文档库 最新最全的文档下载
当前位置:文档库 › 北京科技大学MATLAB数学实验报告六次全部

北京科技大学MATLAB数学实验报告六次全部

北京科技大学MATLAB数学实验报告六次全部
北京科技大学MATLAB数学实验报告六次全部

最新版北京科技大学第三次数学实验报告

《数学实验》报告 实验名称Matlab三维曲面绘图 学院东凌经济管理学院 专业班级 姓名 学号 2016年3月

一、【实验目的】 1.了解并掌握Matlab三维曲面绘图; 2.进一步掌握绘图程序格式和意义; 3.初步掌握meshgrid, mesh, surf, colordef, colormap, light等使用。 二、【实验任务】 79-7 79-9 三、【实验程序】 79-7 t1=-3:0.1:3; [x1,y1]=meshgrid(t1); z1=x1.^2+y1.^2;

subplot(1,2,1);colordef white;light('position',[20,20,5]);colormap(pin k); mesh(x1,y1,z1),title('x^2+3.*y^2'); subplot(1,2,2);colordef white;light('position',[20,20,5]);colormap(pin k); surf(x1,y1,z1),title('x^2+3.*y^2') 79-9 t=-2:0.1:2; [x,y]=meshgrid(t); z1=5-x.^2-y.^2; subplot(1,3,1),mesh(x,y,z1),title('抛物面') z2=3*ones(size(x)); subplot(1,3,2),mesh(x,y,z2),title('平面') r0=abs(z1-z2)<=0.2; zz=r0.*z2;yy=r0.*y;xx=r0.*x; subplot(1,3,3),plot3(xx,yy,zz,'x'),title('交线') 四、【实验结果】 79-1

MATLAB实验报告50059

实验一MATLAB操作基础 实验目的和要求: 1、熟悉MATLAB的操作环境及基本操作方法。 2、掌握MATLAB的搜索路径及设置方法。 3、熟悉MATLAB帮助信息的查阅方法 实验内容: 1、建立自己的工作目录,再设置自己的工作目录设置到MA TLAB搜索路径下,再试 验用help命令能否查询到自己的工作目录。 2、在MA TLAB的操作环境下验证课本;例1-1至例1-4,总结MATLAB的特点。 例1-1

例1-2 例1-3 例1-4

3、利用帮助功能查询inv、plot、max、round等函数的功能。 4、完成下列操作: (1)在matlab命令窗口输入以下命令: x=0:pi/10:2*pi; y=sin(x); (2)在工作空间窗口选择变量y,再在工作空间窗口选择回绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y的图形,并分析图形的含义。

5、访问mathworks公司的主页,查询有关MATLAB的产品信息。 主要教学环节的组织: 教师讲授实验目的、开发环境界面、演示实验过程,然后同学上机练习。 思考题: 1、如何启动与退出MA TLAB集成环境? 启动: (1)在windows桌面,单击任务栏上的开始按钮,选择‘所有程序’菜单项,然后选择MA TLAB程序组中的MA TLABR2008b程序选项,即可启动 MATLAB系统。 (2)在MA TLAB的安装路径中找到MA TLAB系统启动程序matlab.exe,然后运行它。 (3)在桌面上建立快捷方式后。双击快捷方式图标,启动MA TLAB。 退出: (1)在MA TLAB主窗口file菜单中选择exitMATLAB命令。 (2)在MA TLAB命令窗口中输入exit或quit命令。 (3)单击MATLAB主窗口的关闭按钮。 2、简述MATLAB的主要功能。 MATLAB是一种应用于科学计算领域的数学软件,它主要包括数值计算和符 号计算功能、绘图功能、编程语言功能以及应用工具箱的扩展功能。 3、如果一个MATLAB命令包含的字符很多,需要分成多行输入,该如何处理?

MATLAB实验练习题(计算机)-南邮-MATLAB-数学实验大作业答案

“”练习题 要求:抄题、写出操作命令、运行结果,并根据要求,贴上运行图。 1、求230x e x -=的所有根。(先画图后求解)(要求贴图) >> ('(x)-3*x^2',0) = -2*(-1/6*3^(1/2)) -2*(-11/6*3^(1/2)) -2*(1/6*3^(1/2)) 3、求解下列各题: 1)30 sin lim x x x x ->- >> x;

>> (((x))^3) = 1/6 2) (10)cos ,x y e x y =求 >> x; >> ((x)*(x),10) = (-32)*(x)*(x) 3)2 1/2 0(17x e dx ?精确到位有效数字) >> x; >> ((((x^2),0,1/2)),17) =

0.54498710418362222 4)4 2 254x dx x +? >> x; >> (x^4/(25^2)) = 125*(5) - 25*x + x^3/3 5)求由参数方程arctan x y t ??=? =??dy dx 与二阶导 数22 d y dx 。 >> t; >> ((1^2))(t); >> ()() = 1

