文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质折叠

蛋白质折叠

蛋白质折叠
蛋白质折叠

蛋白质折叠

蛋白质折叠是生物化学和分子生物学的前沿课题之一,近年来蛋白质折叠的研究日益引起人们注意的原因是多方面的。其一,遗传信息由DNA 到RNA再到蛋白质的过程是分子生物学的核心,通常称作分子生物学的中心法则,经过多年的研究人们对由DNA到RNA再到多肽链的过程已基本清楚,但是蛋白质的功能不仅依赖于其一级结构而且与空间结构紧密相关;其二,虽然蛋白质中一定的氨基酸顺序决定了其特定的空间结构的假说已被人们广泛接受,但是怎样由一定的氨基酸排列的多肽链生成具有一定的空间结构的蛋白质的问题仍未解决。只有透彻地了解了多肽链是如何通过自身内在的信息及与周围环境(包括与各种蛋白质因子)的相互作用才能最终了解蛋白质的空间结构与功能的关系。

基因工程和蛋白质工程是近年来生物技术发展的产物和先导,但人们发现通过基因工程和蛋白质工程所获得的多肽链有时并不能自身卷曲成有一定空间结构和完整生物学功能的蛋白质,其原因在于在多肽链的折叠上出了问题。因此从基因工程和蛋白质工程产物的翻译后加工的角度也要求人们了解蛋白质折叠的机理。

一、蛋白质复杂的三级结构信息贮存于氨基酸序列中

关于氨基酸序列与蛋白质空间结构的关系研究最早的工作是由C.Anfinsen (1960)关于核糖核酸酶的研究工作。他研究了核糖核酸酶的去折叠和重折叠过程。该酶是由124 个氨基酸组成的蛋白质,有四对二硫键,其组合有

105{[(2×4)!/24×4!]=105}种的可能方式。当用还原剂如b-巯基乙醇

(HOCH2-CH2-SH)作用时,二硫键被部分还原。继续加大b-巯基乙醇的量,二

硫键可全部被还原。用8 M 的脲加b-巯基乙醇处理多肽链,分子内四对二硫键可全部被还原,肽链伸展为无规卷曲,酶活性完全丧失。但如果将脲和b-巯基乙醇透析掉并在空气中进行氧化,多肽链可又重新折叠为一个具有特定的三维结构和催化活性的酶,它与未经处理的酶具有相同的溶解度并可结晶并获得相同的X-射线衍射图,其吸收光谱也相同。这是一个很好的蛋白质一级结构序列决定其三维结构的例子,即顺序决定构象。Anfinsen因此而获得1972年诺贝尔化学奖。

二、关于蛋白质折叠的理论模型

各种实验及理论计算均证明蛋白质的天然构象在热力学上是最稳定的。那么一个具有特定的生物学活性和功能的蛋白质究竟是如何找到这样一种热力学稳定的构象的呢?这至今仍是一个未解决的问题。我们可以以一个由100 个氨基酸组成的小蛋白质来进行讨论和考虑:假设在这100 个氨基酸组成的小蛋白质中每个氨基酸残基有三种不同的构象的话,那么总的构象数将是3100 =5×1047 ,如果从一种构象变为另一种构象所需要的时间为10 -13秒,那么在上述的构象空间寻求一遍需要5×1047 ×10-13=5×1034 秒=1.6×1027 年!而实际上蛋白质的折叠是在10-1~10 3 秒内完成的。由此可见,蛋白质的折叠不是一个对各种可能构象进行随机采样的过程。

关于蛋白质的折叠人们提出了各种的折叠模型其主要有:

1. 框架模型(Framework model):

P. S. Kim 和R. L. Baldwin 于1982 年提出了蛋白质折叠的框架模型,该模型认为在蛋白质折叠的过程中大约有15个氨基酸残基的多肽链首先折叠为瞬态的a螺旋或b片层结构的二级结构单元,然后这种瞬态的结构通过扩散彼此接近形成aa、ab 或bb的复合结构而获得稳定。这种复合结构又称为折叠单元。折叠单元作为一个核心吸引和稳定其它摆动着的二级结构单元,形成折叠框架,其它的侧链将适应这个框架。

2. 疏水折叠模型(Hydrophobic Collapse Model)和熔融球态模型(Molten Globule Model):

该模型提出折叠是由疏水折叠开始的,即四体石蜡的疏水片段首先聚集在一起,然后进一步聚集长大,形成一种称为熔融球蛋白中间体。此种结构是一种具有二级结构但很少有三级相互作用的结构,疏水残基有很大一部分暴露在溶剂中。

三、蛋白质的去折叠(unfolding)和重折叠(refolding)

蛋白质的去折叠和重折叠亦即蛋白质的变性和复性。蛋白质的折叠状态只有在最适条件下才可存在。环境的改变,诸如温度、pH、变性剂、压力等作用都可使蛋白质的结构被破坏。

变性的物理基础是:pH的改变可使盐键断裂,使埋藏在蛋白质结构内部的非解离基团得到裂解而暴露出来,蛋白质去折叠以减少静电相互作用;变性剂如脲和盐酸胍等可使蛋白质结构中的氢键发生断裂,这增加了非极性分子包括氨基酸侧链的溶解度,减少了疏水相互作用;脲还可以深入到蛋白质分子的内部影响蛋白质分子的密堆积。此外,去污剂、有机溶剂、重金属、热、机械力、冷冻、超声、高压、辐射等均可引起蛋白质的变性。这些变性均不会破坏蛋白质的共价键而是只涉及到氢键、盐键、疏水相互作用、范得华相互作用等次级键的破坏。有些变性的蛋白质当变性因素被除去后又可自动地恢复到天然状态,这种现象称为蛋白质的复性(renaturation),这种复性即蛋白质折叠研究中的重折叠(refolding)。(1931年吴宪提出的蛋白质变性学说)

