文档库 最新最全的文档下载
当前位置:文档库 › 数学建模解题方法与步骤

数学建模解题方法与步骤

数学建模解题方法与步骤
数学建模解题方法与步骤

数学建模与创业计划实践部

学习目标

1.能表述建立数学模型的方法、步骤;

2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、

非预制性、条理性、技艺性和局限性等特点;;

3.能表述数学建模的分类;

4.会采用灵活的表述方法建立数学模型;

5.培养建模的想象力和洞察力。

一、建立数学模型的方法和步骤

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将

研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数.

可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。

建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关

模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同学请教,尽量掌握第一手资料.

模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都

考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数人欣赏.

模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.

模型检验把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.

模型应用应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是咱们讨论的范围。

应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班.

二、数学模型的特点

我们已经知道建模是利用数学工具解决实际问题的重要手段。数学模型有许多优点,也有弱点。建模需要相当丰富的知识、经验和各方面的能力,同时应注意掌握分寸.下面归纳出数学模型的若干特点,以后在学习过程中逐步领会.

模型的逼真性和可行性一般说来总是希望模型尽可能逼近研究对象,但是一个非常逼真的模型在数学上常常是难于处理的,因而不容易达到通过建模对现实对象进行分析、预报、决策或者控制的目的,即实用上不可行.另一方面,越逼真的模型常常越复杂,即使数学上能处理,这样的模型应用时所需要的“费用”也相当高,而高“费用”不一定与复杂模型取得的“效益”相匹配.所以建模时往往需要在模型的逼真性与可行性,“费用”与“效益”之间做出折衷和抉择.模型的渐进性稍微复杂一些的实际问题的建模通常不可能一次成功,要经过上一节描述的建模过程的反复迭代,包括由简到繁,也包括删繁就简,以获得越来越满意的模型.在科学发展过程中随着人们认识和实践能力的提高,各门学科中的数学模型也存在着一个不断完善或者推陈出新的过程.从19世纪力学、

热学、电学等许多学科由牛顿力学的模型主宰,到20世纪爱因斯坦相对论模型

的建立,是模型渐进性的明显例证.

模型的强健性模型的结构和参数常常是由对象的信息如观测数据确定的,

而观测数据是允许有误差的.一个好的模型应该具有下述意义的强健性:当观测数据(或其他信息)有微小改变时,模型结构和参数只有微小变化,并且一般也应导致模型求解的结果有微小变化.

模型的可转移性模型是现实对象抽象化、理想化的产物,它不为对象的所属领域所独有,可以转移到另外的领域.在生态、经济、社会等领域内建模就常常借用物理领域中的模型.模型的这种性质显示了它的应用的极端广泛性.模型的非预制性虽然已经发展了许多应用广泛的模型,但是实际问题是各种各样、变化万千的,不可能要求把各种模型做成预制品供你在建模时使用。模型的这种非预制性使得建模本身常常是事先没有答案的问题(Open—end problem).在建立新的模型的过程中甚至会伴随着新的数学方法或数学概念的产生.

模型的条理性从建模的角度考虑问题可以促使人们对现实对象的分析更

全面、更深入、更具条理性,这样即使建立的模型由于种种原因尚未达到实用的程度,对问题的研究也是有利的。

模型的技艺性建模的方法与其他一些数学方法如方程解法、规划解法等是根本不同的,无法归纳出若干条普遍适用的建模准则和技巧.有入说。建模目前与其是一门技术、不如说是一种艺术.是技艺性很强的技巧.经验、想象力、洞察力、判断力以及直觉、灵感等在建模过程中起的作用往往比一些具体的数学知识更大.

模型的局限性这里有几方面的含义.第一,由数学模型得到的结论虽然具有通用性和精确性,但是因为模型是现实对象简化、理想化的产物,所以一旦将模型的结论应用于实际问题,就回到了现实世界,那些被忽视、简化的因素必须

考虑,于是结论的通用性和精确性只是相对的和近似的.第二,由于人们认识能力和科学技术包括数学本身发展水平的限制,还有不少实际问题很难得到有着实用价值的数学模型.如一些内部机理复杂、影响因素众多、测量手段不够完善、技艺性较强的生产过程,像生铁冶炼过程,需要开发专家系统,与建立数学模型相结合才能获得较满意的应用效果.专家系统是一种计算机软件系统,它总结专家的知识和经验,模拟人类的逻辑思维过程,建立若干规则和推理途径,主要是定性地分析各种实际现象并做出判断.专家系统可以看成计算机模拟的新发展.第三,还有些领域中的问题今天尚未发展到用建模方法寻求数量规律的阶段,如中医诊断过程,目前所谓计算机辅助诊断也是属于总结著名中医的丰富临床经验的专家系统.

