文档库 最新最全的文档下载
当前位置:文档库 › 第五章 稳恒磁场典型例题资料

第五章 稳恒磁场典型例题资料

第五章  稳恒磁场典型例题资料
第五章  稳恒磁场典型例题资料

第五章 稳恒磁场

5.1 设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。

解:如图所示

令 110A I H e r = 220A I

H e r

= 由稳恒磁场的边界条件知,

12t t H H = 12n n B B = 又 B μ= 且 n H H =

所以 1122H H μμ= (1) 再根据安培环路定律 H dl I ?=?? 得 12I

H H r π+= (2) 联立(1),(2)两式便解得

2112

0I I H r r

μμμμπμμπ=?

=?++ 01212

0I I H r r

μμμμπμμπ=

?

=?++ 故, 01110I

B H e r θμμμμμπ==

?+ 02220I

B H e r

θμμμμμπ==

?+ 212()M a n M M n M =?-=? 2

20

(

)B n H μ=?-

00()0I

n e r

θμμμμπ-=

???=+ 222()M M M J M H H χχ=??=??=??

00

00(0,0,)z

J Ie z μμμμδμμμμ--=?=?++ 5.2 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。

解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分量,而与φ,z 无关。由2A ?的柱坐标系中的表达式可知,只有一个分量,即 210A J μ?=- 220A ?= 此即

1

01()A r J r r r

μ??=-??

2

1()0A r r r r

??=?? 通解为 21121

ln 4

A Jr b r b μ=-++

212ln A c r c =+

当0r =时,1A 有限,有10b =

由于无限长圆柱导体上有恒定电流J 均匀分布于截面上,设r a =时, 120A A ==,得

202121

ln 04

Ja b c a c μ-+=+=

又r a =时,

120

1

1

e A e A ρρμμ???=

???,得 11

2c Ja a μ-= 所以 2221220111

,,224c Ja c Ja b Ja μμμ=-=-=

所以, 22101

()4

A J r a μ=--

221ln 2a A Ja r

μ=

写成矢量形式为 22101()4A J r a μ=--v

221ln 2a

A Ja r

μ=v

5.3 设无限长圆柱体内电流分布,0()z J a rJ r a =-≤求矢量磁位A 和磁感应

B 。 解:

建立坐标系如图所示,电流分布为 0,z J a rJ =- r a ≤ 0= , r a > 从电流分布可以知道磁矢位仅有z 分量,即 z z A A a = 且满足方程 20A J μ?=-

设在圆柱体内磁位是1A 圆柱体外磁位是2A ,则 当r a ≤时,

1

001()A r rJ r r r μ??=+?? 当r a ≥时,

2

1()0A r r r r

??=?? 所以 3100121

ln 9

A J r C r C μ=++

234ln A C r C =+ 其中1234,,,C C C C 是待定常数。

由于0r =处磁矢位不应是无穷大,所以10C =。

利用边界条件,有 320019C J a μ=-;330013C J a μ=;34001

ln 3

C J a a μ=-

最后得: 3311000011

()99z z A a A J r J a a μμ==-

33001

()9z J r a a μ=-

322001ln 3z z r

A a A J a a a

μ==

由B A =??得: 2111001

3

A B A a J r a r ??μ?=??=-=-? 3222001

3z A B A a J a a r r

?μ?=??=-=-?

5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。试求圆弧中心点处的磁感应强度。

解: 对圆弧中心点O 的磁感应强度,可认为是半圆弧电流与两条半直线电流,分别在O 点产生的磁感应强度的叠加。

对于半圆弧在O 点产生的磁感应强度1B ,可用毕奥-萨伐定律求得为 014I

B R

μ=

方向沿垂直纸面向外。

同样一根半长直线在O 点产生的磁感应强度'2B 为 '024I

B R

μπ= 方向沿垂直纸面向外。 故O 点处的磁感应强度

'122B B B =+? 00244I I

B R R

μμππ=+? 代入数值得

55.110()B T -=? 方向沿垂直纸面向外。

5.5 两根无限长直导线,布置于1,0x y =±=处,并与z 轴平行,分别通过电流I 及I -,求空间任意一点处的磁感应强度B 。

解:无限长直导线产生的矢量磁位为 00

ln 2z I r A a r

μπ=

0r 为有限值。

对于本题,可利用叠加原理,p 点的矢量磁位可看做是位于1x =-处的长直导线产生的矢量磁位和位于1x =+处的长直导线产生的矢量磁位的叠加,即 00012(ln ln )2z I r r

A a r r μπ=- 02

1

ln 2z

I r a r μπ= 202

12cos ln()212cos z

I r r a r r μ?π?++=+- 根据

1()z z

z z r A A B A a A a a r r φφ

??=??=??=-+?? 有

202212(1)sin r I r B r r μφ

π+=-

2022

12(1)cos I r B r r ?μφ

π-=

0z B =

5.6 半径的磁介质球,具有磁化强度为2()z M a Az B =+ 求磁化电流和磁荷。

解: 球内:等效磁化电流体密度为 等效磁荷体密度为m J M =?? 221()()0r a Az B a Az B r r

????

=+-+=?? 等效磁荷密度为

2m z M M Az z

ρ?

=-??=-=-? 球表面:磁化面电流密度为

sm z r J M n a M a =?=? 因球面上 cos z a θ=

故 2[(cos )]sin sm J a A a B ?θθ=+ 其磁荷面密度为 2[(cos )]cos m n M a A a B ?σθθ=?=+

5.7已知两个相互平行,相隔距离为d ,共轴圆线圈,其中一个线圈的半径为a ()a d <,另一个线圈的半径为b ,试求两线圈之间的互感系数。

解:如图所示,设1C 中电流为1I ,在轴线上产生的磁场为 2

1132

22

2()

z I b B b d μ=

+

因d a ?,可认为B 在包围的面积2S 上是均匀的,所以

2

20121123222

2()

I b B S a b d μ?π==

+

根据互感系数的定义,得 22

021

32

22

1

2()

a b M I b d μπ?=

=

+

5.8 两平行无限长直线电流1I 和2I ,相距为d ,求每根导线单位长度受到的安培力m F 。

解: 一根无限长直导线电流的磁场 01

12I B a r

?