长期以来关于蛋白质的去折叠与折叠流行着一种二态模型。即认为在蛋白质变性过程中次级键之间存在着一种协同作用,当变性因素增强时最初并不能观察到蛋白质分子的结构有何变化,而当达到某一阈值时由于某些关键性的次级键的变化而导致蛋白质构象的急剧变化。二态模型可表示为U、N相互转化的模式, U 代表伸展态,N 代表天然态。二态模型认为从伸展态到天然态的过程或反之过程是一个完全协调的过程,没有可观察到的中间态。但近年来Baldwin 等人的研究发现,以上的二态模型需要进行修正。他们利用重氢交换快速混合技术以及二维核磁波谱技术等有效地捕获了结构稳定的折叠中间产物。具体做法如下:

1 将蛋白质溶于含4.2M GuHCl 的pD值为6.0的重水中,此时蛋白质多肽链完全伸展所有质子都被氘代;

2 加入0.1M 醋酸水溶液稀释使pH 值达6.2,此时蛋白质开始重折叠。

3 经过时间tf ,加入pH 值为9.3 的缓冲液,使所有溶剂可接近的质子在1ms 的时间内与氘交换。

4 降低pH值使交换中止,再折叠过程完成。利用二维核磁共振技术,分辨哪些残基被氘交换并形成了什么样的结构。

通过改变tf 可以确定哪些部分先于其它部分折叠,还可揭示不同中间体形成的顺序。例如,利用此技术他们证明了细胞色素C 折叠的第一步为多肽链链两端的两个螺旋先形成,而核糖核酸酶的折叠则是分子中部的b折叠片形成最早等。

四、蛋白质折叠的热力学

近年来人们对蛋白质的热力学性质越来越加以重视,其原因在于人们认识到蛋白

质是一个由成千上万个原子组成的宏观体系,它既有序又缺乏对称性。对它的了解象对其它热力学体系一样,仅了解它的结构是远远不够的,必须了解它们的热力学性质。

蛋白质结构的稳定性可用蛋白质的去折叠过程的自由能来表示,如以N表示天然构象,以D 表示伸展构象,则:

N 、D之间处于动态平衡。

天然态和伸展态之间有自由能之差ΔG

ΔG= GD-GN

由各种计算方法,人们可以计算在天然态和变性态的热量和定压热容、D>N 的数值、与溶剂的接触、有序度等,可通过这些计算结果作出一系列的氢键断裂、折叠程度、温度与有序度。以及在某一温度下与溶剂接触的影响等曲线,从而研究某一具体的蛋白质的折叠稳定性及其与周围环境的关系等。

近来对于解释蛋白质是如何快速的形成能量最低状态即天然状态,一个被广泛接受的模型是“漏斗模型”,即在一个漏斗状的能量表面上,蛋白可能通过一系列不同的路径进行折叠。这里有一篇相关文献:下载。

五、蛋白质折叠的识别

近年来已经报道了用一些新方法成功地由氨基酸顺序信息预测了它们的折叠构象。为了提供蛋白质结构预测的标准,1994 年来自世界各地的35个实验室的约150 名科学家在美国加州的Asilomar 开会对33 个蛋白质结构的预测问题进行总结。这些要进行结构预测的蛋白质从已知折叠和结构的蛋白到未知结构的新

蛋白,每个实验室要进行诸如蛋白质的结构类型、二级结构和原子坐标(三级结构)等的预测。在分配给各实验室进行结构预测时根据不同的情况向每个实验室提供诸如蛋白质名称、氨基酸顺序、晶体学家的建议和该蛋白的参考文献等。利用这些信息加上蛋白质结构的各种数据库,有的实验室的目标是根据同源蛋白的结构建立详细的三维结构模型;有的实验室则只需进行二级结构的预测等。所有这些预测的结果至少在会议前的一个月提交。由会议的结果获得了有关蛋白质折叠的识别问题,即将一个新的顺序与一个已知的特征化的三维结构花样的叠合识别在大多数情况下是比较成功的,在某些情况下是相当可靠的,尤其是当两个蛋白具有相同的重要氨基酸顺序时,它们总是在那些区域具有相同的三维结构。对于两个同源蛋白的折叠识别就如同找出这两个蛋白一个未知蛋白[Test Protein]和一个已知蛋白[Template Protein] 的氨基酸间的最佳对齐一样简单。当两个蛋白间的氨基酸顺序相同性降低时,不论氨基酸残基间的相似性如何,这些氨基酸残基仍占据在等效的位置。例如在未知蛋白中的一个异亮氨酸(Ile)取代已知蛋白中的缬氨酸(Val),这两个蛋白的折叠仍然是相同的。虽然在蛋白质三维结构的相同位置上如果一个精氨酸取代缬氨酸会影响折叠,但如果缬氨酸暴露于蛋白质的分子表面的话,则这种取代也不会对折叠有多大影响。实际上所需要的只是估计出没有同源性的两个蛋白之间的顺序相似性以估计出已知蛋白中的每个位置上的可允许的取代并加上插入和缺失。

六、蛋白质折叠识别的方式

人们发现折叠识别的方式之一是通过比较,从进化分叉机理上紧密相关蛋白的家族列出一个直接了当的取代/插入/缺失(sub-in-del)的表,然后进行对齐比较,这种对齐直接表示了在一致性顺序(consensus sequence) 中每个位置的功能容忍性与由进化所产生的顺序变化之间的关系。如果蛋白家族相对于氨基酸顺序的变化占主导地位,则基本可推断出其所有成员的结构特性,并推测出其折叠的共有特征。此外从取代/插入/缺失(sub-in-del)表中的多重对齐顺序可识别出可容忍的

插入/缺失片断(环和非结构连接片断)和那些不能容忍的插入/缺失片断(a螺旋和b链),再加上可识别的b链a螺旋和暴露于溶剂区的片断。

基于这样的一致性模型的结果加州大学旧金山分校的Fred Cohen 举出了五种或更多的同源蛋白的家族在没有晶体结构的情况下根据二级结构和环的预测方式,推测出了它们的结构。例如,他们把丙酮酸磷酸二激酶(pyruvate phosphate dikinase)的第四个结构域(domain 4)正确地定位于具有a/b TIM 桶花样的蛋白类型中;另外有其它的几个组也正确地预测了Chorismate Mutase (变位酶)是一个a结构的蛋白,还有一个组预测出该蛋白的两个相同亚基是通过

a-coiled-coil 的方式作为二体间相互作用的。

这种预测方法的最显著的特点是利用了可由同源蛋白家族序列所推断的大量的结构信息。虽然对于二级结构的预测似乎有较高的准确性,但往往有可能发生的严重错误,即把a螺旋预测为b折叠,或反之。利用同源蛋白家族序列就使得这种发生严重错误的可能性大大降低;此外由于环区域常常具有一个或多个插入/缺失因而可更好地进行预测。

