文档库 最新最全的文档下载
当前位置:文档库 › 选修2-3第01讲排列与组合

选修2-3第01讲排列与组合

选修2-3第01讲排列与组合
选修2-3第01讲排列与组合

第1讲排列与组合

A 组

一、选择题

1.将6名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每项比赛至少要安排一人时,则共有y 种不同的方案,其中x y +的值为( )

A .1269

B .1206

C .1719

D .756 【答案】A 【解析】

将6名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有63729x ==种不同的方案,若每项比赛至少要安排一人时,则首先将6人分成3组,3组的人数为2,2,2或1,2,3或1,1,4,

这样无序分组的方法有222114

123

64265465332

3290C C C C C C C C C A A ++=种,然后将3个小组与3个比赛对应,又有33A 种,则共有3

390540y A =?=种不同的方案,所以

7295401269x y +=+=,

故选择A ,注意无序分组中均匀分组与非均匀分组的计数区别,否则会犯错.

2.某校周四下午第三、四两节是选修课时间,现有甲、乙、丙、丁四位教师可开课。已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第三、四两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有( )种。

A 、20

B 、19

C 、16

D 、15 【答案】B 【解析】

不同的开课方案分四类:

第一类,只有甲、乙两人开课,他们每人开设两节,只有一种方案;

第二类,甲乙两人开课,同时,丙丁两个中恰有一人开课,这样的方案有111

2228C A A =种; 第三类,甲乙两人中只有一人开课,丙丁两人均开课,这样的方案有12

224A A =; 第四类,甲乙丙丁四人全部开课,第人一节,这样的方案共有22

426C C =种;

由分类加法原理知不同的开课方案共有19种,故选B.

3.6人站成一排,其中甲不在两端,甲、乙不相邻的站法种数为( ) A .72 B .120 C .144 D .288 【答案】D 【解析】

先排甲,再排乙,324

434288C C A =,故选D.

4.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,

试卷第2页,总14页

每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么小明在这一周中每天所吃水果个数的不同选择方案共有( )种 A .50 B .51 C .140 D .141 【答案】D 【解析】

因为第1天和第7天吃的水果数相同,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,

所以后面六天中水果数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,

所以共有0112233

6656463141C C C C C C C +++=种

5.将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有( )

A .24种

B .28种

C .32种

D .16种 【答案】D 【解析】

不同的分法可能是小说每人一本,诗集给其中1人,共有1

4C =4种分法,可能有1人

分得两本小说,则有44

22

12A A =种分法,因此共有4+12=16种不同的分法.故选D .

6.8个人坐成一排,现要调换其中3个人中每一个人的位置,其余5个人的位置不变,则不同调

换方式有( )

A .38C

B . 3388

C AC C . 3282C C

D .3

83C 【答案】C 【解析】

从8人中任选3人有38C 种,3人位置全调,由于不能是自己原来的位置,因此有2

2A 种,故有2

238A C 种.故选C .

7.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )

A .240种

B .288种

C .192种

D .216种 【答案】D 【解析】

最前排甲,共有55120A =种,最前只排乙,最后不能排甲,有14

4496A A =种,根据

加法原理可得,共有12096216+=种,故选D .

8.甲、乙、丙、丁、戊五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )

A.72种

B.52种

C.36种

D.24种 【答案】C 【解析】

52233

523332A A A A A --,即先求出总的可能,然后减去甲丙或乙丙相邻,再减去甲乙丙

三个相邻的事件.

9.用红、黄、蓝三种颜色去涂图中标号为92,1 的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有( )种

A .18

B .36

C .72

D .108 【答案】D 【解析】

3(1222)(1222)???+???+108=.故选D .

(1)弄清完成一件事是做什么.

(2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.

10.如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有( )

A .360种

B .720种

C .780种

D .840种 【答案】B 【解析】

先排1,有6种方法,再排2,3,4,5有4

5A 种方法,故一共有4

56720A ?=种.

11.2014年3月8日,马肮370MH 航班客机从吉隆坡飞往北京途中失联,随后多国加入搜救行动,同时启动水下黑匣子的搜寻,主要通过水机器人和娃人等手段搜寻黑匣子.现有3个水下机器人,,A B C 和2个蛙人,a b ,各安排一次搜寻任务,搜寻时每次只能安排1个水下机器人或1个蛙人下水,其中C 不能安排在第一个下水,A 和a 必须相邻安排,則不同的搜寻方式有( )

A .24种

B .36种

C .48种

D .60种 【答案】B 【解析】

1 2 3 4 5 6 7 8

9

试卷第4页,总14页

A 和a 捆绑,相当于4个,先排第一位,则方法数有13

33236C A ??=种.