μπ= 另一根直导线电流的电流元22I dl 受到磁场力 221dF I dl B =? 012

22I I dl a ?μπ

=

? 012

22x I I a dl d

μπ=- 故单位长受力 012

2m x

I I F a d

μπ=-

5.9 一个薄铁圆盘,半径为a ,厚度为b ()b a =,如题5.9图所示。在平行

于z 轴方向均匀磁化,磁化强度为M v

。试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

解 由于铁盘均匀磁化,且磁化

方向沿z 正向,故令z M Me =v v

,其中M

为常数。由此可知磁化电流面密度

0m J M =??=v v

铁盘上、下底面的磁化电流线密度

()10m n z z K M e Me e =?=?±=v v v v v

题5.9图

铁盘侧面周边边缘上的磁化电流线密度

m n z K M e Me e Me ρφ=?=?=v v v v v v

这样可将圆盘视为相当于m I K b =的圆形磁化电流,求此电流在各处产生的磁场。又由于b a =,可视为圆环电流产生的磁场。在铁盘轴线上产生的磁场为

()

()

2

2

0032

32

2

22

222Ia Mba B z a

z a

μμ==

++

()

232

2

20

2B

Mba H z a

μ=

=

+

B v 、H v

的方向沿z 方向。铁盘内由于0μμ?,可得

001B M μμμ??-= ???v

v

0B M μ≈v v

在铁盘内是均匀分布的磁场。

5.10 均匀磁化的无限大导磁媒质的磁导率为μ,磁感应强度为B v

,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。试求两空腔中心处磁场强度的比值。

解 此题由于空腔的形状可以利用边界条件确定空腔内的场分布。

对空腔1其中心处的场强与侧边

界的场强相同。由于B v

在其法线方向,由分界面上的边界条件12n n B B =,可得到中心点的磁感应强度1B B =,

10

H H μ

μ=

题5.10 图

对空腔2侧面是沿B v

的方向,由分界面上的边界条件12t t H H =,可得中心点处的磁场强度2H H =,0

2B B μμ

=

。 两空腔中心处磁场强度的比值为

1

20

H H H H

μ

μμμ==

5.11 两个无限大且平行的等磁位面D 、N ,相距h ,10mD ?=A ,0mN ?=。

其间充以两种不同的导磁媒质,其磁导率分别为10μμ=,202μμ=,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。

解 根据m H ?=-?v

10mD mN

H h

h

??-=

=

, 方向沿分界面切线方向。利用分界面上的边界条件,1210

t t H H h

==

,则 0

10110B H h μμ==

202202B H h

μμ==

利用磁感应线管,沿分界面法向受到侧压力,故单位面积受力的大小为

00121122511

22f f f B H B H h

μ=-=

-=- 00f <,说明作用力沿媒质2指向媒质

1,即从磁导率大的媒质指向磁导率小的媒质。

题5.11图

5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图()a 所示。证明:直导线与矩形回路间的互感为

()

012

12

2

222ln 22a

R

M b R C b R μπ=-

?

?-++???

?

题5.12图()a

题5.12图()b

解 设长直导线中的电流为I ,则其产生的磁场为 02I

B r

μπ=

由题5.12图()b 可知,与矩形回路交链的磁通ψ为

1

00012

1

ln 222R S

R

I aI aI R B dS dr r R μμμψπ

π

π=

=

=?

?

g 其中 (121222

222212R C b R C R b b R C ?

??=++-=++-?????

故直导线与矩形回路间的互感为

1222200122ln ln 22R b b R C a a R M I R R μμψππ?++-??===

()

012

12

2

222ln 22a

R

b R C b R μπ=-

?

?-++???

?

5.13 一环形螺线管的平均半径015r cm =,其圆形截面的半径2a cm =,铁芯的相对磁导率1400r μ=,环上绕1000N =匝线圈,通过电流0.7I A =。

(1) 计算螺线管的电感;

(2) 在铁芯上开一个00.1l cm =的空气隙,再计算电感(假设开口后铁芯

的r μ不变);

(3) 求空气隙和铁芯内的磁场能量的比值。

解 (1)由于0a r =,可认为圆形截面上的磁场是均匀的,且等于截面的中心处的磁场。由安培环路定理,可得螺线管内的磁场为

2NI

H r π= 与螺线管交链的磁链为

220

2a N I

NS H r μψμ==

故螺线管的电感为 22

7220

14004100.021000 2.346220.15

a N L H I

r ψ

μπ-????=

=

==?

(2)当铁芯上开有小空气隙时,由于空气隙很小,可以忽略边缘效应,则

在空气隙与铁芯的分界面上,磁场只有法向分量。由边界条件,有0B B B μ==v v v

。根据安培环路定理,有

()00002H l H r l NI μπ+-=

由于000B H μ=,0r B H μμμμ=及0B B B μ==,于是可得 ()

00002r r NI

B l r l μμμπ=+-

所以螺线管中的磁链为

()

2200002r r a N I

NSB l r l πμμψμπ==+-

故螺线管的电感为

()

22

00002r r a N L I l r l πμμψ

μπ==+-

2722

41014000.0210000.94414000.00120.150.001

H ππ-????=

=?+??- (3)空气隙中的磁场能量为 200001

2

m W H Sl μ=

铁芯中的磁场能量为 ()2000122

m r W H S r l μμμμπ=- 故

0000014000.001

1.487220.150.001

m m W l W r l μμππ?===-?- 5.14 同轴线的内导体是半径为a 的圆柱,外导体是半径为b 的薄圆柱面,其厚度可忽略不计。内、外导体间充有磁导率分别为1μ和2μ两种不同的磁介质,

如题5.14图所示。设同轴线中通过的电流为I ,试求: (1)同轴线中单位长度所储存的磁场能量; (2)单位长度的自感。

解 (1)同轴线的内外导体之间的磁场沿φ方向,在两种磁介质的分界面上,磁场只有法向分量。根据边界条件可知,两种磁介质中的磁感应强度相同,但磁场强度不同。 根据安培环路定理, 当r a <时,有

2

02

2I rH r a

πππ=

所以 02

2I

H r a

π=

()r a < 当a r b <<时,有

()12r H H I π+=

题5.14图

由于1

11

B H μ=

,2

22

B H μ=

以及12B B B ==,所以得到

()1212I

B r

μμπμμ=

+ ()a r b <<

同轴线中单位长度储存的磁场能量为

2

22

000012

1112222a b b m a B B B W rdr rdr rdr πππμμμ=++???