另一种折叠的识别方式甚至是更成功的,即所谓的“Threading”。此方式主要是通过分析已知蛋白的由实验所测得的三维结构来估计可允许的sub-in-del,而非进行未知结构与其同源家族的多重对齐。早期的threading 方式之一是把每个位置的局部环境根据包埋疏水和二级结构分布情况分为几类,通过分析蛋白质结构数据以及在每种环境类型下20 种氨基酸残基中的每种残基占据的经验可能性,用作取代可能性的分值。近来这种研究已被另一种方法所取代,即用已知蛋白质结构中的氨基酸类型的经验配对势的大小来衡量取代的可能性。简言之,一个位置上可取代的容忍度是通过某个位置上和其残基周围的所有位置上的氨基酸类型间的相互作用自由能来估计的。

Threading 的过程包括将未知蛋白与具有最高分值的已知蛋白相对齐。为了使之与未知蛋白最好地吻合对齐,要通阅已知模板蛋白的文库。具有高分值的模板蛋白的折叠就可被考虑为最佳的未知蛋白的折叠的候选者。当用未知顺序本身来估计配对势,以及在未知顺序中的所有可能间隙在模板上threading 时,仅是一个计算时间问题。

最激动人心的基于threading 的预测是对一些已知蛋白(已知折叠方式)的预测都获得了极高的成功率。所预测的这些折叠形式包括4 个有TIM 桶的结构的蛋白枯草杆菌蛋白酶(Subtilisn)的前肽;Synaptotagmin(一种类免疫球蛋白)折叠;rtp (复制终止蛋白)等。有一个研究组从9 个预测中获得了5 个正确的预测结果。当然也出现了不同的两个组获得的结论出现矛盾的结果。

【核心知识】蛋白质折叠的热力学和动力学

蛋白质折叠的热力学和动力学 药学院 10489629 苟宝迪 蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。诺贝尔奖得主Anfinsen认为每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构。具有完整一级结构的多肽或蛋白质, 只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能. 如果这些生物大分子的折叠在体内发生了故障, 形成错误的空间结构, 不但将丧失其生物学功能, 甚至会引起疾病.蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。 蛋白质折叠的研究(图1[1]),是生命科学领域的前沿课题之一。不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。 图1 蛋白质折叠的热力学研究 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?X-射线晶体衍射是至今为止研究蛋白质结构最有效的方法, 所能达到的精度是其它任何方法所不能比拟的. 但是, 蛋白质分离纯化技术要求高, 蛋白质晶体难以培养,

晶体结构测定的周期较长, 从而制约了蛋白质工程的进展. 随着近代物理学、数学和分子生物学的发展, 特别是计算机技术的进步, 人们开始用理论计算的方法, 利用计算机来预测蛋白质的结构. 同源模建方法是最常用、最有效的蛋白质结构预测方法. 但是, 利用同源模建方法预测蛋白质结构时, 需用同源蛋白质的已知结构作为模板. 当缺乏这种模板结构时, 预测则很难奏效. 这是该方法的天生缺陷. 是否能从蛋白质序列出发, 直接预测蛋白质的结构? 从理论上最直接地去解决蛋白质的折叠问题,就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,利用分子生物学技术可以从互补DNA(cDNA)序列可以推定氨基酸序列,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,已经有人根据基因组的数据用统计方法重新估计了蛋白质折叠类型数目大约为1000种。 “蛋白质结构预测”属于理论方面的热力学问题,蛋白质分子结构本身的复杂性决定了结构预测的复杂性。目前结构预测的方法大致可分为两大类。一类是假设蛋白质分子天然构象处于热力学最稳定,能量最低状态,考虑蛋白质分子中所有原子间的相互作用以及蛋白质分子与溶剂之间的相互作用,采用分子力学的能量极小化方法,计算出蛋白质分子的天然空间结构。第二类方法是利用存入蛋白质数据库的数据进行预测相比,基于同源性的重复循环技术非常可靠地灵敏地进行结构预测。找出数据库中已有的蛋白质的空间结构与其一级序列之间的联系总结出一定的规律,逐级从一级序列预测二级结构,再建立可能的三维模型,根据总结出的空间结构与其一级序列之间的规律,排除不合理的模型,再根据能量最低原理得到修正的结构。但是,第一类方法遇到在数学上难以解决的多重极小值问题,而逐级预测又受到二级结构预测精度的限制。 图2[2]为蛋白质折叠研究的漏斗模型。从能量的角度看,漏斗表面上的每一个点代表蛋白质的一种可能的构象,变性状态的蛋白质构象位于漏斗顶面,漏斗最底部的点表示用X-射线单晶衍射或NMR测定的蛋白质天然构象,而漏斗侧面的斜率用来说明蛋白质折叠路径(图3[1])。 图2