6)设函数(x)由方程e所确定,求y′(x)。>> x y; *(y)(1); >> ()() = (x + (y)) 7) sin2 x e xdx +∞- ? >> x; >> ()*(2*x); >> (y,0) = 2/5

8) 08x =展开(最高次幂为) >> x (1); taylor(f,0,9) = - (429*x^8)/32768 + (33*x^7)/2048 - (21*x^6)/1024 + (7*x^5)/256 - (5*x^4)/128 + x^3/16 - x^2/8 + 2 + 1 9) 1sin (3)(2)x y e y =求 >> x y; >> ((1)); >> ((y,3),2) =

Matlab数学实验报告一

数学软件课程设计 题目非线性方程求解 班级数学081 姓名曹曼伦

实验目的:用二分法与Newton迭代法求解非线性方程的根; 用Matlab函数solve、fzero、fsolve求解非线性方程(组)的解。 编程实现二分法及Newton迭代法; 学会使用Matlab函数solve、fzero、fsolve求解非线性方程(组)的解。 通过实例分别用二分法及迭代法解非线性方程组并观察收敛速度。 实验内容: 比较求exp(x)+10*x-2的根的计算量。(要求误差不超过十的五次方) (1)在区间(0,1)内用二分法; (2)用迭代法x=(2-exp(x))/10,取初值x=0 。 试验程序 (1)二分法: format long syms x s=exp(x)+10*x-2 a=0; b=1; A=subs(s,a) B=subs(s,b) f=A*B %若f<0,则为由根区间 n=0; stop=1.0e-5; while f<0&abs(a-b)>=stop&n<=100; Xk=(a+b)/2; %二分 M= subs(s, Xk); if M* A<0 symbol=1 %若M= subs(s, Xk)为正,则与a二分 b= Xk else symbol=0 % 若M= subs(s, Xk)为负,则与b二分 a= Xk end n=n+1 end Xk n (2)牛顿迭代法; format long

syms x s= (2-exp(x))/10; %迭代公式 f=diff(s); x=0; %迭代初值 a=subs(f,x); %判断收敛性(a是否小于1) s=(2-exp(x))/10; stop=1.0e-5; %迭代的精度 n=0; while a<1&abs(s-x)>=stop&n<=100; x=s %迭代 s=(2-exp(x))/10; n=n+1 end 实验结果: (1)二分法: symbol =1 b =0.50000000000000 n =1 symbol =1 b =0.25000000000000 n =2 symbol =1 b =0.12500000000000 n =3 symbol =0 a =0.06250000000000 n =4 symbol =1 b =0.09375000000000 n =5 symbol =0 a =0.07812500000000 n =6 symbol =1 b =0.09054565429688 n =15 symbol =1 b =0.09053039550781 n =16 symbol =0 a =0.09052276611328 n =17 Xk =0.09052276611328 n =17 (2)迭代法 由x =0.10000000000000 n =1 x =0.08948290819244 n =2 x =0.09063913585958 n =3 x =0.09051261667437 n =4 x =0.09052646805264 n =5 试验结果可见用二分法需要算17次,而用迭代法求得同样精度的解仅用5次,但由于迭代法一般只具有局部收敛性,因此通常不用二分法来求得非线性方程的精确解,而只用它求得根的一个近似解,再用收敛速度较快的迭代法求得其精确解。

c++大作业学生实验报告

学生实验报告 实验课名称: C++程序设计 实验项目名称:综合大作业——学生成绩管理系统专业名称:电子信息工程 班级: 学号: 学生: 同组成员: 教师:

2011 年 6 月 23 日 题目:学生成绩管理系统 一、实验目的: (1)对C++语法、基础知识进行综合的复习。 (2)对C++语法、基础知识和编程技巧进行综合运用,编写具有一定综合应用价值的稍大一些的程序。培养学生分析和解决实际问题的能力,增强学生的自信心,提高学生学习专业课程的兴趣。 (3)熟悉掌握C++的语法和面向对象程序设计方法。 (4)培养学生的逻辑思维能力,编程能力和程序调试能力以及工程项目分析和管理能力。 二、设计任务与要求: (1)只能使用/C++语言,源程序要有适当的注释,使程序容易阅读。 (2)至少采用文本菜单界面(如果能采用图形菜单界面更好)。 (3)要求划分功能模块,各个功能分别使用函数来完成。 三、系统需求分析: 1.需求分析: 为了解决学生成绩管理过程中的一些简单问题,方便对学生成绩的管理 (录入,输出,查找,增加,删除,修改。) 系统功能分析: (1):学生成绩的基本信息:学号、、性别、C++成绩、数学成绩、英语成绩、 总分。 (2):具有录入信息、输出信息、查找信息、增加信息、删除信息、修改信息、 排序等功能。 2.系统功能模块(要求介绍各功能) (1)录入信息(Input):录入学生的信息。 (2)输出信息(Print):输出新录入的学生信息。 (3)查找信息(Find):查找已录入的学生信息。 (4)增加信息(Add):增加学生信息。 (5)删除信息(Remove):在查找到所要删除的学生成绩信息后进行删除并输出删除后其余信息。 (6)修改信息(Modify):在查到所要修改的学生信息后重新输入新的学生信息从而进行修改,然后输出修改后的所有信息。 (7)排序(Sort):按照学生学号进行排序。 3.模块功能框架图