()0122001212111112222a b a Ir I

rdr rdr a r μμμππμπμμπμμ??????=++?

? ? ?+??????

?? ()2201212ln 162I I b

a

μμμππμμ=++

(2)由2

12

m W LI =

,得到单位长度的自感为 ()0122122ln 8m W b

L I a

μμμππμμ=

=++ 5.15 已知一个平面电流回路在真空中产生的磁场强度为0H v

,若此平面电

流回路位于磁导率分别为1μ和2μ的两种均匀磁介质的分界平面上,试求两种磁

介质中的磁场强度1H v 和2H v

解 由于是平面电流回路,当其位于两种均匀磁介质的分界平面上时,分界

面上的磁场只有法向分量,根据边界条件,有12

B B B ==v v v 。在分界面两侧做一个小矩形回路,分别就真空和存在介质两种情况,应用安培环路定理即

可导出1H v 、2H v 和0H v

的关系。

在分界面两侧,做一个尺寸为

2h l ???的小矩形回路。

题5.15图

根据安培回路定律有

()()()()11211222c

H dl H P h H P h H P h H P h I =?+?-?-?=?v v g ?

因H v

垂直于分界面,所以积分式中0H l ?=v v g 。这里I 为与小矩形回路交链的电

流。

对平面电流回路两侧为真空的情况,则有

()()0010222c

H dl H P h H P h I =?-?=?v

v g ?

由于1P 和2P 是分界面上任意两点,由上述两个式子可得到

1202H H H +=v v v

01

2

2B

B

H μμ+

=v v v

于是得到 120122B H μμμμ=

+v v

故有 2101122B

H H μμμμ==+v v v

120212

2B

H H μμμμ==+v v v

5.16 在阴极射线管中的均匀偏转磁场是由在管颈上放置一对按余弦定律绕线的线圈产生的。分析管颈中的磁场时,可以将管颈视为无限长,其表面电流

密度为0cos s z s J e J φ=v v

,这样的线圈称为鞍线圈。证明:管颈中的磁场是均匀的。

解 由于电流分布是φ的函数,磁场分布不具备轴对称性,不能利用安培环路定律求解磁场。由于电流只分布在管颈的表面上,管颈内外的区域中都没有电流分布,可通过解标量磁位的微分方程来求磁场。利用分离变量法,求出管颈内、外区域中的标量磁位1m ?和2m ?的通解,然后由管颈表面上磁场的边界条件来确定待定常数。

视管颈为半径为a 的无限长圆柱面,则1m ?和2m ?只与r ,φ有关,即

211

22

110m m r r r r r r ???????+= ?????? 222

22

110m m r r r r r r

???????+= ?????? 根据管颈的表面上的电流按cos φ变化,以及管颈内、外区域中的标量磁位

1m ?和2m ?应为有限值,可设

111sin cos m C r D r ?φφ=+ ()r a < 222sin cos m C D

r r

?φφ=

+ ()r a >

于是得到 11

111m m m r H e e r r r

φ?????=-?=--??v v v

()()1111sin cos cos sin r e C D e C D φφφφφ=-+--v v

22

221m m m r H e e r r r

φ?????=-?=--??v v v

()()22222211

sin cos cos sin r e C D e C D r r

φφφφφ=-+--v v

根据边界条件,当r a =时,有

12r r H H =, 210cos S H H J φφφ-=

由此可得到

120D D ==

1012S C J =

,2201

2

S C J a =- 故得到

()001sin cos 22S S r y J J H e e e φφφ=-+=-v v v

v ()r a <

()202sin cos 2

S r J a H e e φφφ=--v v v

()r a >

5.17 一半径为a ,厚度为h 的圆盘磁铁均匀磁化,磁化强度为

z M e M =v v

,求z 轴上任意点的磁坐标和

磁场强度。

解 方法一:利用磁荷求解。 以圆盘轴线为z 轴建立柱坐标系。将两相对面元上的磁荷视为磁偶极

子。

题5.17图

根据磁化强区的定义知此磁偶极子为

()m p Md M h d d τρρ?==v v v

它在z 轴上产生的标量磁位是

()323

1444m z

R M Mz

d M d

e R d d R R R ?τττπππ===v v v v g g ()

32

22

4Mh z

d d z

ρρ?π

ρ

=

+g

所以z 轴任意一点的磁坐标为

()

23

02

22

4a m m Mh z

d d d z

π

???ρρπρ

==+???

(

)1

22a 20|122Mh Mh z z ρπ??

??=-+= ?

