文档库 最新最全的文档下载
当前位置:文档库 › 系统论、控制论和信息论

系统论、控制论和信息论

系统论、控制论和信息论
系统论、控制论和信息论

系统论、控制论和信息论简介

现代科学技术的发展在高度分化的基础上,有着高度综合的特点,一方面向深度发展,科学研究的对象越来越专一,科学分类越来越精细,新领域、新科学、新专业不断产生;另一方面,各科学之间又相互渗透、相互交叉和相互移植而使得科学技术日趋整体化和综合化。系统论、控制论和信息论就是科学技术整体化,综合化的产物,这是二十世纪自然科学取得的重大成就之一,它是具有综合特性的横向科学,它沟通了自然科学和社会的联系,改变了科学发展的图景和人们的思维方式,并以其特有的新颖的思路,为科学研究提供了崭新的方法,扩大了人们研究问题的广度和深度,实现了人类认识史上由定性到定量认识物质之间各种关系的新飞跃,极大地提高了人类认识世界、改造世界的能力。

因为系统论、控制论、信息论在科学体系结构中的横向科学的特殊地位,就决定了它在丰富和发展辩证唯物主义哲学方面、在促进科学技术的发展方面、在解决一切复杂的科学、技术、经济和社会问题等方面,有着其他科学不可替代的重要作用。

系统论、控制论和信息论是三门科学,是现代科学前沿的新兴“软”科学群,它们各有不同的出发点和内容,但它们是在同一历史背景下,从不同侧面研究同一个问题而产生的,其手段也有很多共同之处。与其他基础科学不同,研究的对象既不是客观世界中哪一种结构,也不是物质的某种运动形态,而是从横向综合的角度,研究物质运动的规律,从而揭示世界各种互不相同的事物在某些方面的内在联系和本质特性,三者各成体系,但都应用系统、控制、信息的基本概念、基本思想,互相交叉、互相借鉴,协同发展。

系统论是把要研究和处理的对象看成由一些相互联系、相互作用的若干因素组成的系统,研究系统就是寻求利用信息实现最优系统的途径。显然任何系统都离不开信息,因此研究系统就必须研究反映系统与环境、系统与子系统之间的联系的不可缺少的要素信息。一个系统信息量的大小,反映系统的组织化、复杂化度的高低。而系统的运行又离不开控制,对系统的控制同样离不开信息。

信息论研究如何认识信息、控制论和系统论研究如何利用信息。

控制论揭示了事物联系的反馈原理,用以实现对系统的有效控制。

一、系统论

1. 系统论的基本概念

⑴什么是系统:处在环境之中相互作用和相互依赖的若干部分(因素)组成的具有一定结构和确定功能的有机整体就称为系统。

⑵系统的基本组成:现代科学认为世界存在物质(材料)、能量和信息三大要素。任何系统都是物质、能量和信息相互作用和有序化运动的产物。

⑶构成系统的条件

①要有两个以上的要素;

②要素之间要相互联系和相互作用;

③要素之间的联系与作用必须产生功能。

⑷系统的特点

①是由若干部分(要素)以一定结构组成的相互联系的整体;

②可分解成为若干基本要素;

③整体有不同于各组成部分的新的功能;

④系统中存在着物质、能量和信息的流通;

⑤系统有一定的环境,系统与环境又组成一个更大的系统。

2. 一般系统论的基本观点

一般系统论是美籍奥地利生物学家贝塔朗菲创立的,一般系统论的基本出发点,是把研究对象作为一个有机整体来加以考察,以寻求解决整体与部分之间相互关系的模式,原则和方法。其基本观点是:

⑴系统观点

这是系统论的基本观点,认为系统整体功能大于部分功能之和。从一个系统中分解出来的部分,同在整体中发挥功能的部分是不同的。例如,在人身体上的眼睛,跟离开人体的眼睛其功能是大不一样的。同样人体不能看成是由驱体和五脏六腑的简单相加,而是一个有机的结合,系统的性质是不能仅用孤立部分的性质来加以解释的。还是取决于复合内部各部分的特定关系。当然一只钟表并不等于一堆钟表零件;一堆水泥、钢筋;砖瓦也不等于一幢建筑物,由部分构成的整体,就会有部分不具有的性质和功能,例如人的双眼视觉功能大大超过两只单眼视觉功能简单相加的总和,双眼的视敏度比单眼高6-10倍,而且双眼视觉能形成立体感,单眼则不可能。这就是通常所说的1+1>2。

⑵动态观点

系统论认为事物不是一成不变的,系统是动态变化的。

对于开放系统。系统与外界环境会不断进行物质、能量与信息的交换。稳态系统是维持动态平衡,系统有相对稳定的一面,它是系统存在

的根本条件;另一方面,系统又是动态的。我们应该看到系统的现状,也要看到系统的变化和发展,从而就能预测系统的将来,掌握系统发展的规律。这种观点在科学决策中非常有用。

⑶层次观点

一般系统论认为各种有机体都按严格的等级组织起来,具有层次结构。处于不同层次的系统,具有不同的功能。例如生物界是由生物圈-生态群-群体-人体-系统-器官-细胞-细胞器-生物大分子组成

的一个多层次的系统。而系统论认为系统由一定的要素组成,这些要素是由更低一层要素组成的子系统;另一方面,系统本身又是更大系统的组成要素,这就是系统的层次性。系统的层次越高,可变化和组合的可能就越复杂,其结构和功能就越多种多样。

坚持层次观点,要求我们注意整体与层次、层次与层次之间的相互制约的关系。

3. 系统的基本特性

⑴整体性

这通常可表述为“系统整体不等于系统内各部分的简单相加”。这有两方面的含意:其一、系统的性质、功能和运动规律不同于它的组成部分的性质、功能和运动规律;其二、作为系统整体中的组成部分所具有的性质、功能和运动规律,与它们脱离整体时有质的区别。黑格尔指出:“割下来的手就失去了它的独立存在,就不象原来长在身体上那样。它的灵活性、运动、形状、颜色等等都改变了,而且它就腐烂起来了,丧失它的整个存在了。只有作为有机体一部分,手才获得它的地位。”

整体不等于部分之和,这不仅是从量的方面说的,更着重于质的方面。氯化钠的性质不同于钠,又不同于氯,而其咸味是钠和氯都不具有的。由许多零部件装配而成的飞机或火箭所具有的飞机特性,是各个零部件所不具有的特性。

美国在解剖苏联叛逃到日本的米格-25飞机时发现,其零部件并不是第一流的,但其爬高能力和速度却是第一流的。这说明苏联飞机整体设计很合理。尽管系统要素并不一定是最好的,但系统功能却是极其优良的。相反,有些领导班子中个个都是精明干炼的能人,但因其系统结构不合理,整体领导作用却不理想,劲不能使到一处去,显然这不是一个好的系统。

系统的整体属性与功能决定于什么呢?决定于三个方面:

①组成系统的要素的性质。如教学系统中教师和学生的素质。

②系统内诸要素的数量和比例。如铁碳合金,含碳量大于2.1%称

铸铁,小于2.1%称钢。

③系统的结构。如碳元素可构成金刚石,也可构成石墨。

⑵相关性

①内部相关性

这是指系统内各要素之间是相互联系,相互制约,相互依赖。往往某个要素发生了变化,其他要素也随之变化,并引起系统变化。根深叶茂就是说的这个道理。这也是中医辩施治的一个出发点。

②外部相关性

这是指系统内部与外部环境是相互联系、制约和影响的。中医学中“天人合一”的思想就反映了系统的这种特性。这种思想的运用可开拓决策者的视野。对上海崇明岛开发利用的决策过程就是一个很好的例子。