建模过程是一种创造性思维过程,除了想象、洞察、判断这些属于形象思维、逻辑思维范畴的能力之外,直觉和灵感往往也起着不可忽视的作用。当由于各种限制利用已有知识难以对研究对象做出有效的推理和判断时,凭借相似、类比、猜测、外推等思维方式及不完整、不连续、不严密的,带启发性的直觉和灵感,去“战略性”地认识对象,是人类创造性思维的特点之一,也是人脑比按程序逻辑工作的计算机、机器人的高明之处.历史上不乏在科学家的直觉和灵感的火花中诞生的假说、论证和定律.当然,直觉和灵感不是凭空产生的,它要求人们具有丰富的背景知识,对问题进行反复思考和艰苦探索,对各种思维方法运用娴熟.相互讨论和思想交锋,特别是不同专业的成员之间的探讨,是激发直觉和灵感的重要因素.所以由各种专门人才组成的所谓团队工作方式(Team work)越来越受到重视.

前面说过,建模可以看成一门艺术.艺术在某种意义下是无法归纳出几条准则或方法的.一名出色的艺术家需要大量的观摩和前辈的指教,更需要亲身的实践.类似地,掌握建模这门艺术培养想象力和洞察力,一要大量阅读、思考别人做过的模型,二要亲自动手,认真做几个实际题目.

三、数学模型的分类

数学模型可以按照不同的方式分类,下面介绍常用的几种.

1.按照模型的应用领域(或所属学科)分.如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等.

2.按照建立模型的数学方法(或所属数学分支)分.如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等.

按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来

解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数

学知识在各个不同领域中建模.

3.按照模型的表现特性又有几种分法:

确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.

静态模型和动态模型取决于是否考虑时间因素引起的变化.

线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连

续的.

虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.

4.按照建模目的分.有描述模型、分析模型、预报模型、优化模型、决策模型、

控制模型等.

5.按照对模型结构的了解程度分.有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.

6.按模型的应用领域分类:

生物学数学模型

医学数学模型

地质学数学模型

气象学数学模型

经济学数学模型

社会学数学模型

物理学数学模型

化学数学模型

天文学数学模型

工程学数学模型

按是否考虑随机因素分类:

确定性模型

随机性模型

按是否考虑模型的变化分类:

静态模型

动态模型

按应用离散方法或连续方法分类:

离散模型

连续模型

按建立模型的数学方法分类:

几何模型

微分方程模型

图论模型

规划论模型

马氏链模型

按人们对事物发展过程的了解程度分类:

白箱模型:

指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。

灰箱模型:

指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学、经济学等领域的模型。

黑箱模型:

指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

2014美国数学建模A题解题思路大全

美国高速公路限速是多少?美国高速公路的限速一般在60至75英里之间,多数州规定不能超过限速100英里。也就是说,你在限速75英里的美国高速公路上跑到85英里,一般不会遭到警察追击。但再高上去,麻烦就来了,警车往往是在你毫无戒备的情况下出现的,那时候你根本不知道自己已经超速,更不知道自己已经成了某个警察的猎物。 1英里(mi.)=1760码=5280英尺=1.6093公里=3.2187市里=3.2187华里=1609.3米 中国最高车速不得超过每小时120公里<<中华人民共和国道路交通安全法实施条例>> 第七十八条高速公路应当标明车道的行驶速度,最高车速不得超过每小时120公里,最低车速不得低于每小时60公里。在高速公路上行驶的小型载客汽车最高车速不得超过每小时120公里,其他机动车不得超过每小时100公里,摩托车不得超过每小时80公里。同方向有2条车道的,左侧车道的最低车速为每小时100公里;同方向有3条以上车道的,最左侧车道的最低车速为每小时110公里,中间车道的最低车速为每小时90公里。道路限速标志标明的车速与上述车道行驶车速的规定不一致的,按照道路限速标志标明的车速行驶。 高速公路(简称为高速路或高速),一般是指双向2条车道以上、双向分隔行驶、完全控制出入口、 提出交通流模型前,应当将实际的涉及到车道数目、最高时速限制、交通路口、机械故障、驾驶员反 应能力等多种因素的实际问题理想化,以便于应用数学方法进行分析讨论。此处所做的假设包括: a.车辆沿一条无限长单向车道运动;