??? 因此z 轴任意一点的磁场强度为

2m m z z d Mh d H e e dz dz ????=-?=-=v v v g ()

2

32

22

2

z

Mh

a e z

a

=+v

方法二:利用磁化电流求解。

以圆盘轴线为z 轴建立柱坐标系。于是得到磁化电流的分布情况。

在圆盘内部,磁化电流体密度为0m J M =??=v v

在圆盘侧面,磁化电流面密度为ms z J M n Me e Me ρ?=?=?=v v v v v v

圆柱上下表面,磁化电流面密度为()0ms z z J M n Me e =?=?±=v v v v

取'dz 的一段磁铁,则它等效为一半径为a 的环形电流

''ms dl J dz Mdz ==

又因为轴线上任意一点处由此环形电流产生的磁感强度为

()

203222

'2z

a M

dB e dz z a

μ=+v v

()()

22003

3

22222

2

'22h h z z a M

a hM

B dB e dz e z a z a

μμ===++??

v v v v

所以轴线上任意一点处的磁场强度为

()

23

220

2

2z

B a hM H e z a

μ==+v v v

5.18 一铁制材料的螺线环,其平均周长为30cm ,截面积为21cm ,在环上均匀绕以300匝导线,当绕组内的电流为0.032A 时,环内磁通量为6210Wb -?。试计算:

1 . 环内的磁通量密度;

2 . 磁场强度;

3 . 磁化面电流密度;

4 . 环内材料的磁导率和相对磁导率;

5 . 磁心内的磁化强度。

解 1 . 环内的磁通量密度

624

210210110

B T S ---Φ?===?? 2 . 环内的磁场强度

300

0.03232/0.3

H nI A m ==

?= 3 . 先求出磁化强度

2

47

021032 1.5910/410

B

M H A m μπ--?=-=-=?? 又根据 ms J M n =?v v v

得磁化面电流密度 41.5910/ms J M A m ==? 4 . 因为 B H μ=

所以磁导率为 2

4210 6.2510/32

B H m H μ--?==

=? 相对磁导率为 4

7

0 6.2510498410r μμμπ--?===?

5 . 磁心内的磁化强度 41.5910/M A m =?

5.19 真空中长直线电流I 的磁场中有一等边三角形回路,如图所示,求直导线与三角回路之间的互感M 。

解 直线电流产生的磁场

02I

B e r

φ

μπ=v v 则磁通

02S S I B dS dS r

μπΦ==??v v g

如图所示,三角形面积为

2

3

r d S -=

对上式两边取微分,得

23

r d dS dr -=

,则

题5.19 图

3

0021233d S d

r d d dr r r ππ-?

Φ==-??

??

03123I

b b μπ

???=

-?? ??????

因此,直导线与三角回路之间的互感M 为

031223b b M I d μπ????Φ==-+?? ? ???????

5.20 如图所示为一U 形电磁铁,其中通过N 匝线圈的电流I 在磁路中产生磁通1Φ,铁芯的截面积为S ,求衔铁受到的磁场力。

解 方法一:因电磁铁,空气隙,和衔铁中的磁通量相同,故可用C Φ=的

电磁学习题库5

第五章 恒定磁场与磁介质 一、 选择题 1、 关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的() A 、H 仅与传导电流有关。 B 、若闭合曲线内没有包围传导电流,则曲线上各点的H 为零 C 、若闭合曲线上各点的H 均为零,则该曲线所包围传导电流的代数和为零 D 、以闭合曲线L 为边缘的任意曲面的H 通量均相等 答案:C 2、磁介质有三种,用相对磁导率r μ表征它们各自的特性时() A 、顺磁质r μ>0,抗磁质r μ<0,铁磁质r μ》1 B 、顺磁质r μ>1,抗磁质r μ=1,铁磁质r μ》1 C 、顺磁质r μ>1,抗磁质r μ<1,铁磁质r μ》1 D 、顺磁质r μ>0,抗磁质r μ<0,铁磁质r μ>1 答案:C 3、 用细导线均匀密绕成的长为l ,半径为a(l 》a),总匝数为N 的螺线管通以稳恒电流I ,当管内充满磁导率为r μ的 均匀磁介质后,管中任意一点() A 、磁感应强度大小为B=r μμ0NI B 、磁感应强度大小为B=r μNI /l C 、磁场强度大小为H=0μNI/l D 、磁场强度大小为H=NI/l 答案:D 4、 顺磁物质的磁导率() A 、比真空的磁导率略小 B 、比真空的磁导率略大 C 、远小于真空的磁导率 D 、远大于真空中的磁导率 答案:B 5、 通电直长螺线管内的一半空间充满磁介r u ,在螺线管中,介质中与空气中相等的物理量是() A 、 B 1=B 2 B 、H 1=H 2 C 、M 1=M 2 D 、21 ψψ= 答案:B 6、 图中所示的三条线分别表示三种不同磁介质的B-H 关系,表示顺磁质的是() A 、第一条 B 、第二条 C 、第三条 D 、无法判断 答案:B 7、 磁铁能吸引铁钉之类的小物体是由于() A 、小物体是铁磁性的,被磁铁磁化,受到吸引力 B 、小物体是顺磁性的,被磁铁磁化,受到吸引力 C 、小物体是抗磁性的,被磁铁磁化,受到吸引力 D 、磁铁和小物体都是顺磁性物质,相互吸引 答案:A 8、如图所示,一永磁环,环开一很窄的空隙,环内磁化强度矢量为M ,则空隙中P 点处的H 的大小为() A 、0μM B 、M C 、r μμ0M D 、0 答案:B 9、如图所示,一根沿轴向均匀磁化的细长永磁棒,磁化强度为M ,图中所标各点的磁感应强度是() A 、0,3021 ===B M B B μ B 、M B B M B 032012 1 ,μμ= ==

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为k c j b i a B ? ???++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大 小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

浙江工业大学大学物理稳恒磁场习题答案.

2014/08/20张总灯具灯珠初步设想 按照要求: 亮度比例关系:蓝光:白光:红光=1:1:8 光源总功率不超过20W。 一、蓝光光源: 1、光源形式:SMD 2835、芯片安萤11*28mil封装、 2、电路连接:2并20串、 3、光电参数: 单颗光源:IF:60mA、VF:3.0-3.2V、WLD:440-450nm、PO:0.2W、IV:3.5-4lm、 电路总输入:IF:120mA、VF:60-64V、WLD:440-450nm、PO:7.5W、IV:140-160lm、 4、成本:68元/K, πμT; 当cm r 5.45.3≤≤时, 2 1、光源形式:SMD 2835、库存光源第1KK或第2KK光源中正白色温、 2、电路连接:1并20串、 3、光电参数: 单颗光源:IF:20mA、VF:3.0-3.2V、CCT:6000K、PO:0.06W、IV:7-8lm、电路总输入:IF:20mA、VF:60-65V、PO:1.2W、IV:140-160lm、 成本:72元/K,