12.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法 A .7200 B .3600 C .2400 D .1200 【答案】A 【解析】

由题意得,6个人之间形成5个空,插入3个座位,可得不同的坐法共有5

3

657200A C =种,故选A.

13.某校在半期考试中要考察六个学科,已知语文考试必须安排在首场,且数学与英语不能相邻,

则这六个学科总共有( )种不同的考试顺序 A .36 B .48 C .72 D .112 【答案】C 【解析】

先排语文,有1种排法,再排除了数学和英语外的3科,全排列有3

36A =种,把数学和英语插在这3科的空中有2

412A =种排法,利用分步乘法计数原理,共有161272??=种排法.故选C. 二、填空题

14.某广场中心建造一个花圃,花圃分成5个部分(如图),现有4种不同颜色的花可以栽种,若要求每部分必须栽种一种颜色的花且相邻部分不能栽种同样颜色的花,则不

同的栽种方法有 种.(用数字作答)

【答案】72 【解析】

根据题意,分析可得本题是分类计数问题,分2种情况讨论,当选3种颜色时,就是②④同色,③⑤同色,从4中颜色中选3中,在三个元素上排列;当4种颜色全用,只能②④或③⑤用一种颜色,先选出同色的一对,再用四种颜色全排列,由分类计数原理计算可得答案.

解:由题意,分2种情况讨论:

第一:当选用3种颜色时②④同色,③⑤同色,共有涂色方法C 43?A 33

=24种,

第二:4色全用时涂色方法,即②④或③⑤用一种颜色,共有C 21?A 44

=48种, 根据分类加法原理知不同的着色方法共有24+48=72

种. 故答案为72.

15.将编号为1、2、3、4、5的五名同学全部安排到A 、B 、C 、D 四个班级上课,每个

班级至少安排一名同学,其中1号同学不能安排到A 班,那么不同的安排方案共有

种.

【答案】72 【解析】

由题意得,首先分析1号同学,1号可以放在B 、C 、D 三个班上,有3种情况,再分两种情况讨论其他四名同学,即(1)B 、C 、D 三个班上每班一个;(2)B 、C 、D 三个班中一个班一个,另一个班两人,分别求出其情况数目,由加法原理可得其他四人的情况数目,由分类计数原理计算可得出答案;

16.从4名男同学、3名女同学中选3名同学组成一个小组,要求其中男、女同学都有,则共有 种不同的选法.(用数字作答) 【答案】30 【解析】

由题意得,从7个人中不讲顺序的挑3个人,共有353

7=C 种,除掉不符合题意的事

件有:3名全部是女生的有13

3=C 种,3名全部是男生的有43

4=C 种,所以符合题意的

选法共有30种

17.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法______种. 【答案】15 【解析】

不选既会唱歌也会跳舞的学生,选法有:61

223=C C 种;既会唱歌也会跳舞的学生参加唱歌,选法共有61213=C C 种;既会唱歌也会跳舞的学生参加跳舞,选法有:32

3=C 种,

所以共有15366=++种. 18.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道, 每

名水暖工只去一个小区, 且每个小区都要有人去检查, 那么分配的方案共有 种.

【答案】150 【解析】

分配的方案为“311”,“221”,对应种数为

33

53C A 及

112

534

C A C ,共有

33112

53534150.

C A C A C +=及

19.将6位志愿者分成4组,每组至少1人,至多2人分赴第五届亚欧博览会的四个不同展区服务,

不同的分配方案有 种(用数字作答). 【答案】1080 【解析】

由题设6人应分成1,1,2,2四组,不同的分法种数为452

2

24

26=A C C ,故分赴第五届亚欧博览会展区服务,则不同分配方案有1080454

4=A ,应填1080.

20.2016年11月,举办了亚太经合组织第二十三次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,若中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有 种(用排列组合表示).

试卷第6页,总14页

【答案】218

218A A

【解析】

先让中国领导人站在第一排正中间位置共一种站法,再让美俄两国领导人站在与中国领导人相邻的两侧共2

2A 站法,最后,另外18个领导人在前后共18位置任意站,共有18

18

A 种站法,所以,根据分步计数乘法原理,不同的排法共有218218A A 种,故答案为218218A A .