b.车辆在单向车道内只能朝一个方向运动; c.单向车道是全封闭的,即没有供车辆驶入或者驶出的岔路口; d.车辆相对于此序列中的其他车辆位置不发生改变,即没有抛锚或超车的情况。 基于上述的假设,对作匀速运动的恒定密度车流而言,交通流变量的函数关系为: q=P0 0 (4) 式中,P。为车辆运动时的恒定密度;。为车辆做匀速运动的速度。 实际的非恒定密度和非匀速运动的交通流仍然满足上述关系,其函数表达式为: g( ,t)=P( ,£)口( ,£ 车辆守恒方程 由基本的交通流变量中所做的假设可知车辆的总体数目不会因观测点、观测时间的变化而变化。 因此在单向车道的区间[a,b]内,车辆数目变化完全取决于在位置X=a处驶入的车辆及在位置x=b处 驶出的车辆数目之差。 交通流模型 将式(5)代人式(13)后,车辆守恒方程可以变形为: a£+’ (、ID,t,)=一0 (、14) 式(14)给出p和的关系。如果车流速度可知,则式(14)可以转化为关于密度P的偏微分方程,因 此可用于预测车流密度的变化情况。但是在实际应用中,车流的密度无法事先确定,因为对于各个具体 车辆而言,影响其速度的因素很多,包括驾驶者的意图和判断,交通状况的变化,驾驶者的反应速度等。如果要用数学模型的方法建构方程,则需对实际问题做进一步简化和假设。与车辆守恒方程中影响速 度的因素相关假设 问题A:保持向右行驶除非要超车的交通规则 在一些国家,汽车行驶在右边是规则,比如,美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地。多车道高速公路经常使用一个规则,就是要求司机在最右边的车道驾驶,除非它们要超车。超车就是他们开到左边的一个车道,超越,并恢复到原来的行驶车道。 (1)建立和分析一个数学模型来分析这一规则在车流量少和车流量大的不同时刻的表现。不妨检查权衡交通流量和其安全性。这些保持原车道或者被超车的速度限制(即限制最大速度和最小速度),或者其他的因素,可以不用考虑到问题中。 (2)这个规则,能有效地促进了更多的车流量吗?如果不能,提出并分析备选方案(之中最好不要用到题目中这类规则),能够促进更多的交通流量,安全性,或者你认为重要的其他因素。 (3)在一些国家,汽车行驶在左边是常态,讨论你的解决方案是否能够转用,

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

(完整word版)数学建模的主要步骤

数学建模的主要步骤: 第一、模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建 模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以 高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应 尽量使问题线性化、均匀化。 第三、模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间 的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老 人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱 大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法, 特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计 算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 第五、模型分析 对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作 出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差 分析,数据稳定性分析。 数学建模采用的主要方法有: (一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模 型。 1、比例分析法:建立变量之间函数关系的最基本最常用的方法。 2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。 3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

第二讲数学建模的基本方法和步骤

第二讲 数学建模的基本方法与步骤 数学建模面临的实际问题就是多种多样的,建模的目的不同、分析的方法不同、采用的数学工具不同,所得模型的类型也不同,我们不能指望归纳出若干条准则,适用于一切实际问题的数学建模方法。下面所谓基本方法不就是针对具体问题而就是从方法论的意义上讲的。(注:用最初等的方法解决,越受人尊重) 一 数学建模的基本方法 一般说来数学建模的方法大体上可分为机理分析与测试分析两种。 ????????????? 机理分析: 是根据对客观事物特性的认识,找出反映内部机理的数 量规律,建立的数学模型常有明确的物理或现实意义。 建模方法测试分析: 将研究对象看作一个“黑箱”(意思是内部机理看不清 楚),通过对测量数据的统计分析,找出与数据拟合最 好的模型。 面对于一个实际问题用哪一种方法建模,主要取决于人们对研究对象的了解程度与建模目的。如果掌握了一些内部机理的知识,模型也要求具有反映内部特征的物理意义,建模就应以机理分析为主。而如果对象的内部机理规律基本上不清楚,模型也不需要反映内部特征,那么可以用测试分析。对于许多实际问题也常常将两种方法结合起来,用机理分析建立模型结构,用测试分析确定模型的参数。 二 数学建模的一般步骤 建模要经过哪些步骤并没有一定的模式,通常与问题性质与建模的目的等有关。下面给出建模的一般步骤,如图1、2所示。 ⑴ 模型准备:了解实际背景,明确建模目的,搜索必要信息,弄清对象的主要特征,形成一个比较清晰的“问题”(即问题的提出)。情况明才能方法对,在这个阶段要深入调查研究,虚心向实际工作者请教,尽量掌握第一手资料。