三、红光光源: 1、光源形式:SMD 2835、芯片连胜红光30*30mil封装、 2、电路连接:1并30串、 3、光电参数: 单颗光源:IF:150mA、VF:2.0-2.2V、WLD:640-660nm、PO:0.3W、IV:40- 45lm、 电路总输入:IF:150mA、VF:60-66V、WLD:640-660nm、PO:9.5W、IV:1200-1350lm、 4、成本:约420元/K, --=-?-=∑πσ r r r r r d d r d I B /4101.8(31.01079(24109(105104(24(234 222 423721222220-?=?--????=--=----πππμT; 当cm r 5.4≥时, 0∑=i I , B=0 图略 7-12 解:(1

大学物理第8章-稳恒磁场-课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01 B C B 在O 点产生的磁感应强度大小为 R I B 402 R I R I 123400 ,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03 r I B )180cos 150(cos 60cos 400 R I )2 31(20 R I ,方向垂直纸面向里 故 )6 231(203210 R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流 A 和 B 及两段圆弧上电流1I 与2I 所产生,但 A 和 B 在O 点 产生的磁场为零。且 21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )( 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 R I B 4202 ,方向垂直纸面向里 所以, 1) 2(21 21 I I B B 环中心O 的磁感应强度为 0210 B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI ,dI 在P 点产生的磁感应强度大小为

稳恒磁场典型例题

第五章 稳恒磁场 设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。 解:如图所示 令 110A I H e r = 220A I H e r = 由稳恒磁场的边界条件知, 12t t H H = 12n n B B = 又 B μ= 且 n H H = 所以 1122H H μμ= (1) 再根据安培环路定律 H dl I ?=?? 得 12I H H r π+= (2) 联立(1),(2)两式便解得

2112 0I I H r r μμμμπμμπ=? =?++ 01212 0I I H r r μμμμπμμπ= ? =?++ 故, 01110I B H e r θμμμμμπ== ?+ 02220I B H e r θμμμμμπ== ?+ 212()M a n M M n M =?-=? 2 20 ( )B n H μ=?- 00()0I n e r θμμμμπ-= ???=+ 222()M M M J M H H χχ=??=??=?? 00 00(0,0,)z J Ie z μμμμδμμμμ--=?=?++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势 A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。 解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分量,而与φ,z 无关。由2A ?的柱坐标系中的表达式可知,只有一个分量,即 210A J μ?=- 220A ?= 此即 1 01()A r J r r r μ??=-?? 2 1()0A r r r r ??=?? 通解为 21121 ln 4 A Jr b r b μ=-++ 212ln A c r c =+

第五章 稳恒磁场3节

§3 磁场的“高斯定理”与安培环路定理 引言: 磁场、电场均是矢量场,但磁场与电场性质不同。在电学中有场方程: ?∑=?S s q s d D 内 0??, ?=?0l d E ? ? 而在磁学中相应的该两方面(通量、环流)又该如何?即 ?=?s s d B ???, ?=??L l d B ? ? 它们均可由毕奥-萨伐尔定律,结合叠加原理导出。 一、磁场的“高斯定理” 1、磁通量 引入磁力线形象化地描述磁场,疏密和切向所代表的含义类同电力线。如图5-17,规定:通过一曲面S 的磁通量为 ? ?=?=ΦS S m dS B S d B θcos ? ? 在SI 制中各物理量的单位为 m Φ:韦伯(Wb ),1韦伯=1特21米? B ρ : 特斯拉(T ),2111米 韦伯特=,具有磁通密度概念。 2、B ρ 线的闭合性 即磁场的高斯定理:?=?S S d B 0? ?。表明:闭合曲面S 的磁通量为零,自然界 中不存在自由磁荷(磁单极)。因稳恒电流本身是闭合的(? =?S S d j 0? ?) ,故闭合电流与闭合B ? 线相互套链。高斯定理也表明,磁力线是无头无尾的闭合线,磁场是无源场。 图5-17 图5-18 θ B ? d n ds s ? ?= Id l ?θ r d B ? 闭面S

3、高斯定理的证明思路 高斯定理可从毕奥-萨伐尔定律严格证明,这里仅提供思路。如图5-18。 (1) 首先考虑单个电流元l Id ? 之场中 以l Id ?为轴线取一磁力线元管,其上磁场2 04sin r Idl dB πθμ=处处相等;再取任意闭曲面S ,若S 与之交链,则一进一出,0=Φm d ;若S 与之不交链,仍0=Φm d ; 再展扩至整体S 面上,得0=Φm 。 (2) 然后再考虑任意回路之总场是各电流元之场的叠加,因l Id ? 是任一电流 元,故对整体考虑,其结论不变。 二、安培环路定理 1、研究:?=?L l d B ?? ? 2、特点:取积分回路L (称之为安培环路)沿B ?线,因B ?线闭合,且B ? 与l d ?的夹角为零,而有?≠?L l d B 0? ?。 3、内容:∑?=?) (0内L L I l d B μ? ?,其中右侧为穿过闭路L 的电流之代数和,按右 手定则规定,参见图5-19。 图5-19 4、定理证明:该定理可由毕奥-萨伐尔定律证明,下面先看l d B ρ ρ?,再计算??L l d B ρ ρ,最后再用叠加原理。 如图5-20,L -安培环路,L '-载流回路,作一负l d ρ 位移后成L ''。 I I L (正) L (负) 右手定则 → →