③结构性

这是指系统联系是以结构形式表现的,系统的整体功能是由结构决定的,不同的结构有不同的功能。所谓结构是指系统内部各要素相互联系、相互作用的方式或秩序,即各要素之间的具体联系和作用的形式。系统的内部形式就是系统的结构。系统内部各要素的稳定联系,形成有序结构,这是保持系统作为整体存在的基本条件,稳定结构是相对的。变化是绝对的,任何系统总要动态地与外界环境进行物质、能量和信息的交流。

田忌赛马,转败为胜的故事就很好地说明了系统的要素相同但由于结构不同则得到不同的效果(系统功能)。给我们的启发是在同样的人力,物力,财力的情况下,如能安排得好,有合理的结构,就能提高劳动生产率。

4. 现代系统论的发展

⑴耗散结构理论

比利时物理学家普利高津1969年提出耗散结构学说,回答了开放系统如何从无序走向有序的问题。该理论的观点是:对于一个与外界有关物质和能量交换的开放系统,熵的变化可以分两部分,一是由于不可逆过程,系统本身引起的熵增加,永远为正,另一部分是分系统与外界交换物质和能量引起的熵流,可以为负。在孤立系统中无熵流,熵不会减少,而开放系统的有序性来自非平衡态。在一定条件下,当系统处于非衡态时,它能够产生、维持有序性的自组织,不断和外界交换物质和能量,系统本身尽管在产生熵,但系统又由于熵流同时向环境输出熵。输出大于产生,系统的总熵在减少,而向有序方面发展。这里“耗散”的含义是这种有序结构是由于能量的耗散。系统只有耗散能量才能保持有序

结构。

⑵协同学理论

西德物理学家哈肯在1976年创立了另一种系统理论,称为协同学。它研究各种不同系统从混沌无序状态向稳定有序结构转化的机理和条件。耗散结构认为,非平衡是有序之源,而哈肯通过许多实验,提出了多维相空间理论,认为不管是非平衡系统还是平衡系统,在一定条件下,由于子系统之间的协同作用,系统会形成一定功能的自组织结构,产生时间、空间的有序结构,达到新的有序状态,揭示了协同和有序的因果关系,对解释波动现象及复杂事物的发展过程,作出了数学描述。该理论用“序参量”来作为系统有序程度的度量,并可以通过求解序参量方程来得到序参量的变化规律,也就系统从无序到有序的变化规律。因为协同学理论可应用到无热交换的领域,比耗散结构理论又进了一步。

⑶突变论

该理论是法国数学家托姆于1972年创定的。突变理论是用数学方法研究不连续现象,它认为突变现象的本质是在一定条件下,从一种稳定状态跃变到另一种稳定态。因为系统的稳定态是系统的结构决定的。所以突变现象也可以看作是系统从一种稳定结构跃迁到另一种稳定结构。突变理论正是以系统结构稳定性的研究为基本出发点。具体方法则是从研究系统的势函数的变化入手,建立突变数学模型来说明事物突变的本质和规律,从而可预测突变将在什么条件下产生,又怎样改变参数来促进有利突变和防止不利突变。该理论已广泛应用于研究自然界、社会活动及人的决策行为中突发质变过程。此外,突变理论因应用于耗散结构理论和协同理论的定量研究,从而推动了系统理论的发展。

⑷超循环理论

该理论是西德生物学者艾根1971年提出的,它是从生物领域入手研究非平衡系统的自组织现象。

⑸参量型系统理论

该理论是苏联学者奥也莫夫提出的,他认为贝塔得朗菲提出的一般系统是类比型系统理论。这种理论有其局限性。不可能确定一般系统特征的普通规律。他提出原始信息应该用“系统参量”来表达,关通过电子计算机把大量的系统参量联系起来,以确定一般系统的共同规律。

⑹泛系理论

这是由中国学者吴学谋创立的系统理论。着重研究事物机理中广义的系统,转化与对称、泛对称或泛系关系等有关的相对普适的一些数学结构。这是从集合论基础发展起来的系统理论。其特点是把逻辑方法和

系统方法有机地结合在一起了。

二、控制论

控制论是第二次世界大战以来才发展起来的一门新兴横断科学。从美国科学家维纳1948年发表了<<控制论>>以来这门科学发展迅速,渗透到人类活动的所有领域。几乎涉及到科学技术的所有门类。这是研究各种系统的控制和调节一般规律的科学。控制论已经经历了三代:经典控制论、现代控制论和大系统控制论。

1、控制的实质

所谓控制是指按给定的条件和预定目标,对一个过程或一序列事件施加影响的作用。

系统一般都是有若干个可能的状态,控制的实质就是在各种可能状态中选译一种。从信息角度看,控制是获取信息、处理信息和利用信息调整系统的结构以实现系统所追求的目的的过程。所以信息是控制的基础,而控制论就是研究对信息的处理利用。控制的作用就是要使系统可能的状态数减少,即使不确定性减少,从信息角度看控制就是输入信息,使系统有序性增加。

2、控制实现的三个条件

⑴被控制对象必须存在多种发展变化的可能性

这就是说我们要改变系统的状态,那系统必须是可以改变的,即存在多种发展变化的可能性,否则就无法进行控制,如光在真空中的速度是确定的,每秒299793公里,那可能性空间是单元素集合,那就无法控制。

⑵目标状态在各种可能性中是可选择的。

如果所确定的目标状态在系统发展变化的可能性空间中是无法选

择的,那就谈不上控制。另外该目标必须包括在此可能性空间之中,否则也无法实现控制的目标。

⑶具备一定的控制能力

这里控制能力是指创造条件改变系统可能性空间的能力。如果不具备一定的控制能力,即使系统有向目标状态转化的可能,但由于缺乏必要的条件,也不可能把这种可能性变为现实性。

3、控制的手段和方法

⑴反馈控制是控制的主要手段,其要点是用反馈的方法,使被控量的值与目标值进行比较,然后根据比较的结果,对输入值进行修正,

以达到被控量与目标值一致的目的控制,无论是人有固定的体温和血压,导弹能自动根踪目标,老鹰抓小鸡还是驾驶汽车都是根据周围环境的变化来控制调节运动的反馈控制实例。

⑵信息方法:就是从信息方面来研究系统的功能,认为系统借助于信息的获取、传递、加工和处理,以实现目的控制。这种方法实际上是与信息论方法交叉的。

⑶黑箱方法:在研究系统时,利用外部观测、试验,通过输入、输出信息来研究黑箱的功能和特性,探索其构造和机理的一种方法。例如中医看病是通过“望、闻、问、切”等外部观测,结合病人用药后的反应,分析病理,进行诊断。对有生命活动的系统和微观世界的研究绝大部分也都采用黑箱战略。

⑷功能模拟方法

这种方法以系统功能和行为的相似关系为基础,用模型模仿原型的功能和行为。它仅着眼于所分析的系统的功能和模拟它的外界影响的反应方式,而不要求分析系统内部的机制和个别要素,不追求模型的结构与原型相同。例如用电子计算机对人脑的模拟,各种仿生学的研究等。

三、信息论

美国贝尔电话研究所的数学家仙农是信息论的创造者,信息论是研究信息的本质及度量方法、研究信息的获得、传输、存储、处理和变换一般规律的科学。开始是为解决通迅中的编码问题提出来的,随着现代科学技术的发展,信息论的概念和内容已大大地丰富,其基础理论和实际应用都取得了巨大的进展。已经历了狭义信息论、一般信息论和广义信息论的不同阶段,并将继续丰富发展。

