文档库 最新最全的文档下载
当前位置:文档库 › 光纤Bragg光栅温度传感器温敏实验

光纤Bragg光栅温度传感器温敏实验

光纤Bragg光栅温度传感器温敏实验
光纤Bragg光栅温度传感器温敏实验

光纤Bragg光栅温度传感器温敏实验

【摘要】油气田生产测井一个重要任务是测量温度参数。而由于光纤Bragg 光栅温度传感器的固有优点,是最热门的油气井下常规温度传感器的潜力替换产品。将光纤光栅用少量环氧树脂胶粘贴于膨胀系数和光纤相等的特殊材料上,制成温敏元件。根据油气井下温度的范围,设计了35-105℃裸光纤Bragg光栅温度传感特性实验,采用精度±1℃的温控箱进行加热,每隔10℃测量一点,每点温度间隔至少15分钟,无论是温度上升还是下降,温度和中心波长的线性关系都很好,上升时R2=0.9999,下降时R2=1;另外,上升时光栅灵敏度为10pm/℃,下降时光栅灵敏度为9.8 pm/℃,与理论相差很小,说明所封装的温度传感器在35~105℃的工作温度范围内性质稳定,可用于实际油气井动态温度监测。

【关键词】光纤光栅温度传感特性封装

1 前言

光纤bragg光栅由于其在温度参数测量方面固有的优点,越来越受到业内专家的重视[1-4]。

本文设计了一种光纤Bragg光栅温度传感器,对其在35~105℃温度条件下的进行温敏实验。

2 光栅结构及传感原理

利用紫外激光的干涉条纹在一定范围内照射具有光敏性的光纤,可使该段光纤纤芯的折射率发生永久周期性的改变,形成光纤Bragg光栅。Bragg光纤光栅从本质上来说相当于一个窄带滤波器,当具有一定波谱范围的入射光传输到光纤Bragg光栅时,光栅就会把满足Bragg条件的、且被外界环境参量(如温度、压力、应力、流量等)调制过的入射光反射回来,通过对反射光谱进行解调,即可获得所需(压力、温度)信息,其结构如图1所示。

3 温度传感器封装结构

本次实验选用的基底为圆形,材质采用膨胀系数和光纤相等的特殊材料,长度10cm,直径3cm。为了使裸光栅能更好地和基底接触,受热均匀,可在圆形基底上划一个3mm深,1mm宽的小槽,裸光纤Bragg光栅用少量环氧树脂胶均匀粘贴在凹槽内。在对温度传感器封装过程中,应对裸光纤光栅施加适当的预应力,并适当加热,防止光纤光栅因胶凝固使中心波长减小。另外为了增加粘贴强度,需把基底凹槽外表面打磨光滑[1]。封装结构见图2。

4 实验设备及原理

实验设备包括:宽带光源、掺锗石英裸光栅(中心波长1532.137nm)、光纤

光纤光栅温度传感器 报告

波长调制型光纤温度传感器《光纤传感测试技术》 课程作业报告 提交时间:2011年10月27 日

1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过外界参量对布拉格中心波长B λ的调制来获取传感信息,其数学表达式为: 2B eff n λ=Λ 式中:eff n 为纤芯的有效折射率;Λ是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。 (2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力 、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

光纤温度传感器的设计

设计性实验报告 实验课程:医用传感器设计实验学生姓名:程胜雄 学号: 080921037 专业班级:08医工医疗器械方向 2010年12月8日

光纤温度传感器的设计 摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算。传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定、可靠, 灵敏度咼。 关键词:光纤,传感器,光纤传感器,光纤温度传感器 在光通信系统中,光纤是用作远距离传输光波信号的媒质。在实际光传输过程中,光纤易受外界环境因素的影响;如温度、压力和机械扰动等环境条件的变化引起光波量,如发光强度、相位、频率、偏振态等变化。因此,人们发现如果 能测出光波量的变化,就可以知道导致这些光波量变化的物理量的大小,于是出

