纪70-80年代,美国Allis Chalmers公司在底部单缸液压圆锥破碎机的基础上推出高能液压圆锥破碎机;Nordberg公司推出旋盘式圆锥破碎机,适用于中硬物料的破碎,其给料粒度小,偏心距小,破碎力不大。之后,相继又推出超重型短头圆锥破碎机。

锤式破碎机毕业设计

毕业设计(论文)说明书课题:环锤冲击式破碎机的设计 专业机械设计与制造 班级机械0622 姓名周浩 指导教师银金光老师 完成日期:2009年2 月至2009年5 月湖南冶金职业技术学院机械工程系

课题概述 破碎是当代飞速发展的经济社会必不可少的一个工业环节。在各种金属、 非金属、化工矿物原料及建筑材料的加工过程中,破碎作业要消耗巨大的能量,而且又是个低效率作业。在物料破碎过程中,由于产生发生、发热、振动和摩擦等作用,使能源大量消耗。因而多年来国内外界人士一直在研究如何达到节能、高效地完成破碎过程。从理论研究创新设备(包括改造旧有的设备)直至改变生产工艺流程。 环锤冲击式破碎机是一种新型、高效的冲击式破碎设备,它和锤式破碎机 的工作原理基本相同,主要是利用高速回转的锤头冲击矿石,使其沿自然裂隙、层理面和节理面等脆弱部分而破碎。环锤冲击式破碎机的锤环由于套在销轴上,因而运转时,环锤产生的离心力可使位于转子与筛板间的物料再次受到压碎和磨碎的作用。转子上配置的环锤有平环和齿研两种,故对物料还有劈碎的作用,可以克服因湿煤造成的粘结堵塞现象。工作时,电动机可直接通过弹性联轴器或V 带传动驱动主轴旋转,主轴转速一般为600~1200r/min。主轴通过球面调心滚柱轴承安装在机架两侧的轴承座中,轴承采用脂润油。 为了避免破碎大块物料时,环锤的速度损失不致过大和减小电动机的尖峰 负荷,在主轴的一端设有飞轮。 环锤冲击式破碎机主要由传动装置、转子、格筛和机架等几个部分组成。 转子主要由主轴、圆盘和环锤等组成,主轴上装有若干个圆盘,并用键与轴刚性地连接在一起。圆盘间装有间隔套、为了防止圆盘的轴向串动,两端用圆螺母固定。环锤位于两个圆盘的间隔内,套在销轴上。销轴贯穿了所有圆盘,两端用螺母拧紧。在每根销轴上装有若干个环锤,圆盘上配置了若干根销轴。

圆锥破碎机设计

摘要 本课题主要是对圆锥破碎机的设计和计算,对现有的圆锥破碎机进行某些方面的改进,使设计的圆锥破碎机能更好的实现功能。 本课题主要对一些本设计的关键机构的设计做了介绍,设计结构的工作原理经行了简单的解释。结合设计任务的要求,对结构的尺寸做出具体的设计。设计过程要充分的考虑到零件的加工、机构的强度,同时也要考虑到机器制造的成本,争取设计出合乎实际的机器。本说明书还对本课题国内外研究现状及其发展趋势做了一些介绍,同时经行了简单的经济性分析,力求对本课题有更加深入的了解。 经过了大量的设计与计算,最终设计出圆锥破碎机。设计的方式主要是通过对比仿照经行的,利用查到的一些关于圆锥破碎机的资料经行设计,对于一些结构进行新的设计和计算。 关键词:圆锥破碎机破碎矿石

Abstract The main task of this object is about cone crusher design and calculation, make some improvements to the existing cone crusher and make the cone crusher functions to achieve better functionality. This design manual make some describ on the design of the key institutions,and do some explanation about working principle on the design https://www.wendangku.net/doc/f512032076.html,bination the design tasks, make specific design on the size of the structure. Machining, body strength must take into account on the Design process, while also taking into account the cost of machine, it is Necessary for designed the realistic machine. This design manual also make some describ about the subject of research status and development trend,and make some simple economic analysis, in order to strive a more in-depth on the subject of understanding. After a great deal of design and calculation, the cone crusherhas been designed. The mainiy way of design is through comparing, use some information about the cone crusher to design,and also make some new designs and calculations on some structure. key words: cone crusher crushing ore