大连理工大学大学物理作业10(稳恒磁场四)与答案详解

作业 10 稳恒磁场四 1. 载流长直螺线管内充满相对磁导率为 r 的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度 H 的关系是 [ ] 。 A. B 0 H B. B r H C. B 0H D. B 0 H 答案:【 D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 B r H 抗磁质: r 1,所以, B H 2. 在稳恒磁场中,关于磁场强度 H 的下列几种说法中正确的是 [] 。 A. H 仅与传导电流有关。 B. 若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零。 C.若闭合曲线上各点 H 均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线 L 为边界的任意曲面的 H 通量相等。 答案:【 C 】 解:安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分只与传导电流 L 有关,并不是说:磁场强度 H 本身只与传导电流有关。 A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度 H 的闭合回路的线积分为零。并 不能说:磁场强度 H 本身在曲线上各点必为零。 B 错。 高斯定理 B dS 0 ,是说:穿过闭合曲面,场感应强度 B 的通量为零,或者说, . S 以闭合曲线 L 为边界的任意曲面的 B 通量相等。对于磁场强度 H ,没有这样的高斯定理。 不能说,穿过闭合曲面,场感应强度 H 的通量为零。 D 错。 安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分等于闭合回路 L 包围的电流的代数和。 C 正确。 抗磁质和铁磁质的 B H 曲线,则 Oa 表示 3. 图 11-1 种三条曲线分别为顺磁质、 ; Ob 表示 ; Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 4. 某铁磁质的磁滞回线如图 11-2 所示,则 图中 Ob (或 Ob ' )表示 ; Oc (或 Oc ' )表示 。 答案:剩磁;矫顽力。

大学物理练习册-稳恒磁场

九、稳恒磁场 磁感应强度 9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm , 求P 点的磁感应强度。 9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心 O 点的磁感应强度(图中 ? 为已知量)。 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。如图9-3所示, 求环中心的磁感应强度。 图 9-1

磁矩 9-4一半径为R的薄圆盘,其中半径为r的阴影部分均匀带正电,面电荷密度为+s,其余部分均匀带负电,面电荷密度为-s(见图9-4)。设此盘以角速度为ω绕其轴线匀速转动时,圆盘中心O处的磁感应强度为零,问R和r有什么关系?并求该系统的磁矩。 图9-4 9-5氢原子处在正常态(基态)时,它的电子可看作是在半径为a=0.53×10-8cm的轨道(称为玻尔轨道)上作匀速圆周运动,若电子在轨道中心处产生的磁感应强度大小为12.5T,求(1)电子运动的速度大小?(2)该系统的磁矩。(电子的电荷电量e=1.6×10-19C)。

磁通量 9-6已知一均匀磁场的磁感应强度B=2T,方向沿x轴正方向,如图9-6所示,已知ab=cd =40cm,bc=ad=ef=30cm,be=cf=30cm。求:(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。 图9-6 9-7两平行长直导线相距d=40cm,每根导线载有等量同向电流I,如图9-7所示。求:(1)两导线所在平面内,与左导线相距x(x在两导线之间)的一点P处的磁感应强度。(2)若I=20A,通过图中斜线所示面积的磁通量(r1=r3=10cm,l=25cm)。 图9-7

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ = ,单位是:安培每平方米(A/m 2)。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + =。 4、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ?? =____μ0I__; 对环路b :d B l ?? =___0____; 对环路c :d B l ?? =__2μ0I__。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2πr 2B B. πr 2B C. 0 D.无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

第五章 稳恒磁场1节

第五章 稳恒磁场 引言: 电流通过导体有热效应,通过电解液有化学效应。本章讨论电流的磁效应:电流在其周围空间激发磁场,磁场对电流有磁力作用。 本章重点介绍真空中静磁学知识,建立稳恒磁场之基本方程式。研究方法仍为场论方法,注意与静电场比较和区别。 §1 磁的基本现象和规律 一、磁作用 电与磁常相伴随、相互转化,相互作用综述为图5-1所示几种情况。 图5-1 图5-2 1、磁铁间的相互作用 结合实物演示说明: (1)同种磁极相互排斥、异种磁极相互吸引,参见图5-2; (2)将一磁棒分为两段,N 、S 极并不能相互分离,不存在磁单极; (3)地球本身是一大磁体,其磁性N 极在地理南极,磁性S 极在地理北极。 自由悬挂的条形磁棒或长磁针始终指南北,即是上规律的体现——指南针及应用。 2、电流对磁铁的作用 图5-3 N S N S S N N S N S 电流 磁铁 磁铁 电流 ③ ② ② ③ ① ④ I S N N I N S S I N N S S S

通电导线周围产生磁场,通电螺线管相当于条形磁铁,参见图5-3。 3、磁铁对电流的作用 电流是运动电荷形成,表明磁极对运动电荷也有磁力作用,参见图5-4。 图5-4 右手定则判受力 4、电流对电流的作用 参见图5-5说明。 同向电流:吸引 反向电流:排斥 图5-5 以上均称为磁相互作用,是基本的磁现象。 二、磁场 1、物质磁性的基本来源 螺线管通电后的磁性与磁棒的相似性,启发人们:磁铁与电流是否在本源上一致? (19 世纪,法国)安培分子电流假说:组成磁铁的最小单元——磁分子就是环形电流。若这些分子电流定向排列,宏观上即显示N 、S 极。 ●磁分子的“分子电流”等效成图5-6 ●分子环流形成的微观解释:原子、分子内电子的绕核旋转和自转。 综上可见:一切磁效应均来源于电流;一切磁作用都是电流与电流之间的相互作用,或说成运动电荷之间的相互作用。 I N S F N S F

大学物理稳恒磁场解读

大学物理稳恒磁场解读 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场 磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B的定义:

(1)规定小磁针在磁场中N极的指向为该点磁感强度B的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B垂直的方向运动时,其所受最大磁力F max与电荷电量q和运动速度大小v的乘积的比值,规定为磁场中某点磁感强度的大小。即: 磁感强度B是描写磁场性质的基本物理量。若空间各点B的大小和方向均相等,则该磁场为均匀磁场;若空间各点B的大小和方向均不随时间改变,称该磁场为稳恒磁场。 磁感强度B的单位:特斯拉(T)。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: 电流在空间的磁场可看成是组成电流的所有电流元在空间产生 元磁感强度的矢量和。 式中μ0:真空磁导率,μ0=4π×10-7 NA 2 dB的大小:

d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。 一段有限长电流的磁场: 二、应用 1。一段载流直导线的磁场 说明: (1)导线“无限长”:

大学物理课后习题答案 稳恒磁场

第十一章 稳恒磁场 1、[E]依据()θπμθR I B 40= 和载流导线在沿线上任一点的0=B 得出答案。 2、[E]依据r I B πμ40= 和磁感强度的方向和电流的方向满足右手法则,得出答案。 3、[C]依据()210cos cos 4θθπμ-= R I B 和载流导线在沿线上任一点的0=B , 有:()[]445180cos 45cos 2 401?--= l I B π μ; π μμπl I I l 002222 22= ??,02=B 4、[D]依据()R I R I R I B 444000μππμθπμθ=?== 5、[C] r I B πμ40= 、 2 a r = 、 4 000108.0245sin 122-?==??= a I a I B πμπμ T 6、[D]依据()210 0cos cos 4θθπμ-= r I B ,应用21I I I +=,分别求出各段直导线电流的磁感强度,可知03=B 、方向相反,∴0≠B 7、[D]注意分流,和对L 回路是I 的正负分析得结论。 8、[B]洛伦兹力的方向向上,故从y 轴上方射出,qB m v R = ,轨迹的中心在qB m v y =处故 I I

射出点:qB m v R y 22= = 9、[B] 作出具体分析图是解决该题的关键。从图上看出: D R =αsin qB D qB m v R = = p eBD p qBD = =αsin p eBD sin arg =α 10、[D] 载流线圈在磁场中向磁通量增加的方向移动。当线圈在该状态时,磁通量已达最大,不可能通过转动来增加磁通量,因此不发生转动,而线圈靠近导线AB 磁通量增大。 应用安培力来进行分析:向左的磁力比向右的磁力大,因此想左靠近。 11、[B] 载流线圈在磁场中向磁通量增加的方向转动或移动,该题中移动不能增加磁通量,则发生转动,从上向下看线圈作顺时针方向转动,结果线圈相当一个条形磁铁,右侧呈现S 级,因此靠近磁铁。 12、[D] B P M m ?=,αsin B P M m =, m P 和B 平行, ∴ 0=α,0sin =α,0=M 13、[C] 应用r I B πμ20= 的公式分别计算出电流系统在各导线上代表点处的B ,然后用安培力的公式:B l I F ?=d d 计算出1F ,2F 用r 表示导线间的距离。 r I r I r I B πμπμπμ4743220001=+= r I r I r I B πμπμπμ0002232=+-=

大学物理稳恒磁场

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场 磁力通过磁场传递,磁场是又一个以场的形式存在的物质。

二、磁感强度 磁感强度B 的定义: (1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。即: qv F B max = 磁感强度B 是描写磁场性质的基本物理量。若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场.... 。 磁感强度B 的单位:特斯拉(T )。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: l Id 电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。

式中μ0:真空磁导率,μ0=4π×10-7NA2 dB的大小: 2 sin 4r Idl dB θ π μ = d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。 一段有限长电流的磁场:? ?? = = l l r r l Id B d B 3 4π μ 二、应用 1。一段载流直导线的磁场 ) cos (cos 42 1 0θ θ π μ - = r I B 说明: (1)导线“无限长”: 2r I B π μ = (2)半“无限长”: 4 2 2 1 r I r I B π μ π μ = =

大学物理A(一)课件第七章稳恒磁场习题及答案

第七章 练习题 1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α. 2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电 流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . 3、通有电流I 的无限长直导线有如图三种形状,则P , Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原 点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系? [ ] 5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强 度B 沿图中闭合路径L 的积分??L l B d (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. B x O R (D) B x O R (C) B x O R (E)

第七章 稳恒磁场习题及答案大学物理

7章练习题 1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线 方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2 B cos α. 2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构 成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电 流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但 0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . 3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电 流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲 线表示B -x 的关系? [ ] B x O R (D) B x O R (C) B x O R (E)

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B》稳恒磁场习题解答 一、填空题(每空1分) - dI O 1、电流密度矢量的定义式为:j =—L n ,单位是:安培每平方米(AIm)O dS丄 2、真空中有一载有稳恒电流I的细线圈,则通过包围该线圈的封闭曲面S的磁通量J-=0_?若通过S面上某面元dS 的元磁通为d①,而线圈中的电流增加为2I时,通过同一面元的元磁通为d①/,则族:曲Z=1:2 o 3、一弯曲的载流导线在同一平面内,形状如图1(0点是半径为R i和R2的两个半圆弧的共同圆心,电流自无穷远来 到无穷远去),则0点磁感强度的大小是B o M ’ O 4R1 4R24I R2 4、一磁场的磁感强度为^ai bj Ck (SI),则通过一半径为R,开口向Z轴正方向的半球壳表面的磁通量的大小为ΠcWb 5、如图2所示通有电流I的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a:应B dl = _μp l=; 对环路b: ? B dl = 0 ; 对环路C:、B dl =_2 μg l—o 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是 1 : 4,电荷之比是1 : 2,它们所受 的磁场力之比是 1 : 2 ,运动轨迹半径之比是 1 : 2 o 二、单项选择题(每小题2分) (B ) 1、均匀磁场的磁感强度B垂直于半径为r的圆面?今以该圆周为边线,作一半球面S,则通过S面的磁通量的 大小为 2 2 A. 2町B B. JT B C. 0 D.无法确定的量 (C ) 2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B1 I B2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D) 3、如图3所示,电流从a点分两路通过对称的圆环形分路,汇合于b点.若ca、bd都沿环的径向,则在环形分路的环心处的磁感强度 A.方向垂直环形分路所在平面且指向纸内 B.方向垂直环形分路所在平面且指向纸外 C方向在环形分路所在平面内,且指向aD?为零