现了光纤传感技术。 一:光纤传感器的基本原理 在光纤中传输的单色光波可用如下形式的方程表示 E=错误!未找到引用源。 式中,错误!未找到引用源。是光波的振幅:w是角频率;■为初相角。 该式包含五个参数,即强度错误!未找到引用源。、频率w、波长错误!未找到引用源。、相位(wt+ J和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。 (一)强度调制 1.发光强度 调制传感 器的调制 原理光 纤传感器 中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来 实现对被测对象的检测和控制。其基本原理如图 5-39所示。光源S发出的发 光强度为错误!未找到引用源。的光柱入传感头,在传感头内,光在被测物理 量的作用下强度发生变化,即受到了外场的调制,

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅

“现代传感与检测技术”课程学习汇报 光纤光栅传感器及其在医学上的应用 学院:机电学院 专业:仪器科学与技术 教师:刘增华 学号: S201201134 姓名:王锦 2013年03月

目录 第一章光纤光栅简介 (3) 1.1 光纤的基本概念 (3) 1.2 光纤光栅器件的基本概念 (3) 1.3 光纤光栅的加工工艺 (4) 1.4 光纤光栅的类型 (5) 第二章光纤光栅传感器 (7) 2.1光纤光栅温度传感器 (7) 2.2 光纤光栅应变与位移传感器以及振动与加速度传感器 (8) 第三章光纤光栅传感器的应用 (10) 3.1 光纤光栅传感器在结构健康测试方面的应用 (10) 3.2光纤光栅传感器在医学中的应用 (10) 3.3 光纤光栅在其他领域的应用 (11) 第四章总结 (12) 参考文献 (12)

第一章光纤光栅简介 1.1 光纤的基本概念 光纤的结构十分简单。光纤的纤芯是有折射率比周围包层略高的光学材料制作而成的,折射率的差异引起全内反射,引导光线在纤芯内传播。 光纤纤芯和包层的尺寸根据不同的用途,有多中类型。如传输图像的光纤要尽可能地收集到起端面上的光,因此其包层相对于纤芯而言非常薄。长距离传输过程中,通信光纤的厚半层能避免光束泄露出纤芯。然而,短距离通信光纤的纤芯较大,能够尽可能地手机光,一般称为多模光纤,长距离通信光纤的纤芯直径 一边比较小,一般只能传输一个模式,因此成为单模光纤。 光纤具有机械特性和光学特性。在机械方面光纤坚硬而又灵活,机械强度大。光纤的光学特性取决于他们的结构与成分。一般轴对称的单模光纤可以同时传输两个线偏振正交模式或者两个圆偏振正交模式。这两个正交模式在光纤中将以相同的速度向前传播,因而在其传播过程中偏振态不会发生变化。 1.2 光纤光栅器件的基本概念 加拿大渥太华通信研究中心的K.O.Hill等人于1978年首次在掺锗石英光纤中发现光线的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅。光纤光栅是近几年发展最快夫人光纤无源器件之一,他的出现将可能在光纤技术以及众多相关领域中引起一场新的技术革命。由于它具有在管线通信、光纤传感、光计算和光信息处理等领域均具有广阔的应用前景。 光纤光栅是利用光线材料的光敏性(外界入射光子和纤芯锗离子相互作用in 器折射率永久性变化),在纤芯内形成空间相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或者反射)滤波或者反射镜。利用这一特性可构成许多性能独特的光纤无源器件,例如利用光纤光栅的窄带高反射特性构成光纤反馈腔,依靠掺铒光纤等为增益介质可制成光纤激光器;利用光纤光栅作为激光二极管的外腔反射器,可以构成课调谐激光二极管;利用光纤光栅课构成Michelson干涉仪型Mach-Zehnder干涉仪和Febry-Peort干涉仪型的光纤色散补偿器。利用闪耀光栅可以制成光纤平坦滤波器;利用非均匀光纤光栅还可以制成用于检测应力、应变、温度等诸多参量的光纤传感器和各种传感网。