北京科技大学参数检测实验报告全

北京科技大学参数检测实验报告全

实验六工业热电偶的校验 摘要:本实验重在了解热电偶的工作原理并通过对热电偶进行校正验证镍铬热电偶的准确性并了解补偿导线的使用方法。 关键词:热电偶校正标准被校补偿导线 1 引言 (1)实验目的 1.了解热电偶的工作原理、构造及使用方法。了解热电势与热端温度的关系。了解对热电偶进行校正的原因及校正方法,能独立地进行校正实验和绘制校正曲线。 2.了解冷端温度对测量的影响及补偿导线的使用方法。 3.通过测量热电势掌握携带式直流电位差计的使用方法。 (2)实验设备 1.铂铑-铂热电偶(标准热电偶)1支 2.镍铬-镍硅热电偶(被校正热电偶)1支 3.热电偶卧式检定炉(附温度控制器)1台 4.携带式直流电位差计 1台 5.酒精温度计 1支 6.广口保温瓶 1个 7.热浴杯及酒精灯各1个 2 内容 1.了解直流电位差计各旋钮、开关及检流计的作用,掌握直流电位差计的使用方法。 2.热电偶校正 (1)实验开始,给检定炉供电,炉温给定值为400oC。当炉温稳定后,用电位差计分别测量标准热电偶和被校正热电偶的热电势,每个校正点的测量不得少于四次。数据记录于表6-1。 (2)依次校正600oC、 800oC、 1000oC各点。 (3)将测量电势求取平均值并转换成温度,计算误差,根据表6-3判断被热电偶是否合格。绘制校验曲线。 3.热电偶冷端温度对测温的影响及补偿导线的使用方法。 (1)1000oC校正点作完后,保持炉温不变。测量热浴杯中的水温,然后用电位差计分别测量镍铬-镍硅热电偶未加补偿导线和加补偿导线的热电势。数据记录于表6-2中。 (2)用酒精灯加热热浴杯,当水温依次为30oC、 40oC、 50oC时,用电位差计分别测量镍铬-镍硅热电偶未加补偿导线和加补偿导线的热电势。数据记录于表6-2中。 (3)用铂铑-铂热电偶测量炉温,检查实验过程中炉温是否稳定,分析若炉

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

西京学院数学软件实验任务书

实验二十一实验报告 一、实验名称:Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。 二、实验目的:进一步熟悉Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.Romberg 积分法: 龙贝格积分法是用里查森外推算法来加快复合梯形求积公式的收敛速度,它的算法如下,其中()i m T 是通过一系列逼近原定积分的龙贝格分值. 计算(0)1[()()]2 b a T f a f b -= + 对1,2,3,k n = ,计算下列各步: 21()(1)1 111 1(21)()[()]222k k k k k j b a j b a T T f a ---=---=++∑

对1,2,,m k = 和,1,2,,1i k k k =-- ,计算111 441 m i i i m m m m T T T --+-=- 随着计算的步骤的增加,()i m T 越来越逼近积分()b a f x dx ?。 2.Gauss 型积分法: 高斯积分公式的思想是用n 个不等距的节点123,,,n x x x x 对被积函数进行插值,然后对插值后的函数进行积分,其积分公式为: 1 1 1 ()()n k k k f x dx A f x -=≈∑? 如果积分区间不是[1,1]-,则需转换到此区间: 11()()222 b a b a b a b a f x dx f t dt ---+= +? ? 其中系数k A 、节点k x 与n 的关系如下表所示: 3.高斯-切比雪夫积分法: 第一类切比雪夫积分形式为: 1 1 ()()n k k k f x dx A f x -=≈∑? 其中k A n π= ,21cos 2k k x n π-= 4.高斯-拉盖尔积分法: 高斯-拉盖尔公式有两种形式: 1 ()()n x k k k e f x dx A f x +∞ -=≈∑?