1、信息的本质和度量

什么是信息?目前关于信息的定义,从不同学科,不同侧面可得到几十种不同的说法,至今学术界还未统一、甚至辞海中还未能列出这条词目。控制论创始人维纳是最早从理论上探讨这个问题的学者。他认为“信息就是信息,不是物质也不是能量。”但究竟是什么呢?他没有能回答,信息与物质、能量的关系又是什么?他也没有能回答。这个问题国内外专家已争论了几十年,还未有公认的结果。有的认为信息是精神实体的特征,有的认为信息是以“信息场”的形态存在的物质,有的认为信息是事物的运动状态或运动能量序列;有的认为信息是一种客观而不实在的东西;有的认为信息是一切物质的普遍属性,是系统的功能现象。

有的干脆就认为信息是事实和数据的组合或认为信息是具有新内容、新知识的消息,如情报、指令、代码、语言、文字和图象等。

我们认为信息的根本特性则在于它的表意性,倾向于信息是事物属性,是相互联系和作用的表征。

信息是我们对真实世界的各种现象和客体进一步认识的依据。我们获得某些信息,我们就认识了信息所反映对象的某种属性,也就是说,在未获得这些信息之前,对该对象的那种属性是不清楚的,确切地说,就是不确定的,而获得这些信息之后,就消除了这不确定性,从这个角度讲,信息是消除不确定的度量。信息如何度量呢?

在获得信息之前,如事先知道某个事件发生的概率为P1。称为先验概率;而在获得信息之后知道该事件发生的概率为P2。称为后验概率。当然P2 > P1,那么获得的信息量即为I = -Log2(P1/P2),信息量的单位为比特( bit )。

例如掷硬币,掷以前我们知道正面向上的概率为0.5,掷以后正面向上的概率为1,那么获得的信息量为

I = - Log2 (0.5/1)=1 (bit)

由概率论方法即可确定平均信息量。

n

H= -P1log2P1 - P2log2P2 … -Pnlog2Pn =-∑ P i Log2 P i。

w

(s= ∑ P i Ln P i)。

n=1

这里的公式与热力字非等几率熵计算公式在形式上是

一致的。仅差一个负号和波耳兹常数。所以信息又可称为负熵。这是不是巧合呢?还是这里面更深刻的内在联系呢?

实际上熵的信息量反映了两个不同系统的不同的运动过程和方向。熵是热力学概念,它标志着一个系统的混乱程度,熵可以看成是对系统的无序状态即系统的不确定度的量度,而信息量所反映的系统过程和方向与上述情况完全相反,它所描述的系统运动过程是由无序状态向有序

状态转化的过程。

信息量与熵在度量上的一致,信息量变化规律与能量规律在结构上相似,既说明了信息与物质和能量的不可分割的内在联系。又从新的角度反映上现实世界的物质统一性。因此把熵和信息量联系起来考察,把物理学与信息论结合起来研究,无疑将会大大深化人类对物质世界的认识。

2、信息科学和信息技术

在信息论研究的基础上,对信息的研究已大大深化,目前已发展成一门新的科学,称为信息科学。这是跨越信息论、控制论、系统论、系统工程、仿生学、计算机和人工智能等学科的边缘综合科学。它的理论基础是信息论和控制论。其技术途径是仿生学和人工智能,其技术工具和手段是计算机、传感器和各种通讯设备;系统论则为它提供了系统理论和方法,为如何达到最优状况找到了途径。

凡是应用信息科学原理和方法与信息作用的技术都称为信息技术。这是指有关信息的产生、检测、交换、存储、传输、处理、显示、识别、提取、控制和利用的技术。

其中最重要的是传感技术、通信技术和计算机技术。这些都是新技术革命的主导性技术,代表了新的技术革命的主流和方向。

3、运用信息方法的特点

(1) 信息方法是一种直接从整体出发,用联系的、转化的观点综合系统过程的研究方法。在对系统进行研究时,首先根据对象与由它发出的信息之间某种确定的对应关系,撇开研究对象的物质和能量的具体形态,把研究对象抽象为信息传输和交换过程,以达到对复杂系统运动过程的规律认识。

(2) 对抽象出来的信息过程可作定性和定量的分析。

(3) 可运用各种手段,综合分析材料,建立相应的信息模型。

(4) 可运用信息模型来认识信息过程,探索其内在规律。

四、系统论、控制论和信息论的相互关系及发展趋势

系统论、控制论和信息论从不同侧面反映客观世界的变化。信息论研究的是如何认识信息和度量信息。而系统论和控制论是研究如何利用信息,系统论是利用信息来实现系统最优化,控制论是利用信息来实现系统的有目的最佳控制,它们都用到系统、信息和控制等概念,三者关系极为密切。这三论的发展有统一的趋势,很可能最后就统一为系统信

息控制科学。三论还在继续发展中,还远未成熟,但有一点是肯定的,三论已成为现代科学技术的生长点,它已为研究动态问题、复杂系统问题提供了新的认识工具,为一切行为目的的通讯和控制系统找到了解决问题的有效途径。

_

贝塔朗菲的一般系统论

贝塔朗菲的一般系统论 相关搜索: 心理学, 奥地利, system, 系统论, 格式塔 一般系统论的历史背景系统的存在是客观事实,但人类对系统的认识却经历了漫长的岁月,对简单系统研究得较多,而对复杂系统则研究得较少。 直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论,是在研究复杂的生命系统中诞生的。 1925年英国数理逻辑学家和哲学家阿弗烈·诺夫·怀海德在《科学与近代世界》一文中提出用机体论代替机械决定论,认为只有把生命体看成是一个有机整体,才能解释复杂的生命现象。系统思维最早出现在1921年建立的格式塔心理学,还在工业心理学研究中1958年Parry J.B.提出了系统心理学(system psychology)的词汇与概念。 1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。 1924~1928年奥地利理论生物学家L.von贝塔朗菲多次发表文章表达一般系统论的思想,提出生物学中有机体的概念,强调必须把有机体当作一个整体或系统来研究,才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念,把协调、有序、目的性等概念用于研究有机体,形成研究生命体的三个基本观点,即系统观点、动态观点和层次观点。 1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力,没有正式发表。1945年他发表《关于一般系统论》的文章,但不久毁于战火,没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想,指出不论系统的具体种类、组成部分的性质和它们之间的关系如何,存在着适用于综合系统或子系统的一般模式、原则和规律,并于1954年发起成立一般系统论学会(后改名为一般系统论研究会),促进一般系统论的发展,出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几乎是与控制论、信息论同时出现的,但直到60~70年代才受到人们的重视。 1968年贝塔朗菲的专著《一般系统论──基础、发展和应用》,总结了一般系统论的概念、方法和应用。1972年他发表《一般系统论的历史和现状》,试图重新定义一般系统论。贝塔朗菲认为,把一般系统论局限于技术方面当作一种数学理论来看是不适宜的,因为有许多系统问题不能用现代数学概念表达。 一般系统论这一术语有更广泛的内容,包括极广泛的研究领域,其中有三个主要的方面。 ①关于系统的科学:又称数学系统论。这是用精确的数学语言来描述系统,研究适用于一切系统的根本学说。②系统技术:又称系统工程。这是用系统思想和系统方法来研究工程系统、生命系统、经济系统和社会系统等复杂系统。③系统哲学:它研究一般系统论的科学方法论的性质,并把它上升到哲学方法论的地位。贝塔朗菲企图把一般系统论扩展到系统科学的范畴,几乎把系统科学的三个层次都包括进去了。但是现代一般系统论的主要研究内容尚局限于系统思想、系统同构、开放系统和系统哲学等方面。而系统工程专门研究复杂系统的组织管理的技术,成为一门独立的学科,并不包括在一般系统论的研究范围内。