光纤光栅应变传感器实验讲义

实验光纤布拉格光栅(FBG )应变实验研究 【实验目的】 1) 了解光纤光栅传感器基本原理及FBG 应变测量的基本公式。 2) 了解飞机驾驶杆弹性元件的力学特性。 3) 学习光纤光栅应变测量的基本步骤和方法。 【实验原理】 1.光纤光栅传感器的基本原理及FBG 应变测量的基本公式 光纤布喇格光栅(Fiber Bragg grating, FBG )用于传感测量技术,主要是通过外界物理量的变化对光纤光栅中心波长的调制来获取传感信息,因此它是一种波长调制型的光纤传感器。FBG 传感原理如图1所示。 图1中,当一束入射光波进入FBG 时,根据光纤光栅模式耦合理论,当满足满足相位 匹配条件时,反射光波即为FBG 的布喇格波长λB ,λB 与有效折射率n eff 和光栅周期Λ的关系为 Λ2eff B n =λ(1) 由式(1)可以知:n eff 与Λ的改变均会引起光纤光栅波长的改变,而且n eff 与Λ的改变与应变和温度有关。应变和温度分别通过弹光效应与热光效应影响n eff ,通过长度改变和热膨胀效应影响周期Λ,进而使λB 发生移动。将耦合波长λB 视为温度T 和应变ε的函数,略去高次项,则由应变和温度波动引起的光纤光栅波长的漂移可表示为 Λ ?+?Λ=?eff eff B 22n n λ (2) I λ I 输入光波 反射光波 透射光波 图1 FBG 传感原理示意图

由式(2)可知光纤光栅中心波长漂移量?λ对轴向应变?ε和环境温度变化?T 比较敏感。通过测量FBG 中心波长的变化,就可测量外界物理量的变化值(如应变、温度等)。 光纤光栅轴向应变测量的一般公式为 ()ελλe B Bz 1p -=?,也是裸光纤光栅轴向应变测量的计 算公式。由上式可知,?λBz 和ε存在线性关系,因此通过解调装置检测出布拉格波长的偏移量?λ,就可以确定被测量ε的变化。 2. 飞机驾驶杆弹性元件的力学特性 杆力传感器弹性元件采用平行梁形式,其结构如图2所示。弹性元件由互相交叉90°的两对关联平行梁组成一个测力悬杆,其中一组感受纵向作用力,另一组感受横向作用力,上下部分连为一体,增加了梁的刚度,提高了梁的固有频率并具有良好的散热条件。对其中每一方向作用力,由于其侧向刚度大,于是侧向负载能力强,与施加力平行的一对平行梁轴向应变可以忽略不计,外加力主要使与作用方向垂直的一对平行梁变形。 杆力传感器弹性元件为方框平行梁结构,为便于分析和简化计算,将方框平行梁简化为 一超静定刚架,力学模型如图3(a)所示。 因为刚架计算通常忽略轴力对变形的影响,力学模型又可进一步简化为一个反对称载 荷作用的刚架,简化后的力学模型如图3(b)所示,其中P=1/2P 0。将受反对称载荷作用的刚 架沿水平对称轴截开,这时垂直梁的截面上有三对内力力,即一对剪力X 、一对轴力N 、一对弯矩M ,多余约束力如图3(c)所示。根据结构力学反对称结构对称的外力为零的理论,因 图2弹性元件结构简图 (纵向) ) 图3简化后的模型 (a)超静定刚架结构 P 0 h (c) 多余未知力图 P P (b) 简化后力学模型 P P a