三、解答题

21.4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法? 【解析】

(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步

计数原理,共有1212

4432144C C C A ?=(种)

(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法. (3)确定2 个空盒有2

4C 种方法.

4个球放进2个盒子可分成()()3,12,2、两类,

第一类有序不均匀分组有3

1

2

412C C A 种方法;第二类有序均匀分组有

22

24222

2C C A A ?种方法,故共有222312

242441222284C C C C C A A A ??+?= ???

(种)放法.

B 组

一、选择题

1.西部某县委将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若

要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( )

A .36种

B .68种

C .104种

D .110种 【答案】C 【解析】

分组的方案有3、4和2、5两类,第一类有

32

72(1)68

C A -?=种;第二类有

222732()36

C C A -?=种,所以共有N=68+36=104种不同的方案.

2.用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形中

相邻矩形颜色不同的概率是( )

A .18

B .14

C .3

8 D .12

【答案】B 【解析】

用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,由乘法分步原理可得共有涂色方法2228??=种, 其中相邻矩形颜色不同有2112??=种,则所求概率为

21

84

=,故本题答案选B. 3.某学校一共排7节课(其中上午4节,下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有( ) A .16 B .15 C .32 D .30 【答案】C 【解析】

运用分类计数原理求解:若第一节排课,则有5种排课方式;若第二节排课,则有4种排课方式;若第三节排课,则有3种排课方式;若第四节排课,则有3种排课方式;若第五节排课,则有1种排课方式。由分类计数原理共有32)13345(2=++++种排课方式.故应选C 。

4.牡丹花会期间,5名志愿者被分配到我市3个博物馆为外地游客提供服务,其中甲博物馆分配1人,另两个博物馆各分配2人,则不同的分配方法共有( ) A .15种 B .30种 C .90种 D .180种 【答案】B 【解析】

不同的分配方法共有12

5430C C =,选B.

5.用红、黄、蓝三种颜色去涂图中标号为92,1 的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有( )种

A .18

B .36

C .72

D .108 【答案】D 【解析】

把区域分为三部分,第一部分3、5、7,有3种涂法.第二部分6、8、9,当5、9同色时,6、8各有2种涂法,共4种涂法;当5、9异色时,1有2种涂法,2、4均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步计数原理,可得共有3×6×6=108种涂法.

6.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为( )

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

高中数学选修--排列组合(基础)方法练习

排列组合 1、分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N =m +n 种不同的方法。 2、分步乘法计数原理: 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法. 那么完成这件事共有N =m ×n 种不同的方法。 3、排列及排列数: (1) 排列:从n 个不同元素中取出m 个(m ≤n )个元素,按照一定的顺 序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 (2) 排列数:从n 个不同元素中取出m 个(m ≤n )个元素的所有排列的 个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示。 (3) 排列数公式:()()11+-???-=m n n n A m n . (4) 全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全 排列, ()()n n n n A n n =???????-?-?=12321! ()!!m n n A m n -= ,规定0!=1 4、组合及组合数: (1) 组合:从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 (2) 组合数:从n 个不同元素中取出m (m ≤n )个元素的所有组合个数, 叫做从n 个不同元素取出m 个元素的组合数,用m n C 表示。 (3) 计算公式:()()()()!!!1111m n m n m m m n n n A A C m m m n m n -=???-+-???-==. 由于0!=1,所以10=n C . 5、组合数的性质:

新人教版二年级上《排列与组合》练习题

二年级上册排列组合专题讲解 题型一:衣裙搭配 美羊羊为了参加比赛,她准备了2件上衣和2条裙子,你们猜一猜会有几种不同的穿法? 题型二:排数问题: 用0、1、2可以组成几个不同的两位数?用2、3、4中的两个数组成两位数有多少种? 为什么用2、3、4中的两个数组成两位数有6种,用0、1、2中的两个数组成两位数却只有4种? 题型三:比赛场数 比赛快开始了,沸羊羊、懒羊羊、喜羊羊三位运动员进场了,村长遇到了个难题,“每两只羊进行一场比赛,一共要比几场呢? 排数时用了3个数字,比赛时也是3个选手,为什么得到的结果不一样呢? 小结:两个人比赛,只能算一次,和顺序无关。排数,交换数字的位置,就变成另一个数了,这和顺序有关。 题型四:握手次数、打电话问题 比赛即将结束了,喜羊羊获得了冠军,沸羊羊获得了亚军,懒羊羊获得了季军,在颁奖典礼上沸羊羊、懒羊羊、喜羊羊三只小羊要相互握手祝贺对方。那么这三只小羊,每两只小羊握一次手,一共需要握几次? 如果他们三个打算合影照相,排队站成一排,请问一共有多少种不同的站法? 一、摆一摆、写一写。 (1)用2、3、4能摆成( )个两位数,它们分别是( )。 (2)用0、3、5能摆成( )个两位数,它们分别是( )。 二、每两人进行一场比赛,四个人一共要比赛几场? 三、下面有4种球,每班可以借其中的两种,有多少种不同的搭配方法?(把它们的编号写在横线上) ①②③④