液压圆锥破与弹簧式圆锥破碎机的区别

来源:郑州龙鼎重型机械有限公司添加时间:2011-9-24 9:28:56 浏览量:32 标签:圆锥破碎机圆锥破破碎机 摘要:圆锥破碎机是最近研制的一种先进的大功率、大破碎比、高生产率的液压式破碎机。适用于细破碎和超细破碎坚硬的岩石、矿石、矿渣、耐火材料等;常用于石料生产线,碎石生产线。主要有液压圆锥破和弹簧式圆锥破碎机。 一、从圆锥破的用途来看 液压圆锥破广泛应用于冶金、化工、耐火材料、水电、城建、高速公路等行业中、细碎各种矿石、岩石,特别适用于钢渣处理厂各种冶金渣的综合回收加工利用作业。 弹簧式圆锥破碎机广泛应用在冶金工业、建材工业、筑路工业、化学工业与硅酸工业中,适用于破碎中等和中等以上硬度的各种矿石和岩石。 二、从圆锥破碎机的工作原理来讲 液压圆锥破工作原理:破碎过程是在定锥衬板和偏心运动的动锥衬板之间完成的。电机通过三角皮带和皮带轮来驱动破碎机的水平轴,水平轴通过齿轮传动来驱动偏心套旋转。偏心套带动主轴使动锥部成旋摆运动,从而在偏心摆动的动锥衬板和定锥衬板之间产生周期性的相对运动,使待破碎物料在破碎腔内不断地受到挤压和弯曲而被破碎。待破碎物料由上部的给料口进入破碎机,破碎后的物料由破碎机下部的排料口排出。 弹簧式圆锥破碎机工作时,电动机的旋转通过皮带轮或联轴器、圆锥破碎机传动轴和圆锥破碎机圆锥部在偏心套的迫动下绕一周固定点作旋摆运动。从而使破碎圆锥的破碎壁时而靠近又时而离开固装在调整套上的轧臼壁表面,使矿石在破碎腔内不断受到冲击,挤压和弯曲作用而实现矿石的破碎。电动机通过伞齿轮驱动偏心套转动,使破碎锥作旋摆运动。破碎锥时而靠近又时而离开固定锥,完成破碎和排料。支撑套与架体连接处靠弹簧压紧,当破碎机内落入金属块等不可破碎物体时,弹簧即产生压缩变形,排出异物,实现保险,防止机器损坏。 三、从圆锥破的性能及特点来分析 液压圆锥破有以下优势和特点 1、结构合理,破碎原理及技术参数先进,运行可靠。运行成本低;具有大破碎力,生产效率高、产量高等特点。 2、液压系统方便可靠,能提供安全有效的过载保护。 3、多种破碎腔,适应大范围产品粒度要求。 4、采用液压调整、液压清腔设置,自动化程度大为提高。 液压圆锥破碎机的高性能破碎腔型与高破碎频率的圆满结合,使得高效液压圆锥破处理能力大大提高,又由于采用了层压破碎原理,故破碎产品多为立方结构,极大程度上减少了针片状物料。高效液压圆锥破结构简单,便于操作,维护,排料口调整方便快捷,检修时省时省力,特别是衬板易于快速更换,减少了停机时间。 弹簧式圆锥破有性能特点: 在不可破异物通过破碎腔或因某种原因机器超载时,圆锥破碎机弹簧保险系统实现保险,圆锥破碎机排矿石增大。异物从圆锥破碎机破碎腔排出,如异物卡在排矿口使用清腔系统,使排矿继续增大,使异物排出圆锥破碎机破碎腔。圆锥破碎机在弹簧的作用下,排矿口自动复位,圆锥破碎机机器恢复正常工作。 圆锥破碎机系列破碎机分粗碎圆锥破碎机、中碎圆锥破碎机和细碎圆锥破碎机三种,可根据用户不同需求选购。 结构特点: 1.弹簧式圆锥破结构紧凑,生产效率高,采用碗形轴承具有较高的精度储备,并采用集中稀油润滑系统,当需要调整排料口大小时可启动液压站通过推动缸进行调整,当不能破碎物料