光纤光栅压力传感器

The research of FBG pressure sensing on the application of engineering ABSTRACT Fiber grating is one of the most rapid passive optical fiber components in recent years. Since 1978, the year when K.O.Hill and others first used the standing wave writing way in the germanium-doped fiber and make the world's first fiber grating, because of its’ many unique advantages, the use of the fiber grating in optical fiber communications Fields and fiber optic sensor Fields are broad prospected. With fiber grating manufacturing technology continues to improve, and the outcome of the application increasing, the fiber grating has been one of the most promising and representative optical passive components. The emergence of fiber grating makes many of the complex all-fiber communications and sensor networks possible, which greatly widened the scope of application of optical fiber technology. As sensor component, fiber grating also possesses other special functions. For example, high ability of resisting electromagnetism disturb, small size and weight, high temperature-proof, high ability of multiplex, being liable to connect with fiber, low loss, good spectrum characteristic, erosion-proof, high sensitivity, being liable to deform and so on. At present, the sensor that adopts FBG (fiber Bragg grating) as sensor components has become the main stream of development and cultivation. Pressure is the direct cause of the drifting of the Bragg wavelength of the grating, so research on the FBG pressure sensing character in-depth is important to the FBG sensing technology. The design is on the basis of understanding of FBG sensing elements; explore the using of FBG pressure character, so research on the FBG pressure sensing character in-depth is important to the FBG sensing technology. Bring forward a package project that can be used and the text.

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究 摘要:以悬臂梁为基本构架,以FBG 为敏感元件,设计了一种新型的具 有温度自补偿特性的FBG 位移传感器方案。对悬臂梁进行分析,推导出位移 传感器的传递函数,然后对其定标并实际测量,得到了传感器线性度和灵敏度同悬臂梁长度以及光纤布拉格光栅的位置之间的关系,并从结果看出本传感器精度高,运行稳定,且有好的重复性,线性范围最大为16mm。关键词:光纤光栅;悬臂梁;位移传感器;传递函数;温度自补偿0 引言自从1978 年K.O.Hill 等人首次在锗硅光纤上用驻波持续曝光制作成第一个光纤布拉格光栅(FBG)以来,FBG 的应用研究引起了全世界学者的广泛关注。光纤光栅传感器的材料优势及传感优势使FBG 传感技术近年来引起人们极大的兴趣。在光 纤光栅传感方案中,温度补偿的准确性和可靠性对测量结果的准确性有非常大的影响,要做到合理准确又有效的温度补偿,只能通过单个传感器的温度自补偿来实现。本文在FBG 的传感机理上,依据悬臂粱结构提出一种位移传感器 方案,此方案结构简单、运行稳定,且能够实现温度补偿与减小外界干扰的作用,获得较高的灵敏度。1 原理基本结构原理为,图1 为矩形悬臂梁基本结构,粱长为L,梁轴线的曲率为p(η),梁的轴线称为挠度线,则曲线上任 一点η处在外力F 作用下的纵坐标f(η)即为该点的挠度,传振原理为,当自由端有静挠度y 时,距离固定端为的截面处的静挠度f(η):式中,εz 为轴向应变,Pe 为弹光系数,a∧为光纤的热膨胀系数,a0 表示热光系数,△T 温度的变化量。温度自补偿原理为,当采用双光栅差分式分布在梁上下表面时,两根光栅中心波长的变化方向是相反的。两根光栅封装方式完全一样,热膨胀系数与热光系数均相同,长度一致,且两者应变等幅反向,即有:故由两根光栅分别满足式(2),同时具有(3)(4)两式所示条件,可以