MATLAB实验练习题(计算机) 南邮 MATLAB 数学实验大作业答案

“MATLAB”练习题 要求:抄题、写出操作命令、运行结果,并根据要求,贴上运行图。 1、求230x e x -=的所有根。(先画图后求解)(要求贴图) >> solve('exp(x)-3*x^2',0) ans = -2*lambertw(-1/6*3^(1/2)) -2*lambertw(-1,-1/6*3^(1/2)) -2*lambertw(1/6*3^(1/2)) 2、求下列方程的根。 1) 5510x x ++= a=solve('x^5+5*x+1',0);a=vpa(a,6)

1.10447+1.05983*i -1.00450+1.06095*i -.199936 -1.00450-1.06095*i 1.10447-1.05983*i 2) 1 sin0 2 x x-=至少三个根 >> fzero('x*sin(x)-1/2', 3) ans = 2.9726 >> fzero('x*sin(x)-1/2',-3) ans = -2.9726 >> fzero('x*sin(x)-1/2',0) ans = -0.7408

3)2sin cos 0x x x -= 所有根 >> fzero('sin(x)*cos(x)-x^2',0) ans = >> fzero('sin(x)*cos(x)-x^2',0.6) ans = 0.7022 3、求解下列各题: 1)30sin lim x x x x ->- >> sym x; >> limit((x-sin(x))/x^3) ans = 1/6 2) (10)cos ,x y e x y =求 >> sym x; >> diff(exp(x)*cos(x),10) ans =

数学实验报告-6

《数学实验》报告 实验名称常微分方程的求解 学院材料科学与工程 专业班级材料1209 姓名曾雪淇 学号 41230265 2014年 5月

一、【实验目的】 掌握常微分方程求解和曲线拟合的方法,通过MATLAB求解一阶甚至是二阶以上的高阶微分方程。 二、【实验任务】 P168习题24,习题27 三、【实验程序】 习题24:dsolve('Dy=x*sin(x)/cos(y)','x') 习题27:function xdot=exf(t,x) u=1-2*t; xdot=[0,1;1,-t]*x+[0 1]'*u; clf; t0=0; tf=pi; x0t=[0.1;0.2]; [t,x]=ode23('exf',[t0,tf],x0t) y=x(:,1); Dy=x(:,2); plot(t,y,'-',t,Dy,'o') 四、【实验结果】 习题24:ans = -asin(-sin(x)+x*cos(x)-C1) 习题27: t = 0.014545454545455 0.087272727272727 0.201440113885487 0.325875614772746 2

0.462108154525786 0.612058884594697 0.777820950596408 0.962141414226468 1.148168188604642 1.276725612086219 1.405283035567796 1.518837016595503 1.670603286779598 1.860122410374634 2.089084425249819 2.356884067351406 2.654570124097287 2.968729389456267 3.141592653589793 x = 0.100000000000000 0.200000000000000 0.103024424647132 0.215787876799993 0.121418223032493 0.288273863806750 0.159807571438023 0.379808018692957 0.211637169341158 0.447918********* 0.275587792496926 0.484712850141869 0.348540604264411 0.481263088285519 3

matlab数学实验报告5

数学实验报告 制作成员班级学号 2011年6月12日

培养容器温度变化率模型 一、实验目的 利用matlab软件估测培养容器温度变化率 二、实验问题 现在大棚技术越来越好,能够将温度控制在一定温度范围内。为利用这种优势,实验室现在需要培植某种适于在8.16℃到10.74℃下能够快速长大的甜菜品种。为达到实验所需温度,又尽可能地节约成本,研究所决定使用如下方式控制培养容器的温度:1,每天加热一次或两次,每次约两小时; 2,当温度降至8.16℃时,加热装置开始工作;当温度达到10.74℃时,加热装置停止工作。 已知实验的时间是冬天,实验室为了其它实验的需要已经将实验室的温度大致稳定在0℃。下表记录的是该培养容器某一天的温度 时间(h)温度(℃)时间(h)温度(℃)09.68 1.849.31 0.929.45 2.959.13 3.878.981 4.989.65 4.988.811 5.909.41 5.908.691 6.839.18 7.008.5217.938.92 7.938.3919.048.66 8.978.2219.968.43 9.89加热装置工作20.848.22 10.93加热装置工作22.02加热装置工作10.9510.8222.96加热装置工作12.0310.5023.8810.59 12.9510.2124.9910.35 13.889.9425.9110.18 三、建立数学模型 1,分析:由物理学中的傅利叶传热定律知温度变化率只取决于温度