四、东东的口袋里装了一枚1元、一枚5角和一枚1角的硬币,随便从口袋拿出两枚硬币, 拿出来的硬币有几种可能? 排队问题 二、做一做: 从前往后数,小红排在第7位,从后往前数,小红排在第5位,请问这一排一共有多少位小朋友? 2、从前往后数,小红排在第5位,从后往前数,小红排在第8位,请问这一排一共有多少位小朋友? 3、从前往后数,小红排在第8位,从后往前数,小红排在第3位,请问这一排一共有多少位小朋友? 4、从前往后数,小红排在第6位,从后往前数,小红排在第2位,请问这一排一共有多少位小朋友?

高二数学知识点:排列与组合

高二数学知识点:排列与组合 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n 个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符 号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2019-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

人教版二年级上册数学《简单的排列和组合》教学设计,教案设计

人教版二年级上册数学《简单的排列和组合》教学设计,教案设计 人教版二年级上册数学《简单的排列和组合》教学设计教学目标: 1、通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。 2、初步培养有顺序地、全面地思考问题的意识。 3、感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。 4、通过小组合作探究的学习形式,养成与人合作的良好习惯。 学生分析: 简单的排列组合对二年级学生说都早有不同层次的接触,如用1、2两个数字卡片排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节课时,教学的重点让学生说一说有序排列、巧妙组合的理由,体会到有顺序、全面思考问题的好处。根据学生的年龄特点在设计教案时也要做到设计学生感兴趣的环节,灵活处理教材。 数学广角——《简单的排列和组合》

火炬小学王彦 教学目标: 1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数 2.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣 3.初步培养有顺序地、全面地思考问题的意识。使学生在数学活动中养成与人合作的良好习惯。 教学重点:经历探索简单事物排列与组合规律的过程 教学难点:初步理解简单事物排列与组合的不同,怎样有序的进行排列组合。 教学准备:多媒体课件、数字卡片、1角、2角、5角的人民币。 教学过程: 一、情境导入 师:同学们老师今天想带大家一起去数学王国玩,你们想去吗?同学看数学王国到了,可是门是锁着的,只有输入正确的密码门才可以打开,可是密码是多少呢?提示密码是由1和2这两个数字摆成的两位数。那么这个密码是多少呢? 师:试试看。(课件出示答案。) 二、探究新知 1、感知排列

排列与组合的综合应用.

高三数学(理一轮复习—— 10.3排列与组合的综合应用 教学目标:1. 进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解 法,提高分析问题和解决问题的能力,学会分类讨论的思想. 2. 使学生掌握解决排列、组合问题的一些常用方法。 教学重点:排列组合综合题的解法。教学过程: 一.主要知识: 解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系, 还要考虑“是有序”的还是“无序的” ,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法: 1.特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。 2.科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行 3.分配、分组(堆问题的解法: 4. 插空法 :解决一些不相邻问题时, 可以先排一些元素然后插入其余元素, 使问题得以解决。 5.捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个” 6.排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法 . 7.剪截法(隔板法 :n 个相同小球放入m(m≤ n 个盒子里 , 要求每个盒子里至少有一个小球