关于系统控制论的总结

最牛的系统论总结--系统论的数学模型 系统论的数学模型 系统论(Systemism)包括基本要素和高级要素(每个要素是一个系统(systems)). 基本要素: 系统(System)、结构(Structure)、事件(Event)、资源(Resource); 事件(Event)包括三个要素: 动作(Action)、过程(Procedure)、成本(Cost)。 系统论(Systemism)包括以下高级要素: 标准(Standard)、权力(Power); 标准(Standard)包括三个要素: 值(Value)、关系(Relation)和功能(Function)。 所有的要素都是在系统论(Systemism)中,而不是直接存在于世界(the World)或者能量(the Energy)之中。当然系统论(Systemism)是世界(the World)的一部分。系统论(Systemism)会使用这些要素(子系统)为你解释世界(the World)和能量(the Energy)。 ?.系统(System). 系统(System)是系统论(Systemism)中最基本的东西。。一个系统(System)指向世界(the World)中的一个对象(Object)。该对象(Object)可以被系统 论(Systemism)中的某些系统(System)利用某些标准(Standards)加以消 费(Consume )。 ?.系统名称(Name of System). 系统论(Systemism)使用一个名称(Name)标记一个系统(System)。这样当使用某个名称(Name)时我们指向某个系统(System),而该系统(System) 指向世界(the World)中的一个对象(Object)。名称(Name)将系统论(Systemism)中的系统(System)和世界(the World)的对象(Object)连接起来。[以下不再标出已出现名称的英文] 比如,世界当然是世界中最大的对象。一个系统论中的系统指向它并有一个保 留名称"系统论中的世界(the World in Systemism)" 以避免混淆;能量是世 界的基础,它的保留名称是"系统论中的能量(the Energy in Systemism)"; 系统论是世界的一部分,所以一个名称为"系统论中的系统论(Systemism in Systemism)"指向它。因为系统论已经存在与自身中,所以这个名称只是一个占位符,它直接指向系统论自身。 系统论使用系统将世界中的真实对象映射进来,同时使用一个名称来标记系统论中的系统。 我们看一个图来解释系统论的"对象-系统-名称映射"以及系统论的各种要素关 系:[Systemism graph]: ?.系统等式(System's equation).

系统论,控制论,信息论

一般系统论 亚里斯多德早就说过“整体大于部分之和”。因此对系统的研究可以说从古代就已经开始了。作为现代系统论的基本思想最初产生于本世纪20年代初由奥地利生物学家贝朗塔菲提出的,只不过它一开始被作为"机体生物学",这是生物学中的有机论概念,强调生命现象是不能用机械论观点来揭示其规律的,而只能把它看作一个整体或系统来加以考察。1968年,贝朗塔菲发表了一般系统论的代表著作《一般系统理论――基础发展与应用》。现在系统思想形成了一股重要的思潮,日益发挥重大而深远的影响。 一、系统 1、系统的含义及其分类 系统论的内涵和外延理论界现在说法不一。人们现在把系统论作为介于哲学和具体科学之间的横断科学来对待。它被用作比具体学科更一般化的科学理论加以研究,但又不同于哲学。现代系统论具有可否证性、抽象性、数理性特点。贝塔朗菲把一般系统概念定义为"系统是处于一定相互关系中的与环境发生关系的各组成成分的总体"。或: 系统——由两个或两个以上的要素组成的具有整体功能和综合行为的统一集合体 钱学森把极其复杂的研究对象称为系统。 系统的属性: ⑴系统的整体性:即非加和性。系统不是各部分的简单组合,而有统一性,各组成部分或各层次的充分协调和连接,提高系统的有序性和整体的运行效果。例如:①钢筋混凝土结构的强度就大于钢筋、水泥、沙石的强度之和。②拿破仑说数量小时较多数法国人不敌少数马克留木人,数量大时较少法国人可以战胜较多数马克留木人③没有凡高弟弟凡高就出不了成果;没有赫歇尔妹妹则赫歇尔不能成为伟大的天文学家;没有阿贝尔的老师就没有阿贝尔;没有孟母就没有孟子;没有伽罗华之母就没有伽罗华④人们常说"三个臭皮匠等于一个诸葛亮"⑤反面例子如上网、吸毒、赌博等。⑥"三个和尚没水吃",其原因是他们的能量消耗在内耗上。 ⑵系统的相关性:系统中相互关联的部分或部件形成"部件集","集"中各部分的特性和行为相互制约和相互影响,这种相关性确定了系统的性质和形态。 ⑶系统的功能性和目标性:大多数系统的活动或行为可以完成一定的功能,但不一定所有系统都有目的,例如太阳系或某些生物系统。人造系统或复合系统都是根据系统的目的来设定其功能的,这类系统也是系统工程研究的主要对象。例如,经营管理系统要按最佳经济效益来优化配置各种资源;军事系统为保全自己,消灭敌人,就要利用运筹学和现代科学技术组织作战,研制武器。 ⑷系统的层次性和相对性(有序性):由于系统的结构、功能和层次的动态演变有某种方向性,因而使系统具有有序性的特点。一般系统论的一个重要成果是把生物和生命现象的有序性和目的性同系统的结构稳定性联系起来,也就是说,有序能使系统趋于稳定,有目的才能使系统走向期望的稳定系统结构。行政系统分为科、处、局、部、委…;军事系统分为排、连、营、团、师、军…运作,都是系统表现出的层次性。 ⑸系统的复杂性和随机性:物质和运动是密不可分的,各种物质的特性、形态、结构、功能及其规律性,都是通过运动表现出来的,要认识物质首先要研究物质的运动,系统的动态性使其具有生命周期。开放系统与外界环境有物质、能量和信息的交换,系统内部结构也可以随时间变化。一般来讲,系统的发展是一个有方向性的动态过程。 ⑹系统的适应性:一个系统和包围该系统的环境之间通常都有物质、能量和信息的交换,外界环境的变化会引起系统特性的改变,相应地引起系统内各部分相互关系和功能的变化。为

控制论与信息论

信息论和控制论都是信息科学的重要组成部分。信息论是一门用数理统计方法来研究信息的度量、传递和变换规律的科学。它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。它是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论是美贝尔电话研究所的数学家香农在前人研究的基础上完成的。他为解决通讯技术中的信息编码问题,把发射信息和接收信息作为一个整体的通讯过程来研究,提出通讯系统的一般模型;同时建立了信息量的统计公式,奠定了信息论的理论基础。1948年香农发表的《通讯的数学理论》一文,成为信息论诞生的标志。在信息论的发展中,还有许多科学家对它做出了卓越的贡献。像法国物理学家L.布里渊(L.Brillouin)1956年发表《科学与信息论》专著,从热力学和生命等许多方面探讨信息论,把热力学熵与信息熵直接联系起来,使热力学中争论了一个世纪之久的“麦克斯韦尔妖”的佯谬问题得到了满意的解释。英国神经生理学家(W.B.Ashby)1964年发表的《系统与信息》等文章,还把信息论推广应用芋生物学和神经生理学领域,也成为信息论的重要著作。这些科学家们的研究,以及后来从经济、管理和社会的各个部门对信息论的研究,使信息论远远地超越