颚式破碎机毕业设计(含图纸)

颚式破碎机毕业设计(含图纸) 篇一:毕业论文颚式破碎机的结构和电气部分设计颚式破碎机的结构和电气部分设计 摘要 颚式破碎机经过100多年的实践和不断改进,其结构已日益完善。它具有构造简单、工作可靠、制造容易、维修方便等特点。所以,至今任然是粗碎和中碎作业中最重要和使用最广泛的一种破碎机械。它不但在建材工业,也在冶金、煤炭、化工等工矿企业中被广泛地采用着。颚式破碎机主要用来破碎应力不超过200Mpa的脆性物料。如铁矿石、金矿石、钼矿石、铜矿石、石灰石和白云石等。在建材工业中它主要用来破碎石灰石、水泥熟料、石膏、砂岩等。 近年来,随着露天开采比重的增加和大型挖掘机、大型自卸汽车的采用,露天矿运往破碎车间的矿石粒度达1.5~2m。同时被采矿石的品位日益降低,要保持原有生产量就必须大大增加开采量和破碎量。因而就使破碎机朝着大型、高生产率的方向发展。目前,国外生产的简摆颚式破碎机的最大规格是2100mm×3000mm,复摆颚式破碎机的最大规格是1500mm×20XXmm。 关键词:粉碎,颚式破碎机,破碎。 Abstract The structure of jaw type crusher has been being

perfected though unceasing improvement and the practice of process with more than 100 years. It is characteristic with simple structure, working reliablly, producing easily,maintenance conveniently and so on. Therefore, so far it still is a kind of the most important and extensivily used crusher weapons ,which work in crushing for rough powder and medium-sized powder .It is extensively used not only in building material industry , also in the metallurgical industry ,in coal industry ,in chemical industry and other industrial and mining enterprises. Jaw type crusher is mainly used in crushing the brittleness material which stress does not exceed 200 Mpa. As Iron ore, golden ore, molybdenum ore, copper ore, limestone,and so on. In building material industry, it is mainly used in crushing limestone and cement , plaster ,sandstone etc.. In recent years, along with the increase of the proportion of opencast working , adopting of large scale exavator and large scale dump truck, the ore transported from open-cast to broken workshop which size reach 1.5 ~ 2 m. At the same time, the grade of

GP200圆锥破碎机设计说明书

课程设计 GP200圆锥破碎机 结构参数和性能参数选择及计算 学院: 专业: 学生姓名: 学号 指导教师:

结构参数选择与计算 1.1 分矿盘与接矿漏斗 矿石从晃动的分矿盘落下时,不允许矿石直接落入给矿口中,而使其落到接矿漏斗上。分矿盘的高度,从它的顶面到动锥球面中心的距离,一般为400?600mm 。 对于中碎机,分矿盘与定锥形成的空间不应影响矿石进入给矿口,更不能产生大块矿石楔在此空间的现象 接矿漏口的锥角应按K 述要求确定;应使落到接矿漏斗 斜面上的矿石,能沿斜面顺利地滑到动锥上部的衬板上,其 下滑的速度足够使其越过张开的给矿口,然后调转方向缓慢 地滑向给矿口 1. 2给矿口与排矿口宽度 圆锥破碎机给矿M 的宽度B ,用动锥接近定锥时,两锥体 的上端距离表示。排矿口宽度b 用动锥靠近定锥时,两锥体的下端的距离表示。B 和b 的选择给矿和排矿粒度有关,一般情况下,B=(1.2?1.25)Dmax 给矿粒度Dmax 根据选矿流程 决定。 取B=220mm 排矿口宽度b 取决于所要求的产品粒度。对于每一种破 碎机,b 值都冇-定范围,以供破碎各种硬度矿石的需要。对 于不同硬度的矿石,其排矿的过大颗粒系数K= dmax/b(dmax 是产品的最大颗粒)不同。对中碎机来说,破碎硬矿石K=2.8?3.0、中硬矿石尺=2?2.2、软矿石K=1.6□因此设计与使用中碎机时,决定排矿口宽度,就必须考虑产品中过 大颗粒对细碎机给矿粒度的影响,这主要是中碎机一般不设检杳筛分。由于细碎机一般都有检査筛分,它的排矿口宽度 平常就等于所要求的产品粒度,而不必考虑产品的过大颗粒影响。 1.3 啮角 动锥与定锥衬板之间的夹角称为啮角,并用0α表示。它 的作用是保证破碎腔两衬板有效地咬住矿石,不许向上滑动。 给矿口处啮角,必须小于矿石与定锥衬板以及矿石与动锥衬板的摩擦角之和(下图) 啮角可按下式计算:)(0010γααα±-= 式中,“+”号用于计算开口边啮角;“-”号用于计算闭口边啮角。 啮角过太,矿石将在破碎腔内打滑,降低生产能力,增加衬板磨损和电能消耗;啮角过小,则破碎腔过长,增加破碎机的高度。通常啮角为21°≤ 0α ≤23°,max 0α =26°。