蛋白质折叠机理的研究进展

蛋白质折叠机理的研究进展 凌发忠 (专业:生物化学与分子生物学学号:D201002034) 摘要:研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,多是由20种氨基酸以肽键连接成肽链。肽链在进一步空间卷曲折叠成为特定的空间结构,包括二级结构和三级结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。因此蛋白质分子往往具有特定的复杂的空间结构。但这并没有停止人类的探索,反而激励人们尝试寻找类似遗传密码子的蛋白质密码。本文将对蛋白质折叠的研究概况以及意义进行综述,并在此基础之上对今后蛋白质折叠的研究提出了一些自己的看法。 关键词:蛋白质折叠机理分子伴侣 1.引言 蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。[1]蛋白质像是一个微小而精密的机器。在蛋白质实现它的生物功能之前,它们会把自己装配起来。虽然蛋白质折叠是对所有的生物体系来说最重要的和最基本的过程,但这个过程对人类而言仍然是个未解之谜。此外,如果蛋白质没有正确的折叠会导致严重的后果,包括许多知名的疾病,比方阿兹海默症(Alzheimer's),疯牛病(Mad Cow, BSE),可传播性海绵状脑病(CJD),肌萎缩性脊髓侧索硬化症(ALS)和其他多种癌症及其相关的综合病症。这也成为近年来刺激人们探索蛋白质结构机理的一个重要原因之一。 2.蛋白质折叠研究概括 2.1分子生物学的中心法则 根据分子生物学中心法则,生物遗传信息的传递是由 DNA 到 RNA、RNA 到蛋白质多肽链、再由多肽链形成具有生物活性的蛋白质进行的。目前对前两者的过程已有相当深入和清晰的了解,但对后者尚不十分清楚。因此可以说蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。 通过蛋白质折叠的研究发现一级结构和空间结构之间存在某种确定的关系,那么是否像核苷酸通过“三联密码”决定氨基酸顺序那样有一套密码呢?有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。如果存在的话,那就可以直接从理论上去解决蛋白质的折叠问题,这是蛋白质研究最后几个尚未揭示的奥秘之一。现已经观察出 mRNA 的二级结构单元数与其编码的蛋白质二级结构(α-螺旋与β-折叠)单元数之间存在明显的相关性,二者的总符合率为 97.3%,相关系数达 0.99;其次,mRNA二级结构中5ˊ端至3ˊ端的每一发夹或复合发夹与PDB数据库所提供的蛋白质N端至C端的每一个α-螺旋或β-折叠之间存在几乎是一一对应的现象。通过上述数据可以看出,mRNA的三维结构和蛋白质的三维结构中确实存在某种相关。[2] 2.2蛋白质折叠的热力学和动力学 蛋白质折叠根本的科学问题是具有完整一级结构的多肽链又是如何折叠成为它特定的高级结构?这是一个折叠的动力学的问题,长期以来,主要用体外的实验方法研究,虽然已有四五十年,但至今尚未解决。 由 Anfinsen等[3]根据对 RNase 复性研究的经典实验提出的“热力学假说”认为一级结构决定高级结构。他们认为天然蛋白质多肽链所采取的构象是在一定环境条件下热力学上最

蛋白质分子自然构象和二级结构的计算分析及预测

蛋白质分子自然构象和二级结构的计算分析及预测本文是关于蛋白质分子的模拟计算,由两部分组成:一是计算蛋白质分子自然构象;一是蛋白质二级结构预测。对第一部分,提出了基于王朝更替策略的遗传算法来搜索蛋白质分子的自然构象。 二维toy模型是一种简化的蛋白质折叠的模型。随着环境的变化,一个王朝不能经久不衰,受这个的启发提出了王朝更替策略。 这个方法解决可能的早熟问题。为了测试这个方法,计算了蛋白质1AGT和1AHO,得到能量最小值分别为-20.8296、-21.0853,而这在文献中得到的最好结果是-19.6169和-15.1911,我们的值比文献中的值低了6-38%。 因此相信对应我们的最小自由能的构象是自然构象。在本文的第二部分,提出了基于氨基酸短序列的统计方法,用于预测蛋白质二级结构。 这是对基于单个氨基酸的传统统计方法的延伸。本文进行了大量的计算以确定最优短序列长度的选取,发现用3、4、5、6个氨基酸的短序列最好。 对于测试蛋白质组126 protein set、396 protein set、2180 protein set,得到的Q3二级结构预测准确度分别为89.9%、88.8%、89.2%,SOV准确度分别为84.3%、82.4%、84.1%。然后我们分析了新的蛋白质组153 protein set,这组蛋白质在PDB数据库中的发布日期晚于2007-11-15。 对这组新的蛋白质,本文计算结果的准确度Q3=73.7%、SOV=68.2%,好于常用的GORⅣ、GORⅤ、JPred这3个预测方法的平均结果Q3=69.7%、sov=66.9%。从计算结果看来所提出的短序列统计方法是一个很有希望的蛋白质二级结构预测方法。 随着已知蛋白质结构数据量的增加,这个方法的效果会更好。

浅谈蛋白质折叠的有关问题-最新范文

浅谈蛋白质折叠的有关问题 [摘要]本文对蛋白质折叠这一古老的领域的最新发展,尤其是分子伴侣的机理作了一番探讨,对一些新观点和新的实验事实作了介绍,并对一些实验实事作了一些思考,并提出了一些自己的看法。同时预测了结构生物学及技术手段的发展趋势。 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而”结构与功能”又强调”动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列为”21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的