了通讯的范围。 信息论有狭义和广义之分。狭义信息论即申农早期的研究成果,它以编码理论为中心,主要研究信息系统模型、信息的度量、信息容量、编码理论及噪声理论等。广义信息论又称信息科学,主要研究以计算机处理为中心的信息处理的基本理论,包括评议、文字的处理、图像识别、学习理论及其各种应用。广义信息论包括了狭义信息论的内容,但其研究范围却比通讯领域广泛得多,是狭义信息论在各个领域的应用和推广,因此,它的规律也更一般化,适用于各个领域,所以它是一门横断学科。信息论被广泛应用在编码学密码学与密码分析学数据传输数据压缩检测理论估计理论等领域. 控制论是研究各类系统的调节和控制规律的科学。自从1948 年诺伯特?维纳发表了著名的《控制论——关于在动物和机中控制和通讯的科学》一书以来,控制论的思想和方法已经渗透到了几乎有的自然科学和社会科学领域。维纳把控控制论制论看作是一门研究机器、生命社会中控制和通讯的一般规律的科学,是研究动态系统在变的环境条件下如何保持平衡状态或稳定状态的科学。他特意创造“Cybernetics”这个英语新词来命名这门科学。“控制论”一同最初来源希腊文“mberuhhtz”,原意为“操舵术”,就是掌舵的方法和技术的思。在柏拉图(古希腊哲学家)的著作中,经常用它来

贝塔朗菲的一般系统论

贝塔朗菲的一般系统论 一般系统论的历史背景系统的存在是客观事实,但人类对系统的认识却经历了漫长的岁月,对简单系统研究得较多,而对复杂系统则研究得较少。 直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论,是在研究复杂的生命系统中诞生的。 1925年英国数理逻辑学家和哲学家阿弗烈·诺夫·怀海德在《科学与近代世界》一文中提出用机体论代替机械决定论,认为只有把生命体看成是一个有机整体,才能解释复杂的生命现象。系统思维最早出现在1921年建立的格式塔心理学,还在工业心理学研究中1958年Parry J.B.提出了系统心理学(system psychology)的词汇与概念。 1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。 1924~1928年奥地利理论生物学家L.von贝塔朗菲多次发表文章表达一般系统论的思想,提出生物学中有机体的概念,强调必须把有机体当作一个整体或系统来研究,才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念,把协调、有序、目的性等概念用于研究有机体,形成研究生命体的三个基本观点,即系统观点、动态观点和层次观点。 1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力,没有正式发表。1945年他发表《关于一般系统论》的文章,但不久毁于战火,没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想,指出不论系统的具体种类、组成部分的性质和它们之间的关系如何,存在着适用于综合系统或子系统的一般模式、原则和规律,并于1954年发起成立一般系统论学会(后改名为一般系统论研究会),促进一般系统论的发展,出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几乎是与控制论、信息论同时出现的,但直到60~70年代才受到人们的重视。 1968年贝塔朗菲的专著《一般系统论──基础、发展和应用》,总结了一般系统论的概念、方法和应用。1972年他发表《一般系统论的历史和现状》,试图重新定义一般系统论。贝塔朗菲认为,把一般系统论局限于技术方面当作一种数学理论来看是不适宜的,因为有许多系统问题不能用现代数学概念表达。 一般系统论这一术语有更广泛的内容,包括极广泛的研究领域,其中有三个主要的方面。 ①关于系统的科学:又称数学系统论。这是用精确的数学语言来描述系统,研究适用于一切系统的根本学说。②系统技术:又称系统工程。这是用系统思想和系统方法来研究工程系统、生命系统、经济系统和社会系统等复杂系统。③系统哲学:它研究一般系统论的科学方法论的性质,并把它上升到哲学方法论的地位。贝塔朗菲企图把一般系统论扩展到系统科学的范畴,几乎把系统科学的三个层次都包括进去了。但是现代一般系统论的主要研究内容尚局限于系统思想、系统同构、开放系统和系统哲学等方面。而系统工程专门研究复杂系统的组织管理的技术,成为一门独立的学科,并不包括在一般系统论的研究范围内。

信息论,系统论,控制论0001

信息论,系统论,控制论 系统论、信息论、控制论等横断科学介绍 1、系统分析系统分析是管理信息系统的一个主要和关键阶段,负责这个阶段的关键人物是系统分析员,完成这个阶段任务的关键问题是开发人员与用户之间的沟通。 系统分析从系统需求入手,从用户观点出发建立系统用户模型。用户模型从概念上全方位表达系统需求及系统与用户的相互关系。系统分析在用户模型的基础上,建立适应性强的独立于系统实现环境的逻辑结构。 分析阶段独立于系统实现环境,可以保证建立起来的系统结构具有相对的稳定性,便于系统维护、移植或扩充。 在系统分析阶段,系统的逻辑结构应从以下三方面全面反映系统的功能与性能: 完整描述系统中所处理的全部信息; 完全描述系统状态变化所需处理或功能; 3)表示。详细描述系统的对外接口与界面。 2.系统工程 用定量和定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。 第二次世界大战以后。为适应社会化大生产和复杂的科学技术体系的需要.逐步把自然科学与社会科学中的某些理论和策略、方法联系起来.应用现代数学和电子计算机等工具.解决复杂系统的组织、管理相控制问题,以达到最优设计、最优控制和最优管理的目标。系统工程是一门高度综合性的管理工程技术,涉及自然科学棚社会科学的多门学科。构成系统工程的基本要素是:人、物、财、

目标、机器设备、信息等六大因素。各个因京之间是互相联系、互相制约的关系。 系统工程大体上可分为系统开发、系统制造和系统运用三个阶段,每个阶段又可划分为若干小阶段或步骤。系统工程的基本方法是:系统分析、系统设计相系统的综合评价。具体地说,就是用数学模型和逻辑模型来描述系统,通过模拟反映系统的运行、求得系统的最优组合方案和最优的运行方案。 70 年代以来,系统工程已广泛地应用于交通运输、通讯、企业生产经营等部门,在体育领域亦有应用价值和广阔的前景。 它的基本特点是:把研究对象作为整体看待,要求对任一对象的研究都必须从它的组成、结构、功能、相互联系方式、历史的发展和外部环境等方面进行综合的考察.做到分析与综合的统一。最常用的系统工程方法,是系统工程创始人之 霍尔创立的,称为三维结构图:①时间维。对一个具体工程,从规划起一直到更新为止.全部程序可分为规划、拟定 方案、研制、生产、安装、运转和更新七个阶段。②逻辑维。 对一个大型项目可分为明确目的、指标设计、系统方案组合、系统分析、最优化、作出决定和制定方案七个步骤。③知识维。系统工程需使用各种专业知识,霍尔把这些知识分成工程、医药、建筑、商业、法津、管理、社会科学和艺术等,把这些专业知识称为知识维。 3.系统科学 系统科学是以系统思想为中心的一类新型的科学群。它包括系统论、信息论、控制论、耗散结构论、协同论以及运筹学、系统工程、信息传播技术、控制管理技术等等许多学科在内,是20 世纪中叶以来发展最快的一大类综合性科学。 什么是“老三论”、“新三论” 系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展的三门系统理论的分支学科。虽然它们仅有半个世纪,但在系统科学领域中已是资深望重的元老,合称“老三论”。