弹簧圆锥破碎机使用说明参考事项

弹簧圆锥破碎机使用说明参考事 项 弹簧圆锥破碎机使用说明参考,包括结构、试车、维护、 故障等

目录?一、用途 ?二、结构和组成 ?三、试车 ?1、空运转试验 ?2、负荷试验 ?四、维护 ?五、操作规程 ?六、故障、原因及消除方法?七、附属工具 ?八、易损件

一、用途?弹簧圆锥破碎机广泛 应用在冶金工业、建 筑工业、化学工业及 矽酸盐厂业中。适用 于破碎中等以上硬度 的各种矿石和岩石, 如:铁矿石、铜矿石、 石灰石、石英、花岗 岩、砂岩等。

二、结构和组成 ?1、特沃重工弹簧圆锥破碎机工作时,电动机通过弹性联轴器,传动轴和一对锥齿轮带动偏心轴套转动,破碎圆锥心线在偏心套的适动下做旋摆运动。使破碎壁和轧臼壁时而靠近,时而远离,矿石在破碎腔内不断的受到积压与冲击,而被破碎。?2、弹簧圆锥破碎机由机架、传动轴、偏心套、碗型轴承、破碎圆锥、支承套、调整套、进料、弹簧、弹性联轴器、润滑、电器等部分组成。

?一、空运转试验 ?1、弹簧圆锥破碎机启动前,要检查主要连接处紧固情况,用手转动该机至少使偏心套转动2-3圈,应灵活、无卡住现象,方可开车。 ?2、启动前,先开动油泵,直到各润滑点得到润滑油后,方可开动弹簧圆锥破碎机。可参考https://www.wendangku.net/doc/f512032076.html,/product/yzpsj.html ?3、空运转试验连续运转不得少于2小时。 ?4、空运转试验应符合下列要求: ?(1)破碎圆锥绕其中心线自转的转数不得超过15r/min. ?(2)锥齿轮不得有周期性的噪音。 ?(3)给油压力应在0.08-0.15Mpa范围内。 ?(4)回油温度不得超过50°。 ?(5)试验后,拆卸时弹簧圆锥破碎机各摩擦部分不应发生贴铜、烧伤和磨损等现象。 ?5、假如破碎圆锥转数产生不良现象,应当立即停车,进行检查修正。同事检查给油量,然后重新试验。 ?6、锥齿轮如有周期性噪音,必须检查锥齿轮的正确性,并检查锥齿轮间隙。

圆锥破碎机主要参数计算

圆锥破碎机主要参数选择 1.分矿盘与接矿漏斗 矿石从晃动的分矿盘落下时,不允许矿石直接落人给矿口中,而使其落到接矿漏斗上。分矿盘的高度,从它的顶面到动锥球面中心的距离,一般为400~650mm。 对于中碎机,分矿盘与定锥形成的空间不应影响矿石进入给矿口,更不能产生大块矿石楔在此空间的现象。 接矿漏斗的锥角按下述要求确定:应使落到接矿漏斗斜面上的矿石,能沿斜面顺利地滑到动锥上部的衬板上,其下滑的速度足够使其越过张开的给矿口,然后调转方向缓慢地滑向给矿口。 2. 给矿口与排矿口宽度 圆锥破碎机给矿口的宽度B,用动锥接近定锥时,两锥体的上端距离表示。排矿口宽度b,用动锥靠近定锥时,两锥体下端的距离表示。B和b的选择与给矿和排矿粒度有关,一般情况下,B= (1.2-1.25)D max。给矿粒度D max根据选矿流程决定。排矿口宽度b取决于所要求的产品粒度。对于每一种破碎机,b值都有一定范围,以供破碎各种硬度矿石的需要。对于不同硬度的矿石,其排矿的过大颗粒系数K= d max/b (d max是产品的最大颗粒)不同。对中碎机来说,破碎硬矿石时K =2.8-3.0、中硬矿石K=2-2.2、软矿石K=1.6。因此设计与使用中碎机时,决走排矿口宽度,就必须考虑产品中