差,与温度本身无关。因为培养容器最低温度和最高温度分别是:8.16℃和10.74℃;即最低温度差和最高温度差分别是:8.16℃和10.74℃。而且,16.8/74.10≈1.1467,约为1,故可以忽略温度对温度变化率的影响2, 将温度变化率看成是时间的连续函数,为计算简单,不妨将温度变化率定义成单位时间温度变化的多少,即温度对时间连续变化的绝对值(温度是下降的),得到结果后再乘以一系数即可。 四、问题求解和程序设计流程1)温度变化率的估计方法 根据上表的数据,利用matlab 做出温度-时间散点图如下: 下面计算温度变化率与时间的关系。由图选择将数据分三段,然后对每一段数据做如下处理:设某段数据为{(0x ,0y ),(1x ,1y ),(2x , 2y ),…,(n x ,n y )},相邻数据中点的平均温度变化率采取公式: 温度变化率=(左端点的温度-右端点的温度)/区间长度算得即:v( 2 1i i x x ++)=(1+-i i y y )/(i i x x - +1). 每段首尾点的温度变化率采用下面的公式计算:v(0x )=(30y -41y +2y )/(2x -0x )v(n x )=(3n y -41+n y +2+n y )/(n x -2-n x )

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告 一、实验目的 1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。 2.学会运用MATLAB表示常用连续时间信号的方法 3.观察并熟悉一些信号的波形和特性。 4.学会运用MATLAB进行连续信号时移、反折和尺度变换。 5.学会运用MATLAB进行连续时间微分、积分运算。 6.学会运用MATLAB进行连续信号相加、相乘运算。 7.学会运用MATLAB进行连续信号的奇偶分解。 二、实验任务 将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。 三、实验内容 1.MATLAB软件基本运算入门。 1). MATLAB软件的数值计算: 算数运算 向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。 矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开; 矩阵的不同行之间必须用分号”;”或者ENTER分开。2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。 举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名” 2.MATLAB软件简单二维图形绘制 1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y) 2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表 示第p个区域,表达为subplot(mnp)或者subplot(m,n,p) 3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin]) 4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’) 5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’) 6).输出:grid on 举例1: 举例2:

北京科技大学数学实验第五次讲解学习

北京科技大学数学实 验第五次

精品资料 《数学实验》报告 实验名称 Matlab拟合与插值 2013年12月

一、【实验目的】 1.学习Matlab的一些基础知识,主要多项式及其相关计算等; 2.熟悉Matlab中多项式的拟合,编写一些相关的Matlab命令等; 3.熟悉Matlab中多项式的插值,并编写一些相关的Matlab命令等; 4.完成相关的练习题。 二、【实验任务】 1.在钢线碳含量对于电阻的效应的研究中,得到以下数据.分别用一次、三次、五次多项式拟合曲线来拟合这组数据并画出图形,计算当x=0.45时的电阻值. 碳含量 0.10 0.30 0.40 0.55 0.70 0.80 0.95 x 电阻y 15 18 19 21 22.6 23.8 26 2.在某种添加剂的不同浓度之下对铝合金进行抗拉强度试验,得到数据如下,现分别使用不同的插值方法,对其中没有测量的浓度进行推测,并估算出浓度X=18及26时的抗压强度Y的值. 浓度X 10 15 20 25 30 抗压强度Y 25.2 29.8 31.2 31.7 29.4 3.用不同方法对在(-3,3)上的二维插值效果进行比较.

三、【实验程序】 1.在钢线碳含量对于电阻的效应的研究中,得到以下数据.分别用一次、三次、五次多项式拟合曲线来拟合这组数据并画出图形,计算当x=0.45时的电阻值. M文件 clc; clf; x=[0.1 0.3 0.4 0.55 0.7 0.8 0.95]; y=[15 18 19 21 22.6 23.8 26]; p1=polyfit(x,y,1); p3=polyfit(x,y,3); p5=polyfit(x,y,5); x1=0.1:0.05:1; y1=polyval(p1,x1); y3=polyval(p3,x1); y5=polyval(p5,x1); plot(x,y,'rp',x1,y1,'b-',x1,y3,'g-.',x1,y5,'m--'); legend('拟合点','一次拟合','三次拟合','五次拟合'); disp('以下为当x=0.45时的电阻值:') disp('一阶拟合函数值'),g1=polyval(p1,0.45) disp('三阶拟合函数值'),g3=polyval(p3,0.45) disp('五阶拟合函数值'),g5=polyval(p5,0.45)

MATLAB实验报告

数字信号处理及MATLAB 实验报告 班级: 学号: 姓名:

4.7.2 例4,2 设x(n)是由两个正弦信号及白噪声的叠加,试用FFT文件对其作频谱分析。程序清单 %产生两个正弦加白噪声 N=256; f1=.1;f2=.2;fs=1; a1=5;a2=3; w=2*pi/fs; x=a1*sin(w*f1*(0:N-1))+a2*sin(w*f2*(0:N-1))+randn(1,N); %应用FFT求频谱 subplot(2,2,1); plot(x(1:N/4)); title('原始信号'); f=-0.5:1/N:0.5-1/N; x=fft(x); y=ifft(x); subplot(2,2,2); plot(f,fftshift(abs(x))); title('频域信号'); subplot(2,2,3); plot(real(x(1:N/4))); title('时域信号');