系统论概论

系统论概论(System Theory) 系统论是研究系统的一般模式,结构和规律的学问,它研究各种系统的共同特征,用数学方法定量地描述其功能,寻求并确立适用于一切系统的原理、原则和数学模型,是具有逻辑和数学性质的一门新兴的科学。 系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。他在1952年发表“抗体系统论”,提出了系统论的思想。1973年提出了一般系统论原理,奠定了这门科学的理论基础。但是他的论文《关于一般系统论》,到1945年才分开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论——基础、发展和应用》(《General System Theory; Foundations, Development, Applications》),该书被公认为是这门学科的代表作。 系统一词,来源于古希腊语,是由部分构成整体的意思。今天人们从各种角度上研究系统,对系统下的定义不下几十种。如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。 系统论认为,整体性、联系性,层次结构性、动态平衡性、时序性等是所有系统的共同的基本特征。这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。贝塔朗菲对此曾作过说明,英语System Approach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。他说,我们故意用Approach 这样一个不太严格的词,正好表明这门学科的性质特点。 系统论的核心思想是系统的整体观念。贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体工功能是各要素在孤立状态下所没有的新性质。他用亚里斯多德的“整体大于部分之和”的名言来说明系统的整体性,反对那种认为要素性能好,整体性能一定好,以局部说明整体的机械论的观点。同时认为,系统中各要素不是孤立地存在着,每个要素在系统中都处于一定的位臵上,起着特定的作用。要素之间相互关联,构成了一个不可分割的整体。要素是整体中的要素,如果将要素从系统整体中割离出来,它将失去要素的作用。正象人手在人体中它是劳动的器官,一旦将手从人体中砍下来,那时它将不再是劳动的器官了一样。 系统论的基本思想方法,就是把所研究和处理的对象,当作一个系统,分析系统的结构和功能,研究系统、要素、环境三者的相互关系和变动的规律性,并优化系统观点看问题,世界上任何事物都可以看成是一个系统,系统是普遍存在的。大至渺茫的宇宙,小至微观的原子,一粒种子、一群蜜蜂、一台机器、一个工厂、一个学会团体、……都是系统,整个世界就是系统的集合。 系统是多种多样的,可以根据不同的原则和情况来划分系统的类型。按人类干预的情况可划分自然系统、人工系统;按学科领域就可分成自然系统、社会系统和思维系统;按范围划妥则有宏观系统、微观系统;按与环境的关系划分就有开放系统、封闭系统、孤立系统;按

系统论

系统论 宇宙自然人类,一切都在一个统一的运转的系统之中!一切伟大的进步都必须以系统论做为出发点及归属处! 系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。他在1952年发表“抗体系统论”,提出了系统论的思想。1937年提出了一般系统论原理,奠定了这门科学的理论基础。但是他的论文《关于一般系统论》,到1945年才公开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论基础、发展和应用》(《GeneralSystemTheory;Foundations,Development, Applications》),该书被公认为是这门学科的代表作。 系统一词,来源于古希腊语,是由部分构成整体的意思。今天人们从各种角度上研究系统,对系统下的定义不下几十种。如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。 系统论内容 系统论认为,整体性、关联性,等级结构性、动态平衡性、时序性等是所有系统的共同的基本特征。这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。,贝塔朗菲对此曾作过说明,英语SystemApproach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。他说,我们故意用Approach这样一个不太严格的词,正好表明这门学科的性质特点。 核心思想 系统论的核心思想是系统的整体观念。贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体功能是各要素在孤立状态下所没有的性质。他用亚里斯多德的“整体大于部分之和”的名言来说明系统的整体性,反对那种认为要素性能好,整体性

系统论、信息论,控制论

系统论,信息论,控制论 第一章系统论产生的历史概况 第一节现代系统论的产生 一、什么是系统论 系统论是研究客观现实系统共同的特征、本质、原理和规律的科学。它所概括的思想、理论、方法,普遍地适用于物理、生物、技术和社会系统。系统论最明显的特征是具有新科学思想和方法论的意义,它主张从整体出发去研究系统与系统、系统与要素以及系统与环境之间的普遍联系。它从揭示系统的整体规律上,为解决现代科学技术、社会和经济等方面的复杂问题,提供了新的理论武器。系统论的思想渊源是辩证法,它强调从事物普通联系和发展变化中研究事物。现代系统论不仅从哲学角度提出了有关系统的基本思想而且通过科学的、精确的数学方法,定量地描述系统机制及其发展变化过程。所以,系统论的原理及方法具有普通的适用性。 二、系统论思想的产生过程 一般系统论创始人是美籍奥地利生物学家贝塔朗菲(L.V.Bertalanffy,1901--1972),系统论作为一门科学,产生于本世纪20--30年代。贝塔朗菲创立系统论是有—个历史过程的,他是生物学家,他的系统论思想的形成与当时的生物学界的学术争论以及他本人亲自参加这场讨论有关。 在生物学史上,一直存在着机械论与活力论之争。机械论在生物学中表现为一种简化论和机械决定论,他们用分析方法把生物简化为物理的和化学的问题,纯粹用物理的、机械的和化学的原因来说明一切生命的生理现象和心理过程,即一种原因产生一种结果,反之亦然。法国18世纪唯物论学者拉·梅特立是机械论最典型的代表人物之一。他的主要著作《人是机器》就是把人这种高级生物看成是一架机器,人就是出各种零件组成的机器。活力论则认为在生物体内部存在着一种特殊的“活力”,它支配着整个生命过程,活力论者断言:“在有机界与无机界之间隔着一道不可逾越的鸿沟;因为有机界是由一种支配着生物体内全部物理化学过程的、有一定目的的超物质的(超自然的)力量所产生的”。德国的杜里舒是新活力论的代表,他分别用半个和两个完整的海胆做实验,结果都能生产出一个正常的海胆来。因此他证明:不同的原因可以产生出同一结果来。他认为这种异因同果律是与物理学定律相矛盾的。杜里舒的实验结果对机械决定论是一个沉重打击。生物学上这场争论在30世纪20-30年代达到了激化的程度。贝塔朗菲的一般系统论思想就是在这样的历史背景下孕育形成的。作为生物学中的机械论在这场争论中有自己的独立见解,他认为生物学中的机械论与活力论都不可取,他不同意双方的观点。 1924—1928年贝塔朗菲多次发表文章,强调要把有机体当作一个整体或系统来考虑,并且认为科学的主要目标就在于发现种种不同层次上的组织原理。他表述了系统论的思想,提出了生物学中的机械论概念。1932年贝塔朗菲发表了《理论生物学》一书,较完整地提出来

系统论、控制论和信息论

系统论、控制论和信息论简介 现代科学技术的发展在高度分化的基础上,有着高度综合的特点,一方面向深度发展,科学研究的对象越来越专一,科学分类越来越精细,新领域、新科学、新专业不断产生;另一方面,各科学之间又相互渗透、相互交叉和相互移植而使得科学技术日趋整体化和综合化。系统论、控制论和信息论就是科学技术整体化,综合化的产物,这是二十世纪自然科学取得的重大成就之一,它是具有综合特性的横向科学,它沟通了自然科学和社会的联系,改变了科学发展的图景和人们的思维方式,并以其特有的新颖的思路,为科学研究提供了崭新的方法,扩大了人们研究问题的广度和深度,实现了人类认识史上由定性到定量认识物质之间各种关系的新飞跃,极大地提高了人类认识世界、改造世界的能力。 因为系统论、控制论、信息论在科学体系结构中的横向科学的特殊地位,就决定了它在丰富和发展辩证唯物主义哲学方面、在促进科学技术的发展方面、在解决一切复杂的科学、技术、经济和社会问题等方面,有着其他科学不可替代的重要作用。 系统论、控制论和信息论是三门科学,是现代科学前沿的新兴“软”科学群,它们各有不同的出发点和内容,但它们是在同一历史背景下,从不同侧面研究同一个问题而产生的,其手段也有很多共同之处。与其他基础科学不同,研究的对象既不是客观世界中哪一种结构,也不是物质的某种运动形态,而是从横向综合的角度,研究物质运动的规律,从而揭示世界各种互不相同的事物在某些方面的内在联系和本质特性,三者各成体系,但都应用系统、控制、信息的基本概念、基本思想,互相交叉、互相借鉴,协同发展。 系统论是把要研究和处理的对象看成由一些相互联系、相互作用的若干因素组成的系统,研究系统就是寻求利用信息实现最优系统的途径。显然任何系统都离不开信息,因此研究系统就必须研究反映系统与环境、系统与子系统之间的联系的不可缺少的要素信息。一个系统信息量的大小,反映系统的组织化、复杂化度的高低。而系统的运行又离不开控制,对系统的控制同样离不开信息。 信息论研究如何认识信息、控制论和系统论研究如何利用信息。 控制论揭示了事物联系的反馈原理,用以实现对系统的有效控制。 一、系统论