的放法等价于 n 个相同小球串成一串从间隙里选 m-1个结点剪成 m 段 (插入 m -1块隔板 , 有 11 --m n C 种方法 . 8. 错位法:编号为 1至 n 的 n 个小球放入编号为 1到 n的 n 个盒子里 , 每个盒子放一个小球 . 要求小球与盒子的编号都不同 , 这种排列称为错位排列 . 特别当 n=2,3,4,5时的错位数各为 1,2,9,44.2个、 3个、 4个元素的错位排列容易计算。关于 5个元素的错位排 列的计算,可以用剔除法转化为 2个、 3个、 4个元素的错位排列的问题: ① 5个元素的全排列为:5 5120A =; ②剔除恰好有 5对球盒同号 1种、恰好有 3对球盒同号 (2个错位的 351C ?种、恰好有 2对球盒同号 (3个错位的 252C ?种、恰好有 1对球盒同号 (4个错位的 1 59C ?种。 ∴ 120-1-351C ?-252C ?-1 59C ?=44. 用此法可以逐步计算:6个、 7个、 8个、……元素的错位排列问题。 二.典例分析 【题型一】“分配” 、“分组”问题 例 1.将 6本不同的书按下列分法,各有多少种不同的分法? ⑴分给学生甲 3 本,学生乙 2本,学生丙 1本;

第2讲 排列组合

第2讲 排列与组合 1.考查排列组合的概念及其公式的推导. 2.考查排列组合的应用. 【复习指导】 复习时要掌握好基本计算公式和基本解题指导思想,掌握一些排列组合的基本模式题的解决方法,如指标分配问题、均匀分组问题、双重元素问题、涂色问题、相邻或不相邻问题等. 1.排列 (1)排列的概念:从n 个不同元素中,任取m (m ≤n )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2)排列数的定义:从n 个不同元素中,任取m (m ≤n )个元素的所有排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. (3)排列数公式 A m n =n (n -1)(n -2)…(n -m +1). (4)全排列数公式 A n n =n (n -1)(n -2)…2·1=n !(叫做n 的阶乘). 2.组合 (1)组合的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. (2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C m n 表示. (3)组合数公式 C m n =A m n A m m = n n -1n -2…n -m +1m !=n ! m !n -m ! (n ,m ∈N * ,且m ≤n ).特别地C 0 n =1. (4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1 n . 一个区别 排列与组合,排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合. 两个公式 (1)排列数公式A m n = n ! n -m !

组合数学在计算机中的应用

目录 摘要 (1) 1.组合数学概述 (1) 2.组合数学在生活中的应用 (1) 3.组合数学与计算机软件 (1) 3.1 信息时代的组合数学 (2) 3.2 组合数学在计算机软件的应用 (2) 3.3组合数学与计算机软件的关系 (2) 3.4组合数学在国外软件业的发展状况 (2) 4 Ramsey 数在计算机科学中的应用 (3) 4.1Ramsey 定理和Ramsey 数 (3) 4.2信息检索 (3) 参考文献 (5)

组合数学在计算机中的应用 摘要:介绍了组合数学的概念、起源与研究的主要内容,分析了组合数学的特点以及其在生活中的应用,阐述了组合数学与计算机软件的联系,并着重通过两个例子说明了Ramsey 数在计算机科学的信息检索中的重要应用。 关键词:组合数学;组合算法;Ramsey 数;信息检索; 1:组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 2:组合数学在生活中的应用 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是组合数学的问题。 组合数学在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 3:组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

2020版高考数学大一轮复习-第2讲排列与组合分层演练(理)(含解析)新人教A版

第2讲排列与组合 1.不等式A x8<6×A x-2 8的解集为( ) A.[2,8] B.[2,6] C.(7,12) D.{8} 解析:选D.由题意得8! (8-x)!<6× 8! (10-x)! ,所以x2-19x+84<0,解得7<x <12.又x≤8,x-2≥0,所以7<x≤8,x∈N*,即x=8. 2.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( ) A.85 B.56 C.49 D.28 解析:选C.由于丙不入选,相当于从9人中选派3人.甲、乙两人均入选,有C22C17种选法,甲、乙两人只有1人入选,有C12C27种选法.所以由分类加法计数原理,共有C22C17+C12C27=49种不同选法. 3.从1,3,5中取两个数,从2,4中取一个数,可以组成没有重复数字的三位数,则在这些三位数中,奇数的个数为( ) A.12 B.18 C.24 D.36 解析:选C.从1,3,5中取两个数有C23种方法,从2,4中取一个数有C12种方法,而奇数只能从1,3,5取出的两个数之一作为个位数,故奇数的个数为C23C12A12A22=3×2×2×2×1=24. 4.某县委将7位大学生志愿者(4男3女)分成两组,分配到两所小学支教,若要求女生不能单独成组,且每组最多5人,则不同的分配方案共有( ) A.36种B.68种 C.104种D.110种 解析:选C.分组的方案有3、4和2、5两类,第一类有(C37-1)·A22=68种;第二类有(C27-C23)·A22=36种,所以共有N=68+36=104(种). 5. 如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2, B3,则以O,A1,A2,A3,A4,B1,B2,B3中三点为顶点的三角形的个数为( ) A.30 B.42