⑵模型假设:根据对象的特征与建模目的,抓住问题的本质,忽略次要因素,作出必要的、合理的简化假设。对于建模的成败这就是非常重要与困难的一步。假设不合理或太简单,会导致错误的或无用的模型;假设作得过分详细,试图把复杂对象的众多因素都考虑进去,会使您很难或无法继续下一步的工作。常常需要在合理与简化之间作出恰当的折衷,要不段积累经验,并注意培养与充分发挥对事物的洞察力与判断力。 ⑶模型的建立:根据假设,用数学的语言、符号描述对象的内在规律,得到一个数学结构。这里除了需要一些相关的专门知识外,还常常需要较为广阔的应用数学方面的知识,要善于发挥想象力,注意使用类比法,分析对象与熟悉的其她对象的共性,借用已有的数学模型。建模时还应遵循的一个原则就是尽量采用简单数学工具,因为您的模型总希望更多的人了解与使用,而不就是只供少数专家欣赏。 ⑷模型求解:使用各种数学方法、数学软件与计算机技术对模型求解。 ⑸模型分析:对求解结果进行数学上的分析,如对结果进行误差分析,分析模型对数据的稳定性或灵敏性等。 ⑹模型检验:把求解与分析结果翻译回到实际问题,与实际现象、数据进行比较,检验模型的合理性与适用性。如果结果与实际不符,问题常常出现在模型假设上,应该修改或补充假设,重新建模。这一步对于模型就是否真的有用就是非常关键的,要以严肃认真的态度对待。 ⑺模型应用:这与问题的性质、建模的目的以及最终结果有关,一般不属于本书讨论的范围。 应该指出,并不就是所有问题的建模都要经过这些步骤,有时各步骤之间的界限也不那么分明,建模时不要拘泥于形式上的按部就班。 三数学建模的全过程 数学建模的全过程可分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环,如图1、3所示。 表述就是根据建模目的与信息将实际问题“翻译”成数学问题,即将现实问题“翻译”成抽象的数学问题,属于归纳法。数学模型的求解选择适当的数学方

数学建模在生活中的应用

数学建模在生活中的应用 【摘要】 本文通过数学模型在实际生活中应用的讨论,阐述数学建模理论的重要性,研究其在实践中的重要价值,并把抽象的数学知识放到大家看得见、摸得着、听得到的生活情境中,从而让人们感受到生活中处处有数学,生活中处处要用数学。 【关键词】数学建模;生活;应用;重要性 最早的数学建模教材出现在公元1世纪我国古代的《九章算术》一书中,由此可见,数学建模是人才培养和社会发展的需要。同时,数学建模也是教育改革的需要,现代数学教育改革中越来越强调“问题解决”,而“问题解决”恰恰体现了数学在实际生活应用的重要性,由于数学建模是问题解决的主要形式,所以数学建模在实际生活中发挥着重要的作用。 一、数学建模 数学建模是指根据具体问题,在一定的假设下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。由此可见,数学建模是一个“迭代”的过程,此过程我们可以用下图表示: 二、生活中的数学建模实例 赶火车的策略 现有12名旅客要赶往40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时4千米,靠步行是来不及了,唯一可以用的交通工具是一辆小汽车,但这辆小汽车连司机在内至多只能乘坐5人,汽车的速度为每小时60千米。问这12名旅客能赶上火车吗? 【分析】 题中没有规定汽车载客的方法,因此针对不同的搭乘方法,答案会不一样,一般有三种情况:(1)不能赶上;(2)勉强赶上;(3)最快赶上 模型准备 模型假设 模型求解 模型建立 模型分析 模型验证 模型应用

