文档库 最新最全的文档下载
当前位置:文档库 › 电厂循环水余热利用可行性研究报告

电厂循环水余热利用可行性研究报告

电厂循环水余热利用可行性研究报告
电厂循环水余热利用可行性研究报告

电厂循环水余热利用可行性研究报告

————————————————————————————————作者:————————————————————————————————日期:

电厂循环水余热利用建议书

编制: 朱明峰

审核:

批准:

中海油节能环保服务有限公司

2013年9月19日

目录

一概述 (1)

1.1项目背景

1

1.2余热资源现状

1

1.3项目实施条件

1

1.4遵循的标准及规范

2

二余热回收方案设计 (2)

2.1现有补水加热流程图

2

2.2改造方案

2

2.3改造主要工作量

4

2.4技改效果

5

2.5改造投资及静态回收期

5

三节能环保效益分析 (5)

3.1节能效益

5

3.2环保效益

6

四结论与建议 (6)

一概述

1.1项目背景

**热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。

充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。

1.2余热资源现状

**热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。

循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW

1.3项目实施条件

蒸汽压力:0.5-0.8MPa(饱和蒸汽)

除盐水补水平均温度:25℃

预热除盐水温度:90℃(夏)/80℃(冬)

除盐水量:100t/h

循环水温度(冬季):30/20℃

循环水温度(夏季):40/30℃

循环水量:15000t/h

补水时间:该厂全年向外供应蒸汽,外供蒸汽量较为稳定,因蒸汽回收量较少,锅炉需全年补充除盐水,锅炉检修无详细计划,坏了再修,故余热回收时间暂定为250天。

1.4遵循的标准及规范

本热泵系统报告的编制主要遵循以下相关国家标准、规范及设计手册,并满足与该项目有关的各项设计参数。

(1)《制冷设备安装、施工及验收规范》

(2)《通风及空调工程安装、施工及验收规范》

(3)《设备及管道绝热工程设计规范》

(4)《通风与空调工程施工质量验收规范》

(5)《给水排水设计规范》

(6)《实用供热空调设计手册》

(7)甲方提供的技术资料及相关要求。

二余热回收方案设计

2.1现有补水加热流程图

2.2改造方案

在厂内建设1台余热回收机组,用于回收循环水余热。余热回收工况:100t/h 除盐水全部通过1台余热回收机组进行预热,从25℃加热至90℃(夏)/80℃(冬)。

为充分利用循环水余热,降低蒸汽消耗,增加一台换热器,在除盐水进入热泵前先通过换热器与循环水换热,温度提升到30℃。

余热回收机组性能参数

除盐水补水总流量

m3/h 100

余热水总流量

m3/h 315

除盐水流量

m3/h 100

入口

℃30

出口

℃90

压力损失

m 16

供热量

MW 6.98

余热水流量

m3/h 315

入口

℃40

出口

℃32

压力损失

m 9.5

供热量

MW 2.93

驱动蒸汽入口压力

Mpa G 0.40

焓值

Kcal/kg 655.2

凝水温度

℃90

流量

kg/h 6157

蒸汽接管尺寸

mm 125×2

凝水接管尺寸

mm 80×2

外形尺寸长×宽×高6900×2400×4200(mm)

流程图如下:

2.3 改造主要工作量

机房及机组配置: 机房位于冷却塔附近,配1台6.98MW 机组。热泵放置在室内,机组外形尺寸6900×2400×4200(mm ),占地空间12m (L )×5m (W )×7m (H ),机组周围各预留1米空间。机组长度方向预留拔管空间(可对着窗户、大门等能打开或是拆卸的地方),另外要考虑到水泵、管路、凝水回收装置等的空间,建议在15m×8m×7m 的空间内放置。配电需要380V×3PH×50Hz 电源即可。

余热水管道系统:余热水需求量为315m3,在冷却塔上塔的水管上接支管进入机房,在机房内设置余热水循环泵,供2台,一用一备;

蒸汽管道系统:将1.0MPa 的蒸汽管道引入机房,在机房内通过降温减压阀,将蒸汽变成0.5MPa ,以满足机组的使用要求,凝结水收集在凝水箱内,通过水

重量

t 35 控制辅助动力 电压×频率

V×Hz×∮ 380×50×3 电源容量 KVA 18.2 功率

KW

9.5

泵将凝结水汇入除盐水系统,凝结水水泵2台,一用一备,凝结水箱1台;