光纤光栅传感器及其发展趋势

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

光纤温度传感器

光纤温度传感器的种类很多,除了以上所介绍的荧光和分布式光纤温度传感器外,还有光纤光栅温度传感器、干涉型光纤温度传感器以及基于弯曲损耗的光纤温度传感器等等,由于其种类很多,应用发展也很广泛,例如,应用于电力系统、建筑业、航空航天业以及海洋开发领域等等。 分布式光纤温度传感器在电力系统行业的发展 光纤温度传感器在电力系统的应用中得到发展,由于电力电缆温度、高压配电设备内部温度、发电厂环境的温度等,都需要使用光纤传感器进行测量,因此就促进了光纤传感器的不断完善和发展。尤其是分布式光纤温度传感器得到了改善,经过在电力系统行业的应用,从而使其接收信号和处理检测系统的能力都得到了提升。 光纤光栅温度传感器在建筑业的发展 光纤光栅温度传感器由于其较高的分辨率和测量范围广泛等优点,被广泛应用于建筑业温度测量工作中。西方很多发达国家都已普遍采用此系统,进行建筑物的温度、位移等安全指标的测试工作,例如,美国墨西哥使用光栅温度传感器,对高速公路上桥梁的温度进行检测。通过广泛使用,光栅温度传感器所存在的问题,如:交叉敏感的消除、光纤光栅的封装等都得到了解决,因而此系统得到了完善。 航空航天业中的应用发展 航空航天业使用传感器的频率较高,包括对飞行器的压力、温度、燃料等各方面的检测,都需要使用光纤温度传感器进行检测,并且所使用到的传感器数量多达百个,所以对传感器的大小和重量要求很严

格。因此,基于航空航天业对传感器的要求,光纤温度传感器的体积、重量规格方面都经过了调整。2222222分布式光纤温度传感器分布式光纤温度传感器,通常用在检测空间温度分布的系统,其原理最早于1981年提出,后随着科学家的实验研究,最终研制出了此项技术。这种传感器原理发展是基于三种传感器的研究,分别是瑞利散射、布里渊散射、喇曼散射。在瑞利散射(OTDR)和布里渊散射(OTDR)的研究已取得了很大的进展,因此未来的传感器研究热点,将放在对基于喇曼散射(OTDR)的新分布式光纤传感器的研究上。最近,土耳其Gunes Yilmaz开发出了一种分布式光纤温度传感器,此传感器的温度分辨率是1℃,空间分辨率是1.23m。在我国也有很多大学展开了对分布式光纤温度传感器的研究,例如,中国计量大学1997年发明出煤矿温度检测的传感器系统,其检测温度为-49℃~150℃,温度分辨率为0.1℃。 光纤荧光温度传感器 当前最热门的研究,就是针对光纤荧光温度传感器,其是利用荧光的材料会发光的特性,来检测发光区域的温度。这种荧光的材料通常在受到紫外线或红外线的刺激时,就会出现发光的情况,发射出的光参数和温度是有着必然联系的,因此可以通过检测荧光强度来测试温度。世界各国的高校都设计过此类传感器,例如,韩国汉城大学发现10cm的双掺杂光纤,在其915nm的地方所反射出的荧光强度所对应的温度指数是20℃~290℃;我国清华大学借用半导体GaAs原料来吸收光,进而以光随温度改变的原理,研发出了温度范围是0℃~