最新人教版高中数学选修2-3《排列与组合》教材梳理

庖丁巧解牛 知识·巧学 一、排列、排列数公式 1.排列 一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. (1)“一定的顺序”说明如果两个排列相同,那么不但所有元素相同,而且排列的顺序也要相同.如三个数的排列123与132虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. (2)“n个不同的元素”,所给的n个元素不同,所取出的元素也就各不相同,也就是说如果某个元素被取出,就不能再取了,即无重复的排列. 深化升华 判断一个具体问题是不是排列问题,就看从n个不同元素中取出m个元素后,再安排这m个元素时是有序还是无序,有序就是排列,无序就不是排列.也就是说,排列问题与元素的顺序有关,与顺序无关的不是排列.如取出两个数做乘法就与顺序无关,就不是排列,做除法就与顺序有关,就是排列. 2.排列数 从n个不同的元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n 表示. 排列数概念可以从集合的角度进行解释.例如:从a、b、c这三个不同的元素中任取两个元素的排列数的问题,就是集合A={ab,bc,ca,ba,cb,ac}的元素个数问题,显然card(A)=6.这里,由排列的定义知,集合A 中的元素ab与ba应视为不同的元素. 辨析比较 “排列”与“排列数”是两个不同的概念,排列是一个具体的排法,不是数;排列数是所有排列的个数.它是一个数.在写具体排列时,要按一定规律写,以免造成重复或遗漏. 3.排列数公式 (1)排列数公式:①连乘表示式:m n A =n(n-1)(n-2)…(n -m+1).其中,n ,m ∈N *,且m≤n;②阶乘表示式:)! (!m n n A m n -=,其中n,m ∈N *,且m≤n. (2)全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列. (3)阶乘:n个不同元素全部取出的排列数,等于正整数1到n的连乘积,叫做n的阶乘, 用n!表示,即n n A =n!.规定0!=1. (4)排列数性质:①m n A =n 11--m n A ;②m n A =m n m n A A 111---+. 记忆要诀 排列数的连乘表示式的右边是m个数的连乘积,其特点是:第一个因数是n,后面的每一个因数都比它前面的因数少1;最后一个因数是n-m+1,一共有m个连续自然数的连乘积. 方法归纳 对于排列数的两个形式的公式,连乘表示式常用于计算具体的含有数字的排列数的值;阶乘表示式则常用于含字母的排列数的变形和证明有关等式. 二、组合、组合数公式 1.组合

二年级数学排列与组合

排列与组合 教学内容:人教版义务教育课程标准实验教科书小学数学二年级上册第八单元的排列与组合。 教学目标: 1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程; 2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力,让学生初步感悟简单的排列、组合的数学思想方法。; 3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。 4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。 教学重点:经历探索简单事物排列与组合规律的过程。 教学难点:让学生初步感悟简单的排列、组合的数学思想方法。 教学过程: 一、创设情境 师:同学们,你们喜欢看球赛吗?球赛的门票是5角,下面有1张5角的,2张2角的,5个1角的硬币,说一说,你是怎样付钱的? (学生操作──在桌上摆5角钱。) (1)以小组为单位,互相说一说你的付钱方法,看谁想的最多。推荐一名同学汇报一下你们小组都想到了那些付钱的方法? (2)指名同学进行汇报。 师:噢,你们想到的5角钱的拿法可真多,真是棒极了!那我们就一起买票进场吧。 [设计意图]:激趣导入,让学生在游戏中产生兴趣,在活动中找到启示,把枯燥的数学变得趣味性。 二、探究新知 出示课件:(乒乓球赛场) 1.感知排列。 师:比赛前,运动员想请你们为他们编号,愿意吗?