过大颗粒对细碎机给矿粒度的影响,这主要是中碎机一般不设检查筛分。由于细碎机一般都有检查筛分,它的排矿口宽度平常就应等于所要求的产品粒度,而不必考虑产品的过大颗粒影响。 3.啮角 动锥与定锥衬板之间的夹角称为啮角,并用a0表示。它的作用是保证破碎腔两衬板有效地咬住矿石,不许向上滑动。 给矿口处啮角,必须小于矿石与定锥衬板以及矿石与动锥衬板的摩擦角之和如下图所示。 圆锥破的啮角 啮角过大,矿石将在破碎腔内打滑,降低生产能力,增加衬板磨损和电能的消耗;啮角太小,则破碎腔过长,增加破碎机的高度。通常啮角为21°≤a0≤23°,d0max=26°。 底锥角a较大者为陡锥型破碎机,也叫深腔破碎机,如单缸液压圆锥破碎机,其a角约为55°- 60°;底锥角a较

PCL400破碎机设计-毕业设计

1 绪论 现代破碎理论与国内破碎设备的发展 矿业是国民经济中的基础产业,它与国民经济的发展息息相关。矿物加 工是矿业的一个非常重要的环节,它不但要为其他领域提供原材料,而且还 要为自身的可持续发展提供机遇。粉碎是矿物加工中不可缺少的一种工艺过 程,粉碎的任务是提供具有一定粒度、粒度组成和充分解离而又不过粉碎的 加工原料,以便下一步的加工、处理和使用。当今世界矿物加工领域中破碎、 磨矿能耗约占整个选矿过程能耗的40%~60% ,据资料表明,20世纪90年代 以来世界上约12%的电能用于粉碎物料。破碎、磨矿的节能降耗成了选矿领 域降低成本、增加经济效益的重要手段之一。而破碎理论的成熟是破碎机实 现节能降耗的先决条件,因而破碎设备的发展依赖于破碎理论的发展。 1.1 破碎理论 1.1.1 破碎理论综述 (1) 早期破碎理论 19世纪中叶,许多学者就粉碎能耗的关系问题纷纷提出自己的看法,其 中最著名的有雷廷格(Rittinger)的“面积说”,基克(Kick)的“体积说” 和庞德(Bond)的“裂缝说”,他们的数学表达式可以写成: 1dA =rds(Rittinger 理论) (1-1) 2dA =kdv(Kick 理论) (1-2) i ωω=(Bond 理论) (1-3) 而这三大理论的表达式,可以统计地由沃克公式表示为: C n dx dE x =- (1-4) 式中C 为与物料性质及设备性能有关的参数,n 为与破碎程度有关的指数, 负号表示粉碎消耗能量。当 n=2时,积分上式得雷廷格公式;令n=1.5而后 积分,得邦德公式;n=1时的积分结果即基克公式。三大理论表达式右边粒 度的表示法,“面积说”采用调和平均径;“体积说”采用加权几何平均径; 而“裂缝说”采用80%所有通过的方孔筛宽的尺寸来表示。他们采用的粒度 都是靠经验确定的。实际运用中,这三大理论各自仅反映粉碎过程的某一阶 段,互不矛盾。对于粗粒物料的粉碎过程,“体积说”比较接近于实际;对