除盐水管道系统:将一二期和三四期除盐水管道汇总后引入机房,为了满足除氧器的使用压力要求,需要校核除盐水泵性能是否满足改造要求。

2.4技改效果

本方案总计消耗蒸汽 6.2t/h,回收循环水余热 2.93MW,总制热能力达6.98MW(夏)/6.68MW(冬)。电厂原有此部分加热需使用10.25t/h蒸汽,应用热回收技术后,可减少4.05t/h除氧器加热蒸汽的使用量。

2.5改造投资及静态回收期

热电厂余热回收时间按250天计算,全年节省蒸汽量约为24300t。热电厂外供蒸汽价格按120元/t计算,全年节约蒸汽收益为291万元。

余热回收设备投资

序号设备名称型号及规格单位数量

1 主机台 1

2 泵组补水泵:1用1备

项 1 热源水泵:2用1备

3 附属设备全程水处理器项 1

4 电控系统水泵变频,2次配电系统项 1

5 管道、阀门标准布置图范围内配管项 1

6 安装费项 1

合计

三节能环保效益分析

3.1节能效益

本项目通过回收冷却循环水余热用于加热锅炉补水,将余热废热充分的利用,可以减少电厂除氧器加热蒸汽的使用量,增加能源的利用率,节能效益显著。

3.2环保效益

本项目实施后,对于**热电厂可以收到显著的节能环保效益。详见下表。

本项目技术指标

项目优势量值结论

减少供热能耗回收余热(万GJ/年)8.03

本项目的节能性效果显著节约标煤(吨/年)3425

减少污染物排放减排SOx(吨)81

本项目的环保性效果显著减排烟尘(吨)335

减排CO2(吨)9208

减排灰渣(吨)1526

四结论与建议

本工程回收余热效果明显,节能环保效果显著,属于国家支持节能项目。本方案实施后可充分利用电厂的余热,对于**热电厂的节能减排工作可以起到重要作用,建议尽快实施该项目。

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

热电厂循环水余热利用项目可行性实施报告

某某县热电厂 循环水余热利用项目可行性研究报告 2000年2月1日

目录 概述 (2) 1.企业的描述 (4) 2.工艺现状和相关的能耗情况 (4) 3.建议的项目 (5) 4.期望的能耗 (7) 5.投资估算 (8) 6.预计运行费用 (8) 7.预计节能效益 (9) 8.节能效果验证 (9) 9.存在的设备供货商 (10) 10.存在的设备安装承包商 (10) 11.技术经济分析 12.主要设备材料清单

1、概述 1.1县城及企业概况 某某县隶属省日照市,位于半岛的西南部,东接胶南,西连莒县,南与日照接壤,北与诸城相邻. 某某县热电厂位于城区的西北部,厂区东靠解放路,西临沿河路. 该厂始建于一九六八年, 占地面积5.6万平方米,,最大供热能力90t/h.职工450人,其中各类专业技术人员60人。原为小型火力发电厂.自一九八三年后改建为热电厂.厂在一九八五年建成规模为2×20t/h锅炉+2×1500kw背压式汽轮发电机组.为了适应外部热负荷逐渐增加的要求,该厂在九三年又进行了扩建,扩建机组的容量为2×35t/h锅炉+1×C6-3.43/0.981抽汽凝汽式汽轮发电机组,并于一九九六年建成投产.某某县热电厂通过不断地发展,逐渐成为某某县基础性行业和县城的唯一的热源厂,承担着城区30余家工业用户用汽和部分居民的采暖用汽供应。该厂坚持国家的产业政策,以让“政府放心,用户满意“为目标,积极发挥热电联产,集中供热的优势,努力改善居民的生活条件,增加能源供应,减轻环境污染,取得了显著的经济效益和社会效益,1998年全厂实现销售收入4067万元,利税558万元,两个文明建设取得突出成绩,连续三年被县委县政府先进企业和十佳明星企业。 1996-1998年生产经营情况表见表-1 表-1 2、存在问题