新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不

错误折叠与蛋白质构象病

错误折叠与蛋白质构象病 生物物理系 2005级硕士研究生刘莹 摘要:许多疾病的发生是由蛋白质错误折叠引起的,这类疾病被称为蛋白质错误折叠病。蛋白质突变、泛素-蛋白酶和自噬功能的失常与蛋白质错误折叠的发生,异常蓄积和聚集有关。本文综述了蛋白质错误折叠和聚集的机制和部分蛋白质构象病产生的机理。 关键词:蛋白质错误折叠;分子伴侣;泛素-蛋白酶系统;溶酶体途径;Prion; 蛋白质是生物体的组成成分之一,在物质代谢、机体防御、血液凝固、肌肉收缩、细胞信息传递、个体生长发育、组织修复等方面均有不可替代的重要作用。具有完整一级结构的多肽或蛋白质,只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能。一旦蛋白质形成了错误的空间结构,将丧失其生物学功能,还会引起相关疾病,迄今已发现20 多种蛋白质的错误折叠与疾病相关,神经退行性疾病如阿尔茨海默病’s disease , AD) , 帕金森病(Parkinson’s disease , PD) ,亨廷顿舞蹈病(Huntington’sdisease ,HD) ,朊蛋白病(prion disease) ,家族性肌萎缩侧索硬化症(familial amyotrophic lateral sclerosis ,ALS) 等均与错误折叠的蛋白质聚合和沉积有关。 一蛋白质折叠与降解的机制 蛋白质的一级结构是其特定空间结构的基础,此外,肽链还需经过与翻译同时进行的和翻译完成后的化学加工,如形成二硫键,完成糖基化、羟基化、磷酸化等化学修饰。这些化学修饰以及蛋白质亚基的非共价键聚合、蛋白质的靶向输送等均与肽链的折叠密切相关。在细胞内大多数天然蛋白质能自发形成比较稳定的天然结构, 或被配体和代谢因子所稳定。但约10 %~20 %新合成的多肽链需要分子伴侣的帮助才能正确折叠。此外,约有20 %新合成的多肽链不能形成正确的三维结构而被蛋白酶降解,包括由于错误转录和翻译形成的不完全蛋白质,翻译后受到化学损伤或其他因素引起的失活、去折叠或折叠错误的蛋白质。在真核细胞中,多余的蛋白质主要通过泛素化(ubiquitination) 过程降解。分子伴侣和蛋白酶系统是保证蛋白质正常功能的两大质量控制系统。 1)分子伴侣:分子伴侣是与其他蛋白不稳定构象相结合并使之稳定的蛋白,它们通过控制结合和释放来帮助被结合多肽在体内的折叠、组装、转运或降解等。在真核细胞中,许多蛋白质在胞内合成后分泌至细胞外。在经高尔基体分泌之前这些蛋白质先转移至内质网中(endoplamic reticulum , ER) 。ER 中含有大量的分子伴侣和蛋白折叠的催化剂以促进有效的折叠。这些蛋白质均严格遵守内质网质量控制机制来进行折叠。该机制包含了一系列糖基化和脱糖基化的过程,可以防止错误折叠的蛋白质从细胞中分泌出来。分子伴侣可逆地与未折叠肽段的疏水部分结合随后松开,如此反复进行可防止错误的聚集发生,使肽链正确折叠。分子伴侣也可与错误聚集的肽段结合,使之解聚后再诱导其正确折叠。分子伴侣主要分为伴侣素家族(chaperonin ,Cpn) 、应激蛋白70 家族(Stress270 family) 、应激蛋白90 家族(Stress290 family) 及核质素、T 受体结合蛋白(TRAP) 等。 2)蛋白酶系统:大部分细胞内蛋白降解均通过泛素2蛋白酶体途径。错误折叠或已损伤的蛋白质经泛素标记后被蛋白酶体所降解。泛素是由76 个氨基酸组成的蛋白质,在所有类型细胞中均有表达。蛋白质与泛素分子共价结合得以降解。第一个泛素分子与蛋白质结合后,可连接另一泛素分子,如此继而形成多泛素链。多泛素标记的蛋白质含4 个或更多的泛素,可被26 S 蛋白酶体识别并降解。Proteasome 是由多个亚单位组成的大分子复合物,是依赖于ATP 的蛋白质降解系统, 大约有40 种相对分子质量为20 000~110 000 的多肽组成两种具有相同酶解活性的复合物:20 S 和26 S proteasomes。

一种稳定蛋白质的全部原子结构预测和折叠模拟

AMBER教程8:研究案例——一种稳定蛋白质的全部原子结构预测和折叠模拟这段教程展示的是一个研究实例,像您演示如何重现下述文章中的研究工作: Simmerling, C., Strockbine, B., Roitberg, A.E., J. Am. Chem. Soc., 2002, 124, 11258-11259 (https://www.wendangku.net/doc/fa65904.html,/10.1021/ja0273851) 我们建议您在开始本教程前首先阅读上述文章,获得该蛋白的氨基酸序列及其他有用信息。 警告1: 本教程中的一些计算耗时很长,我使用了由16个1.3GHz cup的SGI Altix进行了27小时计算才完成整个工作,因此如果您没有足够的计算能力,我强烈建议您在重复本教程的过程中使用我为您提供的out文件,以使得您能够流畅地完成整个教程。 警告2: 如果您重复本教程,我们并不能保证您能够精确地重现我的计算结果,在计算过程中,不同结构的计算机会产生不同的近似误差,从而使得计算过程搜索的是相空间的不同部位,但是模拟的平均结果是大致相同的。另外,尽管您完全重复了本教程也有可能无法获得论文中给出的结果,而且即便是我们自己也无法保证论文中的结果能够重现,这可能是因为我模拟的时间不够长,获取的仅仅是一个局部最小点,但是尽管如此,本教程的工作还是展示了蛋白折叠中一些有趣的行为。 背景 这篇论文应用AMBER FF99力场和经典的全原子动力学对一个肽的折叠过程进行了模拟。模拟的对象"trpcage"是一个由20个氨基酸构成的小肽,华盛顿大学的Andersen已经对这个蛋白做过了结构优化,它是现在已知最小的能够显示两种不同折叠状态的蛋白,而且这个蛋白在室温下可以稳定存在。该蛋白的小身量使得它成为模拟蛋白质折叠的绝嘉对象。当最早的关于这个蛋白的折叠的计算结果出炉时,对这个蛋白结构的实验测定还没有完成,所以整个模拟过程是在没有实验数据作为指导的情况下完成的。当蛋白的结构经由实验手段测定之后,人们惊喜地发现,计算机模拟的结果与实验测定的数值之间的RMSD值仅为1.4A。考虑到整个模拟过程是从蛋白的一级结构开始并且完全没有同源蛋白作为参考,这样的一个计算结果是非常精确的。 本教程中,我们试图重复论文中的结果,计算的设定都与论文非常接近,只是由于计算能力的限制,在教程中我们只进行一个50ns级的模拟。这已经足够重见蛋白质折叠的结果了。在这里必须提醒的是,由于模拟过程的长度所限,在不同的计算机,或在处理器数量不同的情况下,计算的结果将会是不同的。这是由分子动力学模拟的方法决定的,实施过程的细微变化或者浮点计算中舍入的变化都意味着由不同的计算机进行采样的动力学轨迹会随着时间的流逝发生不可预知的分化。这并非误差或者程序的bug,也并不意味着某一个模拟过程比其他的过程更合理。这仅仅意味着不同的模拟过程搜索的是相空间的不同区域,如果我们平均一下模拟的结果,或者运行更长时间的动力学过程,我们会在不同的机器上得到完全相同的结果,他们之间仅仅在过程上有所不同。因而我们说在本教程中我们很难精确的再现论文中的结果,但是我们试图重新创造那个重要的结果,即用AMBER程序来预测一个20氨基酸的小蛋白的空间结构是可以完成的。 那么记住这一点,让我们开始吧 第一步:构建起始结构 在以往的教程中,我们要么有一个可用的晶体结构,要么可以通过程序生成一个已经初步优化的结构。而在这个教程中我们要用的结构太复杂,没法通过手画的办法完成,同时我们也没有一个可用的PDB结构,因此我们就需要构建一个线形的肽链,非常幸运的是,在LEAP中有一个命令可以完成这个工作,就是sequence。 蛋白的一级结构序列在所列论文中可以查到,如下所示:

蛋白质的折叠

中国科学院生物物理研究所生物大分子国家重点实验室王志珍 导读 您知道蛋白质折叠吗?这是一个很新的词。新到什么程度?您可以上网到著名的不列颠百科全书网站检索一下proteinfolding(即蛋白质折叠),还没有相应的解释。 您知道“蛋白质折叠病”吗?疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。就是相关蛋白质的三维空间结构异常。这种三维空间结构异常是由于致病蛋白质分子通过分子间作用感染正常蛋白质而造成的。请注意,致病蛋白质分子与正常蛋白质分子的构成完全相同,只是空间结构不同。 您知道蛋白质折叠有多复杂吗?美国“科学美国人”曾经载文称,用当今最快的计算机模拟计算蛋白质折叠,要花一百年!而当今最快的计算机已经达到每秒几万亿甚至十几万亿次浮点运算的高速了。 对于生命奥秘的探索,将贯穿新世纪乃至新千年人类的历史。而蛋白质折叠,就是其中的一大课题。 请您认真阅读王志珍研究员的这篇文章。不要害怕肽键、肽链、分子伴侣这类专业名词,因为它们与您、您的健康息息相关。读完这篇文章,这些专业名词将成为您的朋友。 提要 研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。 通过“蛋白质结构预测”破译“第二遗传密码”,是蛋白质研究最后几个尚未揭示的奥秘之一。天津大学和中国科学院生物物理所的科学家已经做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。我国科学家在分子伴侣和折叠酶方面有特色的研究成果,也已经赢得了国际同行的注意。 外界环境的变化可以导致蛋白质空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构(氨基酸序列),这称为蛋白质的变性。变性的蛋白质往往成为一条伸展的肽链,在一定的条件下可以重新折叠成原有的空间结构并恢复原有的活性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代首先提出的。蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。造成疯牛病的Prion病蛋白可以感染正常蛋白而在蛋白质之间传染。研究蛋白质的折叠问题不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。 1分子生物学的中心法则 五十年代初运用X射线衍射技术解出了生命遗传物质脱氧核糖核酸(DNA)分子的三维空间结构,阐明了生物遗传的分子基础,揭示了这个最主要的生命活动的本质,从而开创了在分子水平上认识生命现象的新学科———分子生物学。分子生物学的出现是经典生物学转变成近代生物学的里程碑。尽管自然界的生物物种千千万万,生命现象繁杂纷飞,在分子水平研究生命,使我们认识到各种生命现象的基本原理却是高度一致的!从最简单的单细胞生物到最高等的人类,它们最基本最重要的组成物质都是蛋白质和核酸。核酸是生物体遗传信息的携带者,所有生物体能世代相传,就是依靠核酸分子可以精确复制的性质。蛋白质则是

浅谈蛋白质折叠的有关问题

浅谈蛋白质折叠的有关问题 【摘要】:蛋白质折叠问题是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X 射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态。 【关键字】:生物大分子分子伴侣蛋白质的折叠识别结合 【正文】 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。 1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。 二、蛋白质分子的折叠和分子伴侣的作用 蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。

蛋白质折叠及其动力学研究

蛋白质折叠及其动力学研究 修鹏(浙江大学航空航天学院) 摘要:蛋白质在生物学中充当重要的角色,而蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题。本文简述了蛋白质定义、蛋白质折叠的机制、折叠病以及相关的一些研究,论述了蛋白质折叠成核的假设,并简要介绍了蛋白质的动力学研究。蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,而折叠机制的深入研究将会促使人们发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。 关键词:蛋白质,蛋白质折叠,折叠病,分子动力学 引言 在现代生物化学、分子生物物理学领域中,蛋白质的折叠、解折叠问题是引起人们极大兴趣的一个研究课题,它也是生命科学领域的前沿课题之一。 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系;在概念上有热力学问题和动力学问题,有蛋白质在体外折叠和在细胞内折叠的问题,有理论研究和实验研究的问题。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?既然前者决定后者,一级结构和空间结构之间肯定存在某种确定的关系,有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,这是它的理论意义。 蛋白质分子在行使生物功能时,必须具有特定的二维空间结构,蛋白质折叠问题就是研究蛋白质天然结构是如何形成的,即具有一定氨基酸序列的多肽链如何逐步形成蛋白质所特有的空间结构。目前许多“构象病”或称“折叠病”都是由蛋白质折叠异常造成分子集聚甚至沉淀引起的,因此深入理解蛋白质折叠机制这一需求已经变得更加迫切。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。这是蛋白质折叠研究的实践意义。 一、蛋白质的定义

蛋白质折叠问题探讨(一)