稳恒电流的磁场解读

第五章稳恒电流的磁场 一稳恒电流的磁场教学内容 1.磁的基本现象 (1)磁铁的性质 (2)磁电联系 (3)磁场 (4)磁性起源 2.磁感应强度 (1)磁感应强度矢量 (2)磁感应线 3.毕奥一萨伐尔定律 (1)毕奥一萨伐尔定律 (2)磁感应强度叠加原理 (3)毕奥一萨伐尔定律的应用 4.磁场的高斯定理 (1)磁通量 (2)磁场的高斯定理 5.安培环路定理 (1)安培环路定理 (2)安培环路定理应用 6.磁场对运动电荷的作用 (1)洛仑兹力 (2)带电粒子在磁场中的运动 (3)回旋加速器 (4)汤姆逊实验质谱仪 (5)霍尔效应 7.磁场对载流导线的作用 (1)安培力公式 (2)均匀磁场对平面载流线圈的作用 (3)平行无限长直导线间的相互作用 说明与要求: 1.本章主要研究电流激发磁场和磁场对电流及运动电荷的作用两部分内容。 2.本章重点是2、3、5节,难点是磁感应强度的概念及安培环路定理的物理意义及应用。3.本章研究问题的方法与第一章类似,故在教学中应加强它们的比较。 二、稳恒电流的磁场教学目标 节次内容目标层次 1.基本磁现象1.磁铁的性质 2.磁电联系 3.磁场 4.磁性起源知识: 1.磁铁的性质 2.磁现象与电现象的联系理解:

1.磁场 2.物质磁性的起源 2.磁感应强度磁感应线 1.B 的定义 2.B 线 知识: 1.B 线的定义 2.B 线的特点 3.B 的单位 理解: 1.B 的定义及意义 2.B 的定义与E 的定义的 区别及原因 3.毕奥一萨伐尔定律 1.毕一萨定律 2.B 的叠加原理 3.毕一萨定律的应用 知识: 1.电流元 2.矢量矢积的表示及方向确定 3.0 的数值及单位 理解: 1.毕一萨定律的数学表示式 2.毕一萨定律得到的方法 3.毕一萨定律中各量的意义 4.B 的叠加原理的含义 综合应用: 根据毕一萨定律和磁场叠加原理,通过求积或求和的方法,计算电流产生的磁场 4.磁通量磁场的高斯定理 1.磁通量 2.磁场的高斯定理 知识: 1.B 的单位 2.B 是代数量 理解: 1.B 的定义及意义 2.磁场的高斯定理的内容及意义 3.磁场高斯定理与电场高斯定理的区别 简单应用:

大连理工大学大学物理作业10(稳恒磁场四)及答案详解

作业 10 稳恒磁场四 1.载流长直螺线管内充满相对磁导率为r μ的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度H 的关系是[ ]。 A. 0B H μ> B. r B H μ= C. 0B H μ= D. 0B H μ< 答案:【D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 H B r μμ0= 抗磁质:1≤r μ,所以,0B H μ< 2.在稳恒磁场中,关于磁场强度H →的下列几种说法中正确的是[ ]。 A. H →仅与传导电流有关。 B.若闭合曲线内没有包围传导电流,则曲线上各点的H →必为零。 C.若闭合曲线上各点H →均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线L 为边界的任意曲面的H →通量相等。 答案:【C 】 解:安培环路定理∑?=?0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分只与传导电流有关,并不是说:磁场强度H ρ本身只与传导电流有关。A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度H ρ的闭合回路的线积分为零。并不能说:磁场强度H ρ本身在曲线上各点必为零。B 错。 高斯定理0=???S S d B ρρ,是说:穿过闭合曲面,场感应强度B ρ的通量为零,或者说,. 以闭合曲线L 为边界的任意曲面的B ρ通量相等。对于磁场强度H ρ,没有这样的高斯定理。不能说,穿过闭合曲面,场感应强度H ρ的通量为零。D 错。 安培环路定理∑?=?0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分等于闭合回路 包围的电流的代数和。C 正确。 3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的B H -曲线,则Oa 表示 ;Ob 表示 ;Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 图中Ob (或4.某铁磁质的磁滞回线如图11-2 所示,则'Ob )表示 ;Oc (或'Oc )表示 。 答案:剩磁;矫顽力。

大学物理稳恒磁场

大学物理稳恒磁场 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场

磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B 的定义: (1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。即: qv F B max 磁感强度B 是描写磁场性质的基本物理量。若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场.... 。 磁感强度B 的单位:特斯拉(T )。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: l Id 电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。

3 04r r l Id B d ?=πμ 式中μ0:真空磁导率, μ0=4π×10-7 NA 2 dB 的大小: 2 0sin 4r Idl dB θ πμ= d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则。 一段有限长电流的磁场: ???= =l l r r l Id B d B 30 4πμ 二、应用 1。一段载流直导线的磁场 )cos (cos 4210 0θθπμ-= r I B 说明: (1)导线“无限长”: 002r I B πμ=

第十章 稳恒磁场(单章答案)

习题十 稳恒电场 10-3 在同一磁感应线上,各点B 的数值是否都相等?为何不把作用于运动电 荷的磁力方向定义为磁感应强度B 的方向? 解: 在同一磁感应线上,各点B 的数值一般不相等.因为磁场作用于运动电 荷的磁力方向不仅与磁感应强度B 的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B 的方向. 题9-2图 10-4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对? 解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明 21B B = ∑? ==-=?0d 021I bc B da B l B abcd μ ∴ 21B B = (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B 方向相反,即21B B ≠. 10-5 用安培环路定理能否求有限长一段载流直导线周围的磁场? 答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电 流,安培环路定理并不适用. 10-6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所

以在载流螺线管 外面环绕一周(见题9-4图)的环路积分 ?外B L ·d l =0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ?外B L ·d l =I 0μ 这是为什么? 解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是 ? ∑==?L I l B 0d 0μ 外,与??=?=?L l l B 0d 0d 外是不矛盾的.但这是导 线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量r I B πμ20=⊥,r 为管外一点到螺线管轴的距离. 题 9 - 4 图 10-7 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转. 10-8 已知磁感应强度0.2=B Wb ·m -2 x 轴正方向, 如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.

相关文档
相关文档 最新文档