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 (1) 1.2余热资源现状 (1) 1.3项目实施条件 (1) 1.4遵循的标准及规范 (2) 二余热回收方案设计 (3) 2.1现有补水加热流程图 (3) 2.2改造方案 (3) 2.3改造主要工作量 (5) 2.4技改效果 (6) 2.5改造投资及静态回收期 (6) 三节能环保效益分析 (7) 3.1节能效益 (7) 3.2环保效益 (7) 四结论与建议 (7)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃

火电厂余热资源介绍

火力发电厂烟气余热介绍 一、烟气流程 经过电除尘、引风机,温度不 图1 锅炉排烟工艺流程以及参数(近似额定负荷状况,1000MW)图1是在1000MW工况下某发电厂锅炉的烟气工艺流程以及参数,从图中可以看出,烟气排到烟囱之前要经过脱硝、空预器加热、电除尘等环节,经过空预器换热之后,烟气温度大大降低。研究资料表明,为使烟温达到最佳脱硫效率状态,减少脱硫塔的冷却水耗量,脱硫塔(FGD)入口烟温降低到85℃左右较佳。 在938MW工况下,某发电厂的烟囱烟气流量为2006km3/h(体积流量)。 二、目前火电行业烟气排放现状 火力发电厂消耗我国煤炭总产量的50%,其排烟热损失是电站锅炉各项热损失中最大的一项,一般在5%~8%,占锅炉总热损失的80%或更高。排烟热损失的主要影响因素是锅炉排烟温度,一般情况下,排烟温度每升高10℃,排烟热损失增加0.6%~1.0%,发电煤耗增加2g/kWh左右。我国现役火电机组中,锅炉排烟温度普遍维持在125~150℃左右水平,褐煤锅炉为170℃为左右,排烟温度高是一个普遍现象,由此造成巨大的能量损失。 对于已经投运的锅炉,经过燃烧优化来降低排烟温度的幅度非常

有限,省煤器和空气预热器的改造因受到空间的限制,降低排烟温度的幅度也很小,同时尾部受热面的低温腐蚀也限制了排烟温度的大幅降低。因此,独立于原有锅炉系统之外的排烟余热回收系统成为节能降耗的首选。 三、火电厂烟气回收技术 1、技术原理 电站锅炉排烟余热深度回收利用系统安装在除尘器之后、脱硫塔之前的烟道中,可以最大程度地降低烟气温度,使烟气温度再降低40~50℃。在一些采用湿烟囱或烟塔合一等最新烟气排放技术的电厂,脱硫塔入口烟温可降低到85℃左右,使烟温达到最佳脱硫效率状态,大大减少脱硫塔的冷却水耗。 排烟余热回收系统所吸收的能量可以用来加热凝结水,或通过暖风器加热空气提高送风温度,从而减少低压加热器或者暖风器的抽汽量,增加汽轮机做功,提高机组效率。 2、关键技术 (1)烟余热回收装置即烟气冷却器的设计 (2)排烟余热回收装置即烟气冷却器的防腐 (3)排烟余热利用系统即低压给水加热器或者暖风器的设计 (4)热力系统优化设计和控制 3、工艺流程 工艺流程见图2,循环介质(水)在循环水泵5的作用下,通过入口集箱3进入烟气冷却器2,吸收尾部烟道1中的烟气余热后温度升高,经出口集箱4流出。当环境温度较高时(例如在夏季),导向阀13切换到加热给水状态,空气加热器闸阀8全关,给水加热器闸阀6全开。经出口集箱4流出的高温循环介质(水)进入给水加热器14,把在烟气冷却器2中吸收的热量释放给低压给水后开始下一个循环。凝结水经过分水调节阀10、11、12进入给水加热器14,吸收循环介质(水)