蛋白质折叠问题探讨(一) 摘要:生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 关键字:蛋白质;生物大分子;分子伴侣;折叠问题 Abstract:Biologicalmacromolecule'sstructureandthefunctionresearchisunderstandsthemolecularl evelthefirstalikefoundation.Nottobiologicalmacromolecule'sstructureandthefunctionunderstandi ng,doesnothavethemolecularbiology.JustlikedoesnothavetheDNAdoublehelixstructurediscovery,h asnotinheritedthetransmissiontransmissionthecentraldogma,alsodoesnothavetoday'smolecularbi ology.Thestructurememberbyentersbythefirstmembertorestorespeacethethingandeventhemulti-Asianbase,themulti-membersrestorepeacethebodystructuralresearch.Atthesametime,studiedwit hdifficultyinthepastinmolecularlevellifemovementsituationalsoalongwithresearchthoroughandtec hnologicalmeansdevelopment,butbecamethehotspotgraduallybythedifficulty.Proteincrystallograp hyresearchalreadyfrombiologicalmacromoleculestaticstate(timestatistics)thestructureanalysisstar tsentersdynamic(timeresolution)thestructureanalysisanddynamicsanalysis.Inthe13thsessionofint ernationalbiophysicscongress's25symposiumhasmorethan50%toinvolvetheproteinthestructurean dthefunction,but“thestructureandthefunction”alsoemphasize“dynamics(Dynamics)”,namelydyna micstructureorstructuremovementandproteinmemberfunctionrelations,aswellastomacro-molecu leinteractioncontribution. keywords:Protein;Biologicalmacromolecule;Molecularcompanion;Foldingquestion前言 蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst 在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点

蛋白质折叠

蛋白质折叠 蛋白质折叠是生物化学和分子生物学的前沿课题之一,近年来蛋白质折叠的研究日益引起人们注意的原因是多方面的。其一,遗传信息由DNA 到RNA再到蛋白质的过程是分子生物学的核心,通常称作分子生物学的中心法则,经过多年的研究人们对由DNA到RNA再到多肽链的过程已基本清楚,但是蛋白质的功能不仅依赖于其一级结构而且与空间结构紧密相关;其二,虽然蛋白质中一定的氨基酸顺序决定了其特定的空间结构的假说已被人们广泛接受,但是怎样由一定的氨基酸排列的多肽链生成具有一定的空间结构的蛋白质的问题仍未解决。只有透彻地了解了多肽链是如何通过自身内在的信息及与周围环境(包括与各种蛋白质因子)的相互作用才能最终了解蛋白质的空间结构与功能的关系。 基因工程和蛋白质工程是近年来生物技术发展的产物和先导,但人们发现通过基因工程和蛋白质工程所获得的多肽链有时并不能自身卷曲成有一定空间结构和完整生物学功能的蛋白质,其原因在于在多肽链的折叠上出了问题。因此从基因工程和蛋白质工程产物的翻译后加工的角度也要求人们了解蛋白质折叠的机理。 一、蛋白质复杂的三级结构信息贮存于氨基酸序列中 关于氨基酸序列与蛋白质空间结构的关系研究最早的工作是由C.Anfinsen (1960)关于核糖核酸酶的研究工作。他研究了核糖核酸酶的去折叠和重折叠过程。该酶是由124 个氨基酸组成的蛋白质,有四对二硫键,其组合有 105{[(2×4)!/24×4!]=105}种的可能方式。当用还原剂如b-巯基乙醇 (HOCH2-CH2-SH)作用时,二硫键被部分还原。继续加大b-巯基乙醇的量,二

硫键可全部被还原。用8 M 的脲加b-巯基乙醇处理多肽链,分子内四对二硫键可全部被还原,肽链伸展为无规卷曲,酶活性完全丧失。但如果将脲和b-巯基乙醇透析掉并在空气中进行氧化,多肽链可又重新折叠为一个具有特定的三维结构和催化活性的酶,它与未经处理的酶具有相同的溶解度并可结晶并获得相同的X-射线衍射图,其吸收光谱也相同。这是一个很好的蛋白质一级结构序列决定其三维结构的例子,即顺序决定构象。Anfinsen因此而获得1972年诺贝尔化学奖。 二、关于蛋白质折叠的理论模型 各种实验及理论计算均证明蛋白质的天然构象在热力学上是最稳定的。那么一个具有特定的生物学活性和功能的蛋白质究竟是如何找到这样一种热力学稳定的构象的呢?这至今仍是一个未解决的问题。我们可以以一个由100 个氨基酸组成的小蛋白质来进行讨论和考虑:假设在这100 个氨基酸组成的小蛋白质中每个氨基酸残基有三种不同的构象的话,那么总的构象数将是3100 =5×1047 ,如果从一种构象变为另一种构象所需要的时间为10 -13秒,那么在上述的构象空间寻求一遍需要5×1047 ×10-13=5×1034 秒=1.6×1027 年!而实际上蛋白质的折叠是在10-1~10 3 秒内完成的。由此可见,蛋白质的折叠不是一个对各种可能构象进行随机采样的过程。 关于蛋白质的折叠人们提出了各种的折叠模型其主要有: 1. 框架模型(Framework model): P. S. Kim 和R. L. Baldwin 于1982 年提出了蛋白质折叠的框架模型,该模型认为在蛋白质折叠的过程中大约有15个氨基酸残基的多肽链首先折叠为瞬态的a螺旋或b片层结构的二级结构单元,然后这种瞬态的结构通过扩散彼此接近形成aa、ab 或bb的复合结构而获得稳定。这种复合结构又称为折叠单元。折叠单元作为一个核心吸引和稳定其它摆动着的二级结构单元,形成折叠框架,其它的侧链将适应这个框架。