例4.3 设x(n)为长度N=6的矩形序列,用MATLAB程序分析FFT取不同长度时x(n)频谱的变化。N=8,32,64,时x(n)的FFT MATLAB实现程序如下。 x=[1,1,1,1,1,1]; N=8; y1=fft(x,N); n=0:N-1; subplot(3,1,1);stem(n,abs(y1),'.k');axis([0,9,0,6]); N=32; y2=fft(x,N); n=0:N-1; subplot(3,1,2);stem(n,abs(y2),'.k');axis([0,40,0,6]); N=64; y3=fft(x,N); subplot(3,1,3);stem(n,abs(y3),'.k');axis([0,80,0,6]);

matlab与数学实验大作业

《数学实验与MATLAB》 ——综合实验报告 实验名称:不同温度下PDLC薄膜的通透性 与驱动电压的具体关系式的研究学院:计算机与通信工程学院 专业班级: 姓名: 学号: 同组同学: 2014年 6月10日

一、问题引入 聚合物分散液晶(PDLC)是将低分子液晶与预聚物Kuer UV65胶相混合,在一定条件下经聚合反应,形成微米级的液晶微滴均匀地分散在高分子网络中,再利用液晶分子的介电各向异性获得具有电光响应特性的材料,它主要工作在散射态和透明态之间并具有一定的灰度。聚合物分散液晶膜是将液晶和聚合物结合得到的一种综合性能优异的膜材料。该膜材料能够通过驱动电压来控制其通透性,可以用来制作PDLC型液晶显示器等,具有较大的应用范围。已知PDLC薄膜在相同光强度及驱动电压下,不用的温度对应于不同的通透性,不同温度下的阀值电压也不相同。为了尽量得到不同通透性的PDLC薄膜,有必要进行温度对PDLC薄膜的特性的影响的研究。现有不同温度下PDLC 薄膜透过率与驱动电压的一系列数据,试得出不同温度下PDLC薄膜通透性与驱动电压的具体关系式,使得可以迅速得出在不同温度下一定通透性对应的驱动电压。 二、问题分析 想要得到不同温度下PDLC薄膜通透性与驱动电压的具体关系式可以运用MATLAB多项式农合找出最佳函数式,而运用MATLAB多项式插值可以得出在不同温度下一定通透性所对应的驱动电压。 三、实验数据 选择10、20、30摄氏度三个不同温度,其他条件一致。

(1)、10摄氏度 实验程序: x=2:2:40; y=[5.2,5.4,5.8,6.4,7.2,8.2,9.4,10.8,12.2,14.0,16.6,22.0, 30.4,39.8,51.3,55.0,57.5,58.8,59.6,60.2]; p3=polyfit(x,y,3); p5=polyfit(x,y,5); p7=polyfit(x,y,7); disp('三次拟合函数'),f3=poly2str(p3,'x') disp('五次拟合函数'),f5=poly2str(p5,'x') disp('七次拟合函数'),f7=poly2str(p7,'x') x1=0:1:40; y3=polyval(p3,x1); y5=polyval(p5,x1); y7=polyval(p7,x1); plot(x,y,'rp',x1,y3,'--',x1,y5,'k-.',x1,y7); legend('拟合点','三次拟合','五次拟合','七次拟合') 实验结果:

数学实验报告-2

《数学实验》报告 实验名称 MATLAB绘图 学院材料科学与工程 专业班级材料1209 姓名曾雪淇 学号 41230265 2014年 5月

学会用MATLAB绘制二维曲线、三维曲线,掌握gtext, legend, title,xlabel,ylabel,zlabel,axis 等指令用法,并学会图形的标注。二、【实验任务】 P79 习题1,习题3,习题5 三、【实验程序】 习题一: x=0:pi/10:4*pi; y1=exp(x./3).*sin(3*x); y2=exp(x./3); y3=-exp(x./3); plot(x,y1,'b*',x,y2,'r-.',x,y3,'r-.') 习题二: x1=-pi:pi/10:pi; y1=x1.*cos(x1); x2=pi:pi/10:4*pi; y2=x2.*tan(1./x2).*sin(x2).^3; x3=1:0.1:8; y3=exp(1./x3).*sin(x3); subplot(1,3,1);plot(x1,y1,'r*'),grid on,title(‘y1= x1*cosx1’) subplot(1,3,2) ;plot(x2,y2,’b-‘),grid on,title (‘y2=x2*tan(1/x2)*sinx2^3’) subplot(1,3,3);plot(x3,y3,'g+'),grid on,title (‘y3=exp(1/x3)*sinx3’) gtext(‘y1=x1cos(x1)’),gtext(‘y2=x2tan(1/x2)sin(x2)^3’), gtext(‘y3=exp(1/x3)sin(x3)’) legend(‘y1= x1*cos(x1)’, ‘y2=x2tan(1/x2)sin(x2^)3’ ‘y3=exp(1/x3)sin(x3)’) xlabel(‘x轴’),ylabel(‘y轴’),axis xy 习题三: t=0:pi/10:20*pi; x=t.*cos(pi/6.*t); y=t.*sin(pi/6.*t); z=2*t; plot3(x,y,z,'r*'),grid on title(‘圆锥螺线的图像’) xlabel(‘x轴’),ylabel(‘y轴’),zlabel(‘z轴’)