要求:①请从1、2、3三张数字卡片中每次选两张组成一个两位数的号码,不许重复; ②三人一组,一个人当记录员,其余两人摆数字卡片,看哪组编的号码最多。(小组合作完成,然后回答所编的号码。) 2.汇报、讨论排列方法。 生可能: 方法一:每次拿出两张数字卡片能摆出不同的两位数; 方法二:固定十位上的数字,交换个位数字得到不同的两位数; 方法三:固定个位上的数字,交换十位数字得到不同的两位数. 3.教师评议方法:三种方法虽然不同,但都能正确并有序地摆出了6个不同的两位数。只要做到正确并有序,就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。同学们可以用自己喜欢的方法 [设计意图]:以帮运动员编号的方法来进行数的排列教学,使学生在充满兴趣的情感中不知不觉地进入了摆数活动,让学生在体验中感受,在活动操作中成功,在交流中找到方法,在学习中应用。这里先让学生独立思考,调动学生自主学习的积极性,再小组合作,让学生在宽松民主的气氛中,参与学习过程。同时从学生已有的知识基础出发,适当增加了难度,有什么好办法能保证既不漏数、也不重复呢?初步培养学生有顺序地、全面的思考问题的意识。 4.感知组合 师:我们把排好的号码发给这些运动员以后,运动员还想请同学们帮个忙。请你们替他们选取运动服,你们乐意吗? (课件出示:运动服:黄上衣、红上衣、蓝裤子、黄裤子。) 师:你觉得可以怎样搭配衣裤呢? (小组讨论,动手摆一摆,然后指名在黑板上集中呈现搭配好的衣裤组合模型。)师:同学们想出了4种搭配方法。第一场比赛有三个运动员上场比赛,下面让我们以热烈地掌声欢迎运动员上场比赛。(鼓掌) (课件演示:三位运动员互相握手问好。) 师:瞧,他们还在互相握手问好呢!同学们想一想,有三位运动员,每两人握一次手,一共得握几次手?小组合作试一试,体验后再回答。 学生回答后,教师再问:排数时用了3个数字,握手时是3个学生,都是“3”,为什么出现的结果却不一样呢?(学生交流后得出:两个数字可以交换位置组成2个两位数,而两个人握手不能交换只能算一次。)

排列数、组合数公式及二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 刘 1、排列数公式 m n A =)1()1(+--m n n n Λ=!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?++?=+-L . 3、组合数公式 m n C =m n m m A A =m m n n n ???+--ΛΛ21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

高中数学:排列与组合练习

高中数学:排列与组合练习 1.(昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法(D) A.A55种B.A22种 C.A24A22种D.C12C12A22A22种 解析:红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法. 2.(广州测试)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(B) A.36种B.24种 C.22种D.20种 解析:根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,选B. 3.(广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有(C) A.480种B.360种 C.240种D.120种 解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C. 4.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为(C) A.16 B.18

北师大版高中数学选修2-3第2讲:排列组合(学生版)

北师大版高中数学排列组合 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解排列组合的概念. 2.能利用计数原理推导排列公式、组合公式. 3.熟练掌握排列、组合的性质. 4.能解决简单的实际问题. 1.排列与组合的概念: (1)排列:_____________________________________________________________________叫做从n个不同元素中取出m个元素的一个排列. 注意:○1如无特别说明,取出的m个元素都是不重复的. ○2排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”. ○3从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列. ○4在定义中规定m≤n,如果m=n,称作全排列. ○5在定义中“一定顺序”就是说与位置有关. ○6如何判断一个具体问题是不是排列问题,就要看从n个不同元素中取出m个元素后,再安排这m个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列. (2)组合:___________________________________________________________________叫做从n 个不同元素中取出m个不同元素的一个组合. 注意:○1如果两个组合中的元素完全相同,不管它们的顺序如何,都是相同的组合,组合的定义中包含两个基本内容:一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关. ○2当两个组合中的元素不完全相同(即使只有一个元素不同),就是不同的组合. ○3组合与排列问题的共同点,都要“从n个不同元素中,任取m(m≤n)个不同元素”;不同点:前者是“不管顺序并成一组”,而后者要“按照一定顺序排成一列”. ○4根据定义区分排列问题、组合问题. 2.排列数与组合数: (1)排列数的定义:_______________________________________________________________叫做

高中数学 1.2.2第3课时 排列与组合课时作业 新人教A版选修23

【成才之路】2015-2016学年高中数学 1.2.2第3课时 排列与组合 课时作业 新人教A 版选修2-3 一、选择题 1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A .40 B .50 C .60 D .70 [答案] B [解析] 先分组再排列,一组2人一组4人有C 26 =15种不同的分法;两组各3人共有C 3 6 A 2 2 =10种不同的分法,所以乘车方法数为(15+10)×2=50,故选B . 2.(2015·青岛市胶州高二期中)从甲、乙等5名志愿者中选出4名,分别从事A ,B , C , D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分 配方案共有( ) A .60种 B .72种 C .84种 D .96种 [答案] B [解析] 解法1:根据题意,分两种情形讨论: ①甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的三项工作,有C 12C 33C 13A 3 3=36种选派方案. ②甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的两项工作,有C 2 3·A 2 3·A 2 2=36种选派方案, 综上可得,共有36+36=72种不同的选派方案, 故选B . 解法2:从甲、乙以外的三人中选一人从事A 工作,再从剩余四人中选三人从事其余三项工作共有C 13A 3 4=72种选法. 3.(2014·广州市综合测试二)有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( ) A .16 B .13 C .12 D .38