蛋白质的折叠

蛋白质的折叠 赵顺喆 摘要:蛋白质是生命机体的基本组成部分,它是连接分子运作和生物功能的一个主要组成部分, 在生物体内占有特殊的地位。而蛋白质作为生命信息的表达载体,它折叠所形成的特定空间结构是其具有生物学功能的基础。然而,蛋白质通过什么方式折叠的问题却由于理论和实践的种种困难成为当今科学界的一大难题。本文简要介绍了蛋白质折叠的基础知识,折叠机理研究的几个理论模型,以及研究的进展。 关键词:组织层次、理论模型、天然态、去折叠态、熔球态 前言:蛋白质分子的折叠过程是指蛋白质分子从一般的状态变化到基态的复杂过程.它能使我们了解氨基酸序列是如何决定蛋白质分子结构,预测其结构及结构所表现出来的蛋白质分子的性能.在这个过程中氨基酸与氨基酸紧密接触(Residue -residue contact)的相互作用起着十分重要的作用。 蛋白质在生物体内,生命信息的流动可以分为两个部分:第一部分是储存于DNA序列中的遗传信息通过转录和翻译传入蛋白质的一级序列中,这是一维信息之间的传递,三联子密码介导了这一传递过程;第二部分是肽链经过疏水塌缩、空间盘曲、侧链叠集等折叠过程形成非常特定的复杂的空间结构,同时获得生物活性,从而将生命信息表达出来;因此这个一维信息向三维信息的转化过程是表现生命活力所必需的。 1.蛋白质的组织层次 蛋白质有着各异的三维空间结构,这种结构称之为天然态结构,并且其内部结构组织具有层次性,因此我们引入组织层次的概念。蛋白质结构可以分为四个组织层次,即一级结构、二 级结构、三级结构和四级结构。 1.1一级结构 一级结构又称初级结构(primary structure),指形成肽链的氨基酸序列,即指蛋白质分子中氨基酸残基的顺序,包括肽链中氨基酸的数目、种类和顺序。肽键是蛋白质中氨基 酸之间的主要连接方式,肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结 构。 蛋白质的一级结构是由编码它的基因确定的,不同生物同种(或同源)蛋白质一级结构之间的差别可以反映出进化关系。 1.2二级结构 二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。最基本的二级结构类型有α-螺旋结构和β-折叠结构,两种构象均由氢键维持。此外还有β-转角和自由回转(指没 有一定规律的松散肽链结构)。蛋白质分子主链的紧密填埋使α 螺旋和β 片层结构更加稳 定; 同时, 也只有α 螺旋和β 片层结构这样的规则结构才能使氨基酸多肽链在空间排布 更紧密。 α-螺旋是蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与 多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。螺旋中的每个肽键均参与 氢键的形成以维持螺旋的稳定。 α-螺旋β-折叠

关于蛋白质折叠机制的研究

蛋白质体内折叠过程影响因素的研 究进展

摘要 对于多肽链到底是如何折叠形成有生物学活性的蛋白质这一问题,近年来一直研究不断。蛋白质的错误折叠可能导致某些疾病的发生,阐明蛋白质折叠的机制将有助于我们治疗甚至从遗传上根除这些疾病。关于蛋白质折叠的研究有体外实验和体内研究方面,而细胞内蛋白质折叠机制的研究显得尤为重要,关于蛋白质折叠体内机制的研究已经取得了许多令人欣喜的进展。本文总结了近几年来在研究影响蛋白质体内折叠过程的一些因素上的最新进展,包括已被证实的概念和突破传统的新理论,以及一些有创新性的预测理论。 How polypeptide chainsfold intobiologically activeproteins? In recent years,scientistshave been studyingthe issue constantly. Misfoldedproteinsmay lead tothediseases. Toclarifythe mechanismofproteinfoldingwill help us totreatmentand eveneradicationofthese diseasesfrom the geneticlevel. There’re two research aspect of protein folding, in vitro andin vivo. In these areas, theprotein folding mechanismsinthecellsis particularly important. Besides, the research about themechanismofproteinfoldingin the cell has important value, and which has been madegratifyingprogress. This paper summarizesthe latest progressin recent years insome of the factorsthat affectthefolding processofproteinsin vivo, including newconcepts andbreak the traditionaltheoryhas been confirmed, as well as someinnovativeprediction theory. 关键字蛋白质折叠机制体内影响因素研究进展 protein folding mechanisms considering folding in thecellresearch progress

讲稿3-蛋白质的折叠

第三章蛋白质的折叠 进行正确的折叠和组装未折叠、错误折叠和部分折叠或组装从内质网运输到高尔基体选择性地留在内质网 最终运输到细胞表面或其他部位。或者从高尔基体运回内质网。 运回细胞质 在蛋白体(ptoteasome)中降解。 第一节概论 Anfinsen的实验:变性使蛋白质丧失其活力, 这是它的三维结构受到破坏的结果。 原有的4个二硫键还原成8个疏基 酶的活力由于复性而恢复

结论:aa排列顺序决定特定的空间结构; 天然三维结构得到重新建立,它是多肽链自发折叠的结果。 折叠形成正确的三维空间结构才可能具有正常的生物学功能。 如果折叠在体内发生故障, 形成错误的空间结构; 不但将丧失其生物学功能, 甚至会引起疾病。 异常的三维空间结构引发折叠病:疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等。 那么,【问题】aa顺序能否代表着功能 ? ? ? 多肽链的aa顺序并不能直接表现出功能,功能只是多肽链折叠成特定的三维结构后才出现的,但多肽链的aa包含了它折叠全部信息。 蛋白质折叠的研究(图)的应用价值

未折叠状态 U 中间状态I 天然构象N 狭义的定义研究蛋白质特定三维空间结构形成的规律、 稳定性和与其生物活性的关系。 “aa顺序决定蛋白空间结构”原则 核糖体上释放的多肽链,按照一级结构中aa侧链的性质,自主卷曲,形成一定的空间结构。 过去观点 蛋白质空间结构的形成靠其一级结构决定,不需要另外的信息。

近来发现 细胞内蛋白质正确装配都需“分了伴娘”蛋白帮助才能完成。 贡献:对新生肽段能够自发进行折叠的新发现从根本上修正了传统的概念。 归功于X射线、晶体衍射和各种波谱技术以及电子显微镜技术等。 尤其是NMR(核磁共振)用于研究蛋白质,能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。 NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程:包括:主链和侧链的运动; 在各种不同的温度和压力下蛋白质的折叠和去折叠过程。 蛋白质大分子的结构分析: ●解出某个具体的结构, ●更关注结构的涨落和运动。 【例1】运输小分子的酶和蛋白质通常存在着两种构象: 结合配体的构象;未结合配体的构象。 一种构象内的结构涨落是构象转变所必需的前奏, 需要把光谱学,波谱学和X-射线结构分析结合起来 研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态。 【例2】了解蛋白质是如何折叠的, 就必须知道折叠时几个基本过程的时间尺度和机制,包括:二级结构(螺旋和折叠)的形成、卷曲、长程相互作用以及未折叠肽段的全面崩溃。 应用多种技术如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。

相关文档