浅析Matlab数学实验报告

数学实验报告 姓名: 班级: 学号: 第一次实验任务 过程: a=1+3i; b=2-i; 结果: a+b =3.0000 + 2.0000i a-b =-1.0000 + 4.0000i a*b = 5.0000 + 5.0000i a/b = -0.2000 + 1.4000i 过程: x=-4.5*pi/180; y=7.6*pi/180; 结果: sin(abs(x)+y)/sqrt(cos(abs(x+y))) =0.2098 心得:对于matlab 中的角度计算应转为弧度。 (1)过程: x=0:0.01:2*pi; y1=sin(x); y2=cos(x); y3=exp(x); y4=log(x); plot(x,y1,x,y2,x,y3,x,y4) plot(x,y1,x,y2,x,y3,x,y4) 结果: (2)过程:>> subplot(2,2,1) >> plot(x,y1) >> subplot(2,2,2) >> plot(x,y2) ./,,,,2,311b a b a b a b a i b i a ?-+-=+=计算、设有两个复数 6,7,5.4)

cos()sin(2=-=++y x y x y x ,其中、计算的图形。 下分别绘制)同一页面四个坐标系)同一坐标系下(、在( x y e y x y x y x ln ,,cos ,sin 213==== >> subplot(2,2,3) >> plot(x,y3) >> subplot(2.2.4) >> subplot(2,2,4) >> plot(x,y4) 结果: 心得:在matlab中,用subplot能够实现在同一页面输出多个坐标系的图像,应注意将它与hold on进行区别,后者为在同一坐标系中划出多条曲线。 5、随机生成一个3x3矩阵A及3x2矩阵B,计算(1)AB,(2)对B中每个元素平方后得到的矩阵C,(3)sinB,(4)A的行列式,(5)判断A是否可逆,若可逆,计算A的逆矩阵,(6)解矩阵方程AX=B,(7)矩阵A中第二行元素加1,其余元素不变,得到矩阵D,计算D。 过程:A=fix(rand(3,3).*10) ; B=fix(rand(3,3).*10);

李萨如图模拟(Matlab大作业)

《数学实验》报告 实验名称李萨如图模拟(Matlab大作业) 2011年11月8日

一、【实验目的】 运用数学知识与MATLAB相结合,运用数学方法,建立数学模型,用MATLAB软件辅助求解模型,解决实际问题。 二、【实验任务】 一个质点沿 X轴和 Y轴的分运动都是简谐运动,分运动的表达式分别为: x=Acos ( w1t+beta ) , y=Acos(w2t+beta ) 。如果二者的频率有简单的整数比, 则相互垂直的简谐运动合成的运动将具有封闭的稳定的运动轨迹, 这种图称为李萨如图。 1,用matlab分别画出同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的图像(未合成)2,用matlab画出同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像 3,用matlab画出x轴方向和y轴方向传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像。(李萨如图) 三、【实验分析及求解】 1,设两个波的振幅为1,他们的beta为pi/5,我们可以根据波的传播公式,y =Acos ( w1t+beta ) 分别画出两个波的传播图像。 2,设两个波的振幅为1,他们的beta为pi/5,我们可以根据波的传播公式,y =Acos ( w1t+beta ), 用matlab画出同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像。

3,设两个波的振幅为1,他们的beta为pi/5,我们可以根据波的传播公式,画出x轴方向和y 轴方向传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像。(李萨如图)。

matlab实验报告

Matlab实验报告 ——定积分的近似计算 学生姓名: 学号: 专业:数学与应用数学专业

数学实验报告 实验序号:1001114030 日期:2012年10月20日 班级应一姓名陈璐学号1001114030 实验名称:定积分的近似运算 问题背景描述: 利用牛顿—莱布尼茨公式虽然可以精确地计算定积分的值,但它仅适合于被积分函数的原函数能用初等函数表达出来的情形。如果这点办不到或不容易办到, 这就有必要考虑近似计算的方法。在定积分的很多应用问题中,被积函数甚至没 有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只 能应用近似方法去计算相应的定积分。 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线发。对于定积分的近似数值计算,Matlab有专门函数可用。 实验原理与数学模型: 1.sum(a):求数组a的和。 2.format long:长格式,即屏幕显示15位有效数字。 3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数之则转化为 相应的实型数值。 4.quad():抛物线法求数值积分。格式:quad(fun,a,b)。此处的fun是函数,并且