机械毕业设计(论文)-圆锥破碎机的设计【说明书+CAD+SOLIDWORKS】

本科生毕业论文(设计) 题目圆锥破碎机的设计 系别机械工程系 专业机械设计制造及其自动化技术学生姓名 学号年级 2011级指导教师 二0一五年四月十四日

圆锥破碎机的设计 专业:机械设计制造及其自动化 学生: 指导老师: 摘要 在全球经济发展的大环境之下,我国各个行业在受到其他国家先进技术冲击的同时,与国外品牌企业的沟通交流的机会也变的越来越多。圆锥破碎机行业通过行业展会、科研合作等多种途径,不断的提高了自身实力和核心竞争力,缩小与发达国家之间的差距。 在新的市场需求的驱动下,矿山开采设备的更新和优化升级更加迫切。国内圆锥破碎机设备生产企业充分挖掘市场潜力,大力发展大型环保节能的圆锥破碎机械设备,在绿色环保化矿山开采的转变中挥积极作用。一般生产大型圆锥破碎机设备的企业对设备环保指数上都有严格的要求。各企业在生产设备时,都充分考虑到设备在运行中可能会出现的种种问题,从而减少设备因为振动或者操作不当而引起的噪音大、污染重等现象。 国内圆锥破碎机设备的研发及制造要与全球号召的低碳经济、绿色世界主题保持一致。加大圆锥破碎机设备新型节能绿色环保圆锥破碎机的研发及生产是行业发展的大趋势,同时也迎合了国内基础建设发展的需求。 破碎机的发展与人类社会的进步和科学技术的水平密切相关。随着科学技术的发展,各学科间相互渗透,各行业间相互交流,广泛使用新结构、新材料、新工艺,目前破碎机正向着大型、高效、可靠、节能、降耗和自动化方向发展。 本文介绍了圆锥破碎机的结构组成、工作原理以及主要零部件的设计中所必须的理论计算和相关强度校验该圆锥式破碎机的优点是传动链短、效率高、易加工、使用和维护都很方便,较适合在恶劣的环境下工作。 圆锥破碎机广泛应用于金属矿山、冶金工业、化学工业、建筑工业、水泥工业及砂石行业等,适用于中、细碎普氏硬度f=5-16的各种矿山和岩石,如铁矿石、有色金属矿石、花岗岩、石灰岩、石英岩、沙岩、鹅卵石等。它工作时,电机通过三角带、传动轴、传动齿轮带动偏心套旋转,动锥在偏心套作用下做旋摆运动,使动锥和定锥时而靠近时而偏离。物料在破碎腔内不断受到挤压、冲击而破碎,破碎的物料经筛选靠自重从下部排出。 关键词:圆锥破碎机;中心距;弯曲疲劳强度;弯曲许用应力

双齿辊破碎机设计说明书

摘要 (Ⅰ) ABSTRACT (Ⅱ) 1 绪论 (1) 1.1引言 (1) 1.2发展历史 (2) 1.3应用效果 (3) 2 双齿辊破碎机总体设计方案 (4) 2.1辊式破碎机的类型 (4) 2.2双齿辊破碎机的工作原理 (4) 2.3双齿辊破碎机的基本构造 (5) 3 力能参数计算 (6) 3.1双齿辊破碎机的生产能力 (6) 3.2电动机的选择 (7) 3.2.1电动机型号的选择7 3.2.2电动机的功率选择7 3.3联轴器的选择与校核 (8) 3.3.1联轴器类型的选择8 3.3.2联轴器的安全校核8 4 减速器的基本设计 (10) 4.1总体设计方案 (10) 4.2减速器传动比的分配 (10) 4.3齿轮的设计 (12) 4.3.1高速级传动齿轮的设计12 4.3.2按齿面接触强度设计12 4.3.3按齿根弯曲强度设计12 4.3.4各级齿轮传动12

5 主要零部件的设计和校核 (19) 5.1主轴的材料 (19) 5.2轴的结构设计 (19) 5.2.1主轴的功率P、转速n和转矩T19 5.2.2轴的最小直径的确定19 5.2.3轴的结构设计20 5.3主轴受力分析与计算 (21) 5.3.1主轴的受力分析22 5.3.2主轴力的计算22 5.3.3主轴弯矩、扭矩的计算24 5.4主轴的安全校核 (26) 5.4.1主轴的强度校核26 5.4.2精确校核轴的疲劳强度27 5.5轴承的安全校核 (27) 5.6齿轮的校核 (29) 5.6.1齿面接触强度校核29 5.6.2齿根弯曲强度校核30 6 系统润滑 (32) 6.1电动机的校核 (32) 6.2润滑方法 (33) 6.3润滑剂的种类 (33) 6.4破碎机润滑剂的选择特点 (34) 6.5润滑方式的选择 (34) 6.5.1减速器的润滑34 6.5.2万向联轴器的润滑34 6.5.3其余零部件的润滑35 7 设备的经济技术分析 (36) 7.1设备的环保措施 (36)