方案1 不能赶上 用汽车来回送12名旅客要分3趟,汽车往返就是3+2=5趟,汽车走的总路程为 5×40=200(千米), 所需的时间为 200÷60=10/3(小时)>3(小时) 因此,单靠汽车来回接送旅客是无法让12名旅客全部赶上火车的。 方案2 勉强赶上的方案 如果汽车来回接送一趟旅客的同时,让其他旅客先步行,则可以节省一点时间。 第一趟,设汽车来回共用了X小时,这时汽车和其他旅客的总路程为一个来回,所以 4X+60X=40×2 解得X=1.25(小时)。此时,剩下的8名旅客与车站的距离为 40-1.25×4=35(千米) 第二趟,设汽车来回共用了Y小时,那么 4Y+60Y=35×2 解得Y=35/32≈1.09(小时) 此时剩下的4名旅客与车站的距离为 35-35/32×4=245/8≈30.63(千米) 第三趟,汽车用了30.63÷60~0.51(小时) 因此,总共需要的时间约为 1.25+1.09+0.51= 2.85(小时) 用这种方法,在最后4名旅客赶到火车站时离开车还有9分钟的时间,从理论上说,可以赶得上。但是,我们在计算时忽略了旅客上下车以及汽车调头等所用的时间,因此,赶上火车是很勉强的。 方案3 最快方案 先让汽车把4名旅客送到中途某处,再让这4名旅客步行(此时其他8名旅客也在步行);接着汽车回来再送4名旅客,追上前面的4名旅客后也让他们下车一起步行,最后回来接剩下的4名旅客到火车站,为了省时,必须适当选取第一批旅客的下车地点,使得送最后一批旅客的汽车与前面8名旅客同时到达火车站。 解法1 设汽车送第一批旅客行驶X千米后让他们下车步行,此时其他旅客步行的路程为 4×X/60=X/15(千米) 在以后的时间里,由于步行旅客的速度都一样,所以两批步行旅客之间始终相差14/15X千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 由于汽车来回两趟所用的时间恰好是第一批旅客步行(40-X)千米的时间, 故 2×X/32=40-X/4 解得X=32(千米) 所需的总时间为 32/60+(40-32)/4≈2.53(小时) 这个方案可以挤出大约28分钟的空余时间,足以弥补我们计算时间所忽略的一些时间。

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

初中数学建模方法及应用

龙源期刊网 https://www.wendangku.net/doc/fd9646559.html, 初中数学建模方法及应用 作者:肖永刚 来源:《新课程·中学》2017年第03期 摘要:在新课标中要求培养学生的创新能力,在初中数学教学中培养学生的建模能力, 是培养数学创新能力的重要方法,也能增强学生利用数学知识解决问题的能力。对培养初中生数学建模方法及应用进行了论述。 关键词:初中数学;建模思想;数学应用 利用数学建模的方法是学习初中数学的新方法,是素质教育和新课标的要求,能为学生的数学能力发展提供全新途径,提高学生运用数学工具解决问题的能力,让学生在用数学工具解决问题中体会到数学学习的意义,从而提高数学学习兴趣。 一、数学建模的概念 数学建模就是对具体问题分析并简化后,运用数学知识,找出解决方法并利用数学式子来求解,从而使问题得以解决。数学建模方法有以下几个步骤:一是对具体问题分析并简化,然后用数学知识建立关系式(模型),二是求解数学式子,三是根据实际情况检验并选出正确答案。初中阶段数学建模常用方法有:函数模型、不等式模型、方程模型、几何模型等。 二、数学建模的方法步骤 要培养学生的数学建模方法,可按以下方法步骤进行: 1.分析问题题意为建模做准备。对具体问题包含的已知条件和数量关系进行分析,根据问题的特点,选择使用数学知识建立模型。 2.简化实际问题假设数学模型。对实际问题进行一定的简化,再根据问题的特征和要求以及解题的目的,对模型进行假设,要找出起关键作用的因素和主要变量。 3.利用恰当工具建立数学模型。通过建立恰当的数学式子,来建立模型中各变量之间的关系式,以此来完成数学模型的 建立。 4.解答数学问题找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1.计算n个样本两两之间的距离 2.构成n个类,每类只包含一个样品 3.合并距离最近的两类为一个新类 4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值), 若类的个数等于1,转5,否则转3 5.画聚类图 6.决定类的个数和类。 判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体 模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比