为数值形式,所以使用*、/、^等运算时要在其前加上小数点。 5.trapz():梯形法求数值积分。格式:trapz(x,y)。其中x为带有步长的积分区间;y为数 值形式的运算。 6.fprintf(文件地址,格式,写入的变量):把数据写入指定文件。 7.syms 变量1变量2……:定义变量为符号。 8.sym('表达式'):将表达式定义为符号。 9.int(f,v,a,b):求f关于v积分,积分区间由a到b。 10.subs(f,'x',a):将a的值赋给符号表达式f中的x,并计算出值。若简单地使用subs (f),则将f的所有符号变量用可能的数值代入,并计算出值。 实验所用软件及版本:Matlab 7.0.1

MTLB实验练习题计算机南邮MATLAB数学实验大作业答案

“M A T L A B ”练习题 要求:抄题、写出操作命令、运行结果,并根据要求,贴上运行图。 1、求230x e x -=的所有根。(先画图后求解)(要求贴图) >> solve('exp(x)-3*x^2',0) ans = -2*lambertw(-1/6*3^(1/2)) -2*lambertw(-1,-1/6*3^(1/2)) -2*lambertw(1/6*3^(1/2)) 2、求下列方程的根。 1) 5510x x ++= a=solve('x^5+5*x+1',0);a=vpa(a,6) a = 1.10447+1.05983*i -1.00450+1.06095*i -. -1.00450-1.06095*i

1.10447-1.05983*i 2) 1 sin0 2 x x-=至少三个根 >> fzero('x*sin(x)-1/2', 3) ans = 2.9726 >> fzero('x*sin(x)-1/2',-3) ans = -2.9726 >> fzero('x*sin(x)-1/2',0) ans = -0.7408 3)2 sin cos0 x x x -=所有根 >> fzero('sin(x)*cos(x)-x^2',0) ans = >> fzero('sin(x)*cos(x)-x^2',0.6)

0.7022 3、求解下列各题: 1)3 0sin lim x x x x ->- >> sym x; >> limit((x-sin(x))/x^3) ans = 1/6 2) (10)cos ,x y e x y =求 >> sym x; >> diff(exp(x)*cos(x),10) ans = (-32)*exp(x)*sin(x) 3)2 1/2 0(17x e dx ?精确到位有效数字) >> sym x; >> vpa((int(exp(x^2),x,0,1/2)),17)

北科大Matlab数学实验分析报告次全

精心整理《数学实验》报告 实验名称Matlab基础知识 学院

一、【实验目的】 1.认识熟悉Matlab这一软件,并在此基础上学会基本操作。 2.掌握Matlab基本操作和常用命令。 3.了解Matlab常用函数,运算符和表达式。 4.掌握Matlab工作方式和M文件的相关知识。 5.学会Matlab中矩阵和数组的运算。 二、【实验任务】 P16第4题 P27 矩阵 P27 已运算P34 π 用 4 P16 for for end sum=sum+y; end sum P27第2题 >>A=[123;456;789] >>B=[468;556;322] >>A*B >>A.*B P27第3题 >>A=[52;91];B=[12;92];

>>A>B >>A==B >>A>(A==B)&(A>(A==B)&(A>B) P34第1题 t=1; pi=0; n=1; s=1; end P27 P27 P34 >>pi pi=

了解并掌握matlab的基本绘图二、【实验任务】 P79页1,3,5题 三、【实验程序】 1. clf; 3. clf; 5. t=0:pi/50:20*pi; x=t.*cos(t*pi/6); y=t.*sin(t*pi/6); z=2*t; plot3(x,y,z) 四、【实验结果】 1. 3. 5.

通过本次课程和作业,我初步了解了matlab在绘图方面的优势和重要性。

1.学会用Matlab 进行三维的曲线绘图; 2.掌握绘图的基本指令和参数设置 二、 【实验任务】 P79习题5 ??? ? ? ? ??? ===z y x P79xlabel('x 轴'),ylabel('y 轴'),zlabel('z 轴') 习题9: clf; t=-2:0.1:2; [x,y]=meshgrid(t); z1=5-x.^2-y.^2; subplot(1,2,1),mesh(x,y,z1),title('曲面z1=5-x.^2-y.^2') z2=3*ones(size(x));

相关文档
相关文档 最新文档