维纳和控制论 香农和信息论

维纳和控制论 控制论是关于自我控制系统的理论,它以“反馈”概念为依据,其定义是通过关于一个系统以往运行情况的信息,来控制这个系统的未来行为。控制论由维纳提出,说起维纳,不禁就想起了严父教育下的神童。维纳的父亲自学成才,随后在大学教书,维纳在相当于小学后辍学由其父亲亲自教育,并且在复学后可以与比他大的年级的学生一比高下。维纳在18岁获得哈佛大学哲学博士生学位。在获得博士后学位后他参军一年,随后在麻省理工学院教书,维纳在麻省理工学院以其“维纳步行”而闻名,“维纳步行”是指维纳经常在走路的时候思考问题,不语、低头,所以他经常走路时不看路只看墙上的标识,他经常走着走着,想着想着就突然不打招呼的走进一个教授的办公室,与其讲论自己的所思,一次在一个大的阶梯教室里,正在举行一个讲座,正在进行时只见维纳低着头一言不发的从讲台上穿过去然后又围着教室转了一圈才走出去,很明显他只是跟着墙上的标识走,并且已经陷入了自己的沉思中,而整个阶梯教室的师生都一言不发的看着维纳走了出去。麻省理工学院至今仍然传送者维纳的趣事。 控制论是在维纳在二战期间研究高射炮炮火准确性时逐渐形成的,因为其主要涉及数学方面所以对其理论不明白,但是控制论在传播学方面的贡献明显是巨大的。 1、反馈是一种特殊类型的传播信息流通,因为被传递的信息描绘了系统自身在从前某一时 间的运行状况。 2、控制论包含着一种时间中的动力学的、行进中的行为观。 3、控制论假定,一个系统的控制主要在于这个系统内部。一个系统自身的行为结果提供了 新的信息,系统就凭借这个新的信息修正他自己随后的行为。因此,这个系统从他自身中学习。关于环境变化的信息只有当这些变化必须适应于反馈的时候,才能影响这个系统。 与控制论相配套的是系统论。系统论是全面的,它强调一个整体中的各个部分之间的相互关系。 香农和信息论 香农1916年生于密歇根州,从小对数学与科学产生了浓厚了兴趣,他在密歇根大学获电子工程和数学学士学位,在麻省理工学院获电子工程和数学的硕士学位和博士学位。香农在数学方面的才能在其读书时就已经显露出来,他在获得普林斯顿大学的博士后学位之前就应经在贝尔实验室工作了一年。 香农的职业生涯也受到二战的影响,因为二战的原因他在贝尔实验室主要从事密码学研究以及高射炮炮火的准确性研究,在贝尔实验室的工作中,香农和其同事实际上已经将信息论中的一小部分的到了验证与实验,香农在这个过程中逐渐形成了信息论的理论思想,但是他并不急于发表他的发现,在接下来的几年,香农继续研究他的信息论甚至沉迷于他的信息论,在香农发表了其学术后,香农的同事们很是震惊也很是佩服,之后就是整个研究界的震惊并且一股信息论的研究浪潮也随之掀起。信息论很快就应用于除数学电子以外的其他领域,其中就包括传播学领域,其实香农认为自己的研究不应该被这么多领域所应用,因为他觉得这样会带来危险,但是学者们并不这样认为。 香农的单向传播行为的模式有助于奠定传播学的学术领域,它为传播行为中的主要组成部分提供了一个单一的、易于理解的明确说明。这些主要组成部分是:信源、讯息、信道、接收器。因此,对于传播行为的传播研究可以确定出信源变量(诸如可信度)、讯息变量(就像使用恐吓呼吁)、信道变量(诸如大众媒体与人际信道)和接受者变量(如受众个体的可说服性)。传播研究中的因变量对效果进行测度,诸如接受者一方的认识变化,态度变化(说

一般系统论的主要内容及其应用

一般系统论的主要内容及其应用 一般系统论的主要内容及其应用 研究系统思想和系统方法的哲学理论﹐又称系统观。辩证唯物主义认为﹐物质世界是由无数相互联系﹑相互依赖﹑相互制约﹑相互作用的事物和过程所形成的统一整体﹐这就是系统普遍存在性的哲学基础。系统思想和系统方法又为辩证唯物主义的发展提供了素材。也有人将系统思想和一般系统论称为系统论﹐与控制论和信息论一起俗称三论。 研究复杂系统的一般规律的学科﹐又称普通系统论。现代科学可按所研究的对象系统的具体形式划分成各门学科﹐如物理学﹑化学﹑生物学﹑经济学和社会学等﹔也可按研究方法划分成两大类别﹐即简单系统理论和复杂系统理论。一般系统论是研究复杂系统理论的学科﹐着重研究复杂系统的潜在的一般规律。历史背景系统的存在是客观事实﹐但人类对系统的认识却经历了漫长的岁月﹐对简单系统研究得较多﹐而对复杂系统则研究得较少。直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论﹐是在研究复杂的生命系统中诞生的。1925年英国数理逻辑学家和哲学家N.怀特海在《科学与近代世界》一文中

提出用机体论代替机械决定论﹐认为只有把生命体看成是一个有机整体﹐才能解释复杂的生命现象。1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。1924~1928年奥地利理论生物学家贝塔朗菲﹐L.von多次发表文章表达一般系统论的思想﹐提出生物学中有机体的概念﹐强调必须把有机体当作一个整体或系统来研究﹐才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念﹐把协调﹑有序﹑目的性等概念用于研究有机体﹐形成研究生命体的三个基本观点﹐即系统观点﹑动态观点和层次观点。1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力﹐没有正式发表。1945年他发表《关于一般系统论》的文章﹐但不久毁于战火﹐没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想﹐指出不论系统的具体种类﹑组成部分的性质和它们之间的关系如何﹐存在着适用于综合系统或子系统的一般模式﹑原则和规律﹐并于1954年发起成立一般系统论学会(后改名为一般系统论研究会)﹐促进一般系统论的发展﹐出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几

系统论和系统原理

系统论和系统原理

系统论和系统原理 一、系统论概述 这里所说的系统论,是有关系统的全部理论和方法。目前学术界公认,系统论是本世纪40年代由美籍奥地利理论生物学家冯·贝塔朗菲首先明确提出,后经许多科学家发展形成的,它包括贝塔朗菲提出的一般系统论,维纳提出的控制论,申农提出的信息论,普里高津提出的耗散结构理论,哈肯提出的协同理论等等,也包括在科学及工程领域得到广泛应用的系统分析技术。 (一)系统的概念及其特征 系统,是指由若干相互联系、相互作用的部分组成,在一定环境中具有特定功能的有机整体。组成系统的各个部分,被称为要素、单元或子系统。由于系统可以划分为不同层次的要素,所以,要素具有相对性。 我们可以从不同角度对系统进行分类。按照自然界从低级到高级的层次,可分为无机系统,生物机体系统,社会系统;按照系统的要素及其形成与人类实践的关系,可以分为自然系统和人造系统;按照系统与环境的联系,可分为封闭系统和开放系统。此外,按系统状态与时间的关系,可分为静态系统和动态系统;按系统要素的客观实在性,可分为实体系统和概念系统;按系统功能、目标的多寡,可分为单目标单功能系统和多目标多功能系统;按系统的规模、复杂程度,可分为小系统、大系统、超大系统及简单系统和复杂系统,等等。 系统的一般特征包括集合性、相关性、层次性、环境制约性、整体性、动态性,对于人造系统,还有目的性的特征。 1、集合性。系统总是由若干元素组成的。单独一个元素不能称为系统。在系统中各元素具有相对独立性,具有可识别的界限或标识。例如,人体是由呼吸器官、消化器官、血液循环器官、运动器官、神经器官等部分组成;企业是由若干车间、班组、科室所组成,等等。识别系统,必须分析系统的构成元素。 2、相关性。在系统内各元素不是孤立存在的,而是存在这样那样的联系。所谓系统的联系,是指系统内各部分之间发生的物质、能量、信息的传递和交流。结果是某一部分的变化会导致另外部分的变化,这就是所谓相关性。例如,企业的销售部门工作不力,会导致正常的采购商品积压;经理的高昂斗志会鼓舞其下属努力工作等等。 3、层次性。世界上绝大多数系统都有复杂的层次结构,例如,联想集团公司由联想电脑、神州数码、联想控股等三家法人企业组成;联想电脑公司又由许多部门组成,每个部门由若干员工组成。不同层次具有不同功能:员工层次完成局部工作;部门可以生产部件或提供诸如采购、会计、人事等某一方面的职能;企业则提供相对完整的商品或配套服务。 4、整体性和系统功能。系统不是若干元素的机械堆砌,而是存在有机联系的整体。系统整体的性质和功能不等于构成系统各部分的性质或功能的加总,人们形象地用1加1不等于2表示,