光纤光栅应变传感器二维应变测量方法

龙源期刊网 https://www.wendangku.net/doc/fe10462385.html, 光纤光栅应变传感器二维应变测量方法 作者:李金娟 来源:《无线互联科技》2015年第02期 摘要:文章介绍了光纤光栅二维应力传感测量的试验台的准备、光纤光栅的制备、光纤 光栅的粘贴、实验仪器、实验过程、光纤光栅测量应变与电阻应变片的测量结果作对比。实验结果说明利用光纤光栅应变花可以得出与电阻应变花一致的结果。 关键词:光纤光栅;电阻应变片;应变;直角应变花 光纤光栅应变花进行二维平面应力测量是通过三个光纤光栅的中心波长的变化来测定应变的,电阻应变片应变花测出的应变值对光纤光栅中心波长进行标定。所以粘贴时尽可能保证光纤光栅与对应的电阻应变片的测量方位一致。 1 实验台的准备 由于本实验需要用多个光纤光栅进行二维应力测量,所以不能使用一般的等强度梁,而是用一个十字架形结构,实际上也是一种等强度梁,不过这种装置有两个等强度梁,分别作为十字架的X轴向和Y轴向,用来施加压力,如图1所示。 这是实验的被测表面的俯视图,表面是由我们用一块马口铁皮做成的。实验时在X轴、Y 轴方向分别悬挂砝码盘。砝码的重力通过试验台的等悬梁臂结构拉伸X或者Y方向的铁皮,铁皮的应力的变化引起光纤光栅中心波长的变化,因此为了保证试验的效果,光纤光栅的粘贴必须使光栅光纤紧贴被测表面时同时发生应变。 2 光纤光栅的制备 实验台准备好后重要的是制备光纤光栅,本实验使用3只不同中心波长的光纤光栅,串联成直角应变花来测试动态应力的变化,因而需制备3只不同波长的光纤光栅。由于实验条件的限制,试验室中只有两块相位掩模板,在实验室中只能制备两只光纤光栅,另外一只光纤光栅是已经制备好的光纤光栅。三只光纤光栅的波长位置分别在:1532nm,1544nm,1548nm处附近。 根据实验条件,组建一个光纤光栅制作系统,制作方法采用目前最有效,也是最流行的相位掩模法,其实验系统如图2所示。 本实验用光纤,是载氢掺锗光敏光纤-普通光纤经过载氢处理(在室温下,压强为107Pa 的容器中,载氢两周左右),使得普通通信光纤的光敏性大大增加,达到写制光栅的要求。实验所用的光谱分析仪为国产AV6361,分辨率选择0.2nm,宽带光源使用LED。

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景 温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。随着科学技术的迅猛发展,对温度的测量也提出了更多更高的要求。以电信号为工作基础的传统的光纤温度传感器特点光纤测温传感器测量温度的方法光纤传感器的基本原理几种光纤温度传感器的原理基于布里渊散射的分布式光纤传感技术基于布里渊光频域分析(BOFDA)技术的分布式光纤传感器光纤温度传感器的应用 光纤温度传感自问世以来, 主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 1、光纤温度传感器在电力系统有着重要的应用,电力电缆的表面温度及电缆密集区域的温度监测监控; 高压配电装置内易发热部位的监测; 发电厂、变电站的环境温度检测及火灾报警系统; 各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断; 火力发电厂的加热系统、蒸汽管道、输油管道的温度和故障点检测; 地热电站和户内封闭式变电站的设备温度监测等等。 2、光纤温度传感特别是光纤光栅温度传感器很容易埋入材料中对其内部的温度进行高分辨率和大范围地测量, 因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究, 并在主要大桥上都安装了桥梁安全监测预警系统, 用来监测桥梁的应变、温度加速度、位移等关键安全指标。1999 年夏, 美国新墨西哥Las Cruces 10 号州际高速公路的一座钢结构桥梁上安装了120 个光纤光栅温度传感器,创造了单座桥梁上使用该类传感器最多的记录。 3、航空航天业是一个使用传感器密集的地方,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等, 所需要使用的传感器超过100 个, 因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲, 几乎没有其他传感器可以与之相比。 4、传感器的小尺寸在医学应用中是非常有意义的, 光纤光栅传感器是现今能够做到最小的

光纤位移传感器

课程设计中期报告课题名称:光纤位移传感器 班级:2013级机电1班 组长:彭欢201307124101 组员:郑岩201307124123 马晓龙201307124117 张林201307124128

光纤位移传感器 重庆三峡学院机械工程学院机械电子专业2013级重庆万州 404000 摘要:光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量. 绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流、光纤传感器可用于位移、震动、转动、压力、弯曲、应变、速度、加速度、电流、磁场、电压、湿度、温度、声场、流量、浓度、PH值和应变等物理量的测量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。 关键字:位移光纤传感器 1引言 光纤传感器的基本工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,成为被调制的信号源,在经过光纤送入光探测器,经解调后,获得被测参数。 1.1光纤位移传感器的发展 光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。光纤传感器有70多种,大致上分成光纤自身传感器和利用光纤的传感器。 1.2光纤位移传感器的特性 一。灵敏度较高 二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件; 四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五。而且具有与光纤遥测技术的内在相容性。附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。

相关文档