二年级简单的排列与组合

数学广角——排列与组合教案 师:同学们早上好,上课之前老师想和孩子们一起玩个汉字游戏,好不好?请仔细观察生:牛奶 生:奶牛 师:牙刷 生:刷牙 师:蜜蜂 生:蜂蜜 师:孩子们,谁能告诉老师,我是怎么变的吗? 生:交换位置就可以了 师:恩,你观察的非常仔细 师:我们把两个字交换位置后又会变成一个意义不同的新词。真有趣! 师:像这种变化位置后而改变意思,正是与我们今天要学的数学广角中的排列与组合有很大的关系。今天我们将一起来学习新的数学知识-----简单的排列与组合。(板书) 师:老师今天还带来了三位好朋友,瞧瞧,他们向我们走来了,你们认识吗?他们今天将要和咱们218班的孩子们一起来学习。大家掌声欢迎。 师:看,新年快到了熊大带着熊二正在布置新年晚会现场,大家都忙得很开心,这个时候光头强来了,他很想和大家一起过年,于是来到熊大家,可是走到熊大家门口才发现,门上有一把密码锁,他进不去,上面的提示是什么?是由1和2这两个数组成的两位数,这道门的密码可能是哪几个数? 师:我们回忆一下,一个两位数,是由哪两个数位组成的? 生:个位和十位 师:非常正确!那1和2可以组成哪几个两位数呢? 生:12或21 师:你真聪明!再仔细观察这两个数有什么不同? 生:交换了位置。 师:对,个位与十位交换了位置,就变成了不同的两个数。 师:密码到底是哪个两位数呢?我们接着看提示。(课件提示:密码是十位数比个位数大的那个数) 师:知道密码的小朋友请举手? 生:指名回答. 师:你真棒!门打开后,光头强看着这么多树高兴的跳起来了,我发财了!我要把这里所有的树都砍掉卖给李老板,小朋友们光头强能不能随便砍树呀?(不能)对,我们要爱护树木,保护环境。光头强一心想砍树,可是忘记带锯子了,他决定找找看,于是往前走,看见一个箱子,眼睛一亮,这不是百宝箱吗?可箱子上也有一把密码锁。密码提示是:由1.2.3三个数字中的两个数字组成,而且每个两位数,十位上的数和个位上的数不能一样 师:这就难倒了光头强。孩子们我们来帮帮他好不好?1.2.3是三个数要组成的数是个两位数,那么我们只能在这三个数字中选几个?(2个) 师:密码提示十位上的数和个位上的数不能一样,那么十位上的数字和个位上的数字能相同吗? 生:不能 师:对,不能相同 师:那么能组成多少个不同的两位数呢?下面以四人为一组,一个负责摆,两个负责记录,一

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

第2讲_排列与组合教案_理_新人教版

第2讲 排列与组合 【2013年高考会这样考】 1.考查排列组合的概念及其公式的推导. 2.考查排列组合的应用. 【复习指导】 复习时要掌握好基本计算公式和基本解题指导思想,掌握一些排列组合的基本模式题的解决方法,如指标分配问题、均匀分组问题、双重元素问题、涂色问题、相邻或不相邻问题等. 基础梳理 1.排列 (1)排列的概念:从n 个不同元素中,任取m (m ≤n )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2)排列数的定义:从n 个不同元素中,任取m (m ≤n )个元素的所有排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. (3)排列数公式 A m n =n (n -1)(n -2)…(n -m +1). (4)全排列数公式 A n n =n (n -1)(n -2)…2·1=n !(叫做n 的阶乘). 2.组合 (1)组合的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. (2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C m n 表示. (3)组合数公式 C m n =A m n A m m = n n -1n -2…n -m +1m !=n ! m !n -m ! (n ,m ∈N *,且m ≤n ).特别地C 0n =1. (4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1 n . 一个区别 排列与组合,排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合. 两个公式

相关文档
相关文档 最新文档