系统论的基本原理

《系统论的基本原理》 (一)系统整体性原理 系统整体性原理指的是,系统是由若干要素组成的具有一定新功能的有机整体,各个作为系统子单元的要素一旦组成系统整体,就具有独立要素所不具有的性质和功能,形成了新的系统的质的规定性,从而表现出整体的性质和功能不等于各个要素的性质和功能的简单加和。 从相互作用是最根本原因来看,系统中要素之间是由于相互作用联系起来的。系统之中的相互作用,是大量线性相互作用,这就使得系统具有了整体。对于线性相互作用,线性相互作用的各方实际上是可以逐步分开来讨论的,部分可以在不影响整体性质的情况下从整体之中分离出来,整体的相互作用可以看作各个部分的相互作用的简单迭加,也就是线性迭加。而对于非线性相互作用,整体的相互作用不再等于部分相互作用的简单迭加,部分不可能在不对整体造成影响的情况下从整体之中分离出来,各个部分处于有机的复杂的联系之中,每一个部分都是相互影响,相互制约的。这样就有了每一个部分都影响着整体,反过来整体又制约着部分。近代科学信奉原子论的分析观点,恰恰与近代科学信奉线性律,以追求运动方程的线性解为自己的崇高目标相一致。而当数学家最先证明实际上线性系统的测度几乎为零,即系统几乎都是非线性系统,这就已经告诉人们,我们的世界在本质上是一个非线性的世界,现实的系统几乎都是非线性系统。而从整体与部分的关系看来,这恰恰是说,系统具有整体性是必然的,普遍的和一般的。 系统的整体性,常常又被说成系统整体大于部分。古人已经天才地猜测到整体不同于部分,整体大于部分。所谓的整体大于部分,作为一个关于整体与部分关系的最一般哲学命题,其实质是说系统的整体具有系统中部分所不具有的性质,系统整体不同于系统的部分的简单加和即机械和。系统整体的性质不可能完全归结为系统要素的性质来解释。一般系统论的创立者贝塔朗菲就曾指出:“整体大于部分之和”,这句话多少有点神秘,其实它的含义不过是组合特征不能用孤立部分的特征来解释。系统是由要素组成的,整体是由部分组成的,要素一旦组合成系统,部分一旦组合成整体,就会反过来制约要素,制约部分。所谓的“整体大于部分”,也是这种情况的概括。系统具有整体性,但是不能归结为整体论。按照原子论传统,高层次现象归结为低层次实体来解释,事物整体行为归结以部分来加以解释,相应地,事物的质就归结为量来进行解释。片面地强调分析,体现的正是这样的原子论传统。从原子论出发,进行研究时要把对象整体分解为部分,整体就仅仅在对于部分的研究之中来加以理解,从而整体也就等同于部分了。换言之,部分也就取代了整体。事实上,这种理解也就把世界仅仅分解为了肢零破碎的部分,如果说还有整体的话,那么整体就等同于部分的简单加和。这正是原子论的分析观。传统的整体论,虽然正确地看到了原子论观点的局限性,而试图从整体上来把握事物,这无疑有其合理性。但是,由于时代科学水平的限制,这样的整体往往成为一种没有具体内容的整体。从而也就只是没有内容的整体性,或者也可以是暖味不清的整体性。一方面,这样的整体论,往往成为伪科学或非科学的避难所,在一定的意义上近代科学中的种种生命力论,活力论正是这样的整体论。另一方面,这种整体论,实际上又在很大程度上不再鼓励对于对象进行科学研究,整体就是整体,除此之外再也无话可说,从而实际上往往在科学的名义下就取消了科学。 二)系统层次性原理 系统的层次性原理指的是,由于组成系统的诸要素的种种差异包括结合方式上的差异,从而使系统组织在地位与作用,结构与功能上表现出等级秩序性,形成了具有质的差异的系统等级,层次概念就反映这种有质的差异的不同的系统等级或系统中的高级差异性。 系统的层次性犹如套箱。系统是由要素组成的。但是,一方面,这一系统又只是上一级系统的子系统——要素,而这一级系统又只是更大系统的要素。另一方面,这一系统的要素却又是由低一层的要素组成的,

系统论

系统论和系统原理 一、系统论概述 这里所说的系统论,是有关系统的全部理论和方法。目前学术界公认,系统论是本世纪40年代由美籍奥地利理论生物学家冯·贝塔朗菲首先明确提出,后经许多科学家发展形成的,它包括贝塔朗菲提出的一般系统论,维纳提出的控制论,申农提出的信息论,普里高津提出的耗散结构理论,哈肯提出的协同理论等等,也包括在科学及工程领域得到广泛应用的系统分析技术。 (一)系统的概念及其特征 系统,是指由若干相互联系、相互作用的部分组成,在一定环境中具有特定功能的有机整体。组成系统的各个部分,被称为要素、单元或子系统。由于系统可以划分为不同层次的要素,所以,要素具有相对性。 我们可以从不同角度对系统进行分类。按照自然界从低级到高级的层次,可分为无机系统,生物机体系统,社会系统;按照系统的要素及其形成与人类实践的关系,可以分为自然系统和人造系统;按照系统与环境的联系,可分为封闭系统和开放系统。此外,按系统状态与时间的关系,可分为静态系统和动态系统;按系统要素的客观实在性,可分为实体系统和概念系统;按系统功能、目标的多寡,可分为单目标单功能系统和多目标多功能系统;按系统的规模、复杂程度,可分为小系统、大系统、超大系统及简单系统和复杂系统,等等。 系统的一般特征包括集合性、相关性、层次性、环境制约性、整体性、动态性,对于人造系统,还有目的性的特征。 1、集合性。系统总是由若干元素组成的。单独一个元素不能称为系统。在系统中各元素具有相对独立性,具有可识别的界限或标识。例如,人体是由呼吸器官、消化器官、血液循环器官、运动器官、神经器官等部分组成;企业是由若干车间、班组、科室所组成,等等。识别系统,必须分析系统的构成元素。 2、相关性。在系统内各元素不是孤立存在的,而是存在这样那样的联系。所谓系统的联系,是指系统内各部分之间发生的物质、能量、信息的传递和交流。结果是某一部分的变化会导致另外部分的变化,这就是所谓相关性。例如,企业的销售部门工作不力,会导致正常的采购商品积压;经理的高昂斗志会鼓舞其下属努力工作等等。

相关文档
相关文档 最新文档