颚式破碎机的毕业设计开题报告

河南理工大学万方科技学院本科毕业设计(论文)开题报告

二、国内外研究综述: 颚式破碎机是由美国人发明的。自第一台颚式破碎机问世以来,至今已有140余年的历史。在此过程中,其结构得到不断地完善。由于颚式破碎机结构简单、制造容易、工作可靠、使用维修方便等优点,所以在冶金、矿山、建材、化工、煤炭等行业使用非常广泛。 为了改善颚式破碎机性能和提高工作效率,国内外曾研制过各种异型颚式破碎机。早年,德国和前苏联都曾研制过液压驱动的颚式破碎机。其特点是提高动颚摆动次数借以增加产量,同时能实现液压调整排料口、液压过载保护以及能负荷启动。原西德制造过冲击式颚式破碎机,而原苏联也制造了振动颚式破碎机(也叫惯性颚式破碎机)。它们都靠动颚振动冲击破碎物料,借以提高破碎机性能。前者国内曾经试制过,由于某些原因没能继续研制。原东德曾制造过一种简摆双腔颚式破碎机,美国生产过复摆双腔颚式破碎机。国内北京某设计院以及湖南某大学都曾与工厂合作研制了双腔颚式破碎机。其特点是使间歇工作变成连续工作,借以提高破碎机工作效率。 早年,美国、英国、德国相继生产了Kun-kan简摆颚式破碎机。该机特点是,动颚悬挂高度很高并且前倾。连杆下行为工作行程、主轴承为半圆滑动颚轴承。山东招远黄金机械厂曾引进了这种破碎机,并在此基础上研制了34颚式破碎机。 国外制造过一种肘板向上放置的颚式破碎机。国内有几家设计院和制造厂生产了这种破碎机。它的特点是靠增大传动角改善动颚运动特性,提高破碎机性能。在国内该机有叫负支承、上斜式、上推式和上置式破碎机。笔者认为叫大传动角(包括倾斜式)破碎机更合适。 美国鹰破碎机公司制造一种倾斜式颚式破碎机。其传动角大约70度以上。它的最大特点是低矮,最适于井下或移动式破碎机上工作。北京矿冶研究总院与某厂合作生产了几个规格的这种破碎机,其中最大为900×1200颚式破碎机。 国内山西某煤矿引进德国WB8/26颚式破碎机。该机置于皮带机上方,借助曲柄连杆机构驱动动颚压碎煤块。实践证明使用效果较好。 以上各项异型破碎机的研制都取得了一定的效果并对国内破碎机行业的发展起到了一定的推动和促进作用。但是,都没能得到大面积推广使用。国内绝大多数制造厂生产的和现场使用的都还是传统复摆颚式破碎机。 就近两年国外机械设备展览会上展出的颚式破碎机来看,也都是传统颚式破碎机,没有异型颚式破碎机出现。 国内各厂家所制造的颚式破碎机技术水平相差很悬殊,有少数厂家的产品基本接近世界先进水平,而大多数厂家的产品与世界先进水平相比差距较大。尽管国内鄂式破碎机类型很多,但得到广泛应用的还是传统的复摆鄂式破碎机。由于鄂式破碎机构造简单,容易制造,所以国内生产厂家很多,但大多数厂家的产品与世界现金水平相比差距很大。因此找出差距,发展和提高现有鄂式破碎机技术水平是颚式破碎机能否在世界立足的重点。 鄂式破碎机的性能主要依据动颚运动特性,而最佳的运动特性又是靠机构优化设计所取得。因此,颚式破碎机机构化设计是保证破碎机有最佳性能的基本方法。内颚

相关文档
相关文档 最新文档