数学建模的方法和步骤

数学建模的方法和步骤 建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关.当然,建模的过程也有共性,一般来说大致可以分为以下的几个步骤: 1.形成问题 要建立现实问题的数学模型,首先要对所要解决的问题有一个十分明晰的提法.只有明确问题的背景,尽量弄清对象的特征,掌握有关的数据,确切地了解建立数学模型要达到的目的,才能形成一个比较明晰的“问题”. 2.假设和简化 根据对象的特征和建模的目的,对问题进行必要的、合理的假设和简化.如前所述,现实问题通常是纷繁复杂的,我们必须紧抓住本质的因素(起支配作用的因素),忽略次要的因素.此外,一般地说,一个现实问题不经过假设和简化,很难归结成数学问题.因此有必要对现实问题作一些简化,有时甚至是理想化. 3.模型的构建 根据所作的假设,分析对象的因果关系,用适当的数学语言刻画对象的内在规律,构建现实问题中各个量之间的数学结构,得到相应的数学模型。这里,有一个应遵循的原则:即尽量采用简单的数学工具. 4.检验和评价 数学模型能否反映原来的现实问题,必须经受多种途径的检验.这里包括:①数学结构的正确性,即有没有逻辑上自相矛盾的地方;②适合求解,即是否会有多解或无解的情况出现;③数学方法的可行性,即迭代方法是否收敛,以及算法的复杂性等.而最重要和最困难的问题是检验模型是否真正反映原来的现实问题.模型必须反映现实,但又不等同于现实;模型必须简化,但过分的简化则使模型远离现实,无法解决现实问题.因此检验模型的合理性和适用性,对于建模的成败是非常重要的.评价模型的根本是看它能否准确地解决现实问题.此外,是否容易求解也是评价模型的一个重要标准. 5.模型的改进 模型在不段检验过程中经过不断修正,逐步趋向完善,这是建模必须遵循的重要规律,一旦在检验中发现问题,人们必须重新审视在建模时所作的假设和简化的合理性,检查是否正确刻画对象内在的量之间的相互关系和服从的客观的规律.针对发现的问题作出相应的修正.然后,再重复上述检验修改的过程,直到获得某种程度的满意模型为止. 6.模型的求解 经过检验,能比较好地反映原现实问题的数学模型.最后将通过求解得到数学上的结果;再通过“翻译”回到现实问题,得到相应的结论.模型若能获得解的确切表达式固然最好,但现实中多数场合需依靠电子计算机数值求解.电子计算技术的飞速发展,使数学模型这一有效的工具得以发扬光大.

数学模型的应用

数学建模 数模作业(第一章) P21 第一章 6、利用节药物中毒施救模型确定对于孩子(血液容量为2000ml)以及成人(血液容量为 4000ml)服用氨茶碱能引起严重中毒和致命的最小剂量。 解:设孩子服用氨茶碱能引起严重中毒的最小剂量为1A ,则由节中的药物中毒施救模型可知: 在胃肠道中药物的量为 0.13861()t x t A e -=,而在血液系统中药物的量为 0.11550.13861()6() t t y t A e e --=-,再令0.11550.13861()()/6()t t y t y t A e e --==-再做出()y t 的图像如下: 《 ; 由图可知()y t 具有最大值,设在这个最大值max ()y t 在孩子血液中容量的比例为严重中 毒的比例100/g ml μ以及致命的比例200/g ml μ即为孩子服用氨茶碱的最小剂量。于是可以去求这个最小剂量。由上图可知最大值位于8t h =左右, 利用Mathematics 去找出这个最大值。求得max ()=0.0669y t ,而7.892t h =。于是孩子服用氨茶碱引起严重中毒的最小剂

量1A 有式子1max 6()/2000100/A y t ml g ml μ=,从而得此时1498256.1A g μ=同理可以求的孩子服用氨茶碱致命的最小剂量为996512.2g μ。而成人服用氨茶碱严重中毒与致命的最小剂量分别为996512.21993024.4g g μμ、。 7、对于节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液中药量的变化并作图。 解:由题可算得: t=0:2:20 y=275*exp*t)+*exp*t) plot(t,y,'b:') 第二章 3、根据节中的流量数据(表2)和(2)式作插值的数值积分,按照连续模型考虑均流池的容量(用到微积分的极值条件)。 解:可以将表2中的数据建立散点图以及平均值,如下: h=0:1:23 , y=[,,,,,,,,,,,,,,,279,,,,,,,,] x1=0::23; t=sum(y)/24; plot(h,y,'-',x1,t) hold on 02468101214161820 50100150200250300350 400

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模各种分析报告方法

现代统计学 1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 主成分分析和因子分析的区别 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,

相关文档
相关文档 最新文档