热电厂循环水处理合同

热电厂循环水处理合同 2011年7月31日FJW 提供 编号:()CXWYX XX -HT-第号 甲方:乙方: 甲、乙双方经协商,就将____________________________________ 循环 水处理事项委托与乙方,签订本合同。 第一条甲乙双方确认,本合同履行期间由※※探※※※物业管理有 限责任公司_________________________ 物业管理中心,代为行使甲方权利,履 行甲方义务。 第二条技术指标 腐蚀率:碳钢w 0. 125毫米/年铜及其合金w 0.0 05毫米/年污垢热阻:w 0.0006m2h°c/kcal 避免因水质恶化造成的结垢、腐蚀、菌藻滋生问题和停机事故。第三条甲 方责任 (一)应向乙方提供循环水的循环水量,系统容积、设备材质等基础技 术资料。 (二)确保在投药运行期间循环水不作它用,不易流、损失,不与生活 水相连。 (三)甲方应在乙方进行水处理工作之前,指派专人负责与乙方联系, 在实施投药作业期间,应有专人按乙方提出的工艺要求加药和日常管理。 第四条乙方责任 (一)为甲方提供复合阻垢缓蚀剂、清洗预膜剂、缓蚀钝化剂和杀菌 剂。将循环水水质调整到最佳状态,随时取水化验。 (二)为甲方提供日常管理工作方面的资料。在投药运行期间,进行现 场服务,冷却水水样分析每周一次,冷冻水每月取水一次,分析结果以书面形式通知甲方,协助甲方进行有效的管理。 (三)免费为甲方运送水处理剂。 (四)如甲方要求建立与水处理相关的分析化验室,乙方将免费培训化 验人员,也可以培训现场管理人员。 (五)如水处理现场出现异常现象,乙方应随即赶赴现场解决问题。 第五条服务项目 (一)循环冷却水处理

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: _________朱明峰____________ 审核: ___________________________ 批准: ___________________________ 中海油节能环保服务有限公司 2013年9月19日

一概述................................................................. 1.. 1.1项目背景...................................................... 1.. 1.2余热资源现状.................................................. 1. 1.3项目实施条件................................................... 1. 1.4遵循的标准及规范............................................... 2. 二余热回收方案设计.................................................... 2. 2.1现有补水加热流程图............................................ 2. 2.2改造方案....................................................... 2. 2.3改造主要工作量................................................. 4. 2.4技改效果....................................................... 5. 2.5改造投资及静态回收期.......................................... 5. 三节能环保效益分析..................................................... 5. 3.1节能效益....................................................... 5. 3.2环保效益....................................................... 6. 四结论与建议......................................................... 6..

电厂循环冷却水系统中的问题解决知识讲解

电厂循环冷却水系统中的问题解决 2011年7月31日 FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3↓+CO2↑+H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应向右进行。 CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K),而钢材的导热系数为46.4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀 循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀 敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳

浅谈热电厂余热回收利用

浅谈热电厂余热回收利用 发表时间:2014-12-15T09:51:33.980Z 来源:《工程管理前沿》2014年第12期供稿作者:杜庆军 [导读] 火电厂余热的综合利用技术的推广和应用,不仅可以获得良好的经济和环境效益,同时能够提高火电厂的节能减排能力 杜庆军 东南大学建筑设计研究院有限公司江苏南京 210096 摘要:面对能源和水资源紧缺、环境日益恶化以及因原煤价格上涨而引起的发电亏损现状,作为能耗和排放大户的火力发电厂,如何合理地利用烟气余热,成为火电厂提高机组效率、减少煤耗而达到节能降耗的主要举措之一。基于此,文章介绍了通过加大对锅炉连排水和烟气余热进行综合利用的节能技术,并通过应用实例对该节能技术的经济、环保效益进行了分析。 关键词:火电厂;烟气;余热;综合利用;节能 1 火电厂低温余热利用技术 1.1 汽水系统余热利用技术 目前在锅炉汽水系统的余热回收利用上主要有两个方面:一是将连排水直接引入到加热器中用于加热锅炉给水,这种方式为常规的余热利用方式,利用效率较低;二是利用火电厂锅炉连排水中剩余的高品位热能进行做功,再驱动发电机生产电能,输出的水汽混合物再送至热水站,用于生产供居民使用的热水或供暖,这种方式能够使余热得到充分回收利用。这里的发电装置是利用连排水余热加热螺杆膨胀动力机,再通过联轴器带动发电机发电的热能利用系统。螺杆膨胀动力机构造及工作原理如图1所示: 做功完后排出的高温水汽混合物首先进入机内阴阳螺杆齿槽A,使螺杆发生转动,随着螺杆的转动,齿槽A逐渐旋转至B、C、D位置,在此过程中由螺杆封闭的容积逐渐增大,热水得以降压、降温而膨胀做功,最后从后端齿槽E排出,而做功产生的旋转动力由阳螺杆通过联轴器输出给发电机,带动发电机发电。 1.2 锅炉排烟系统的余热利用技术 我国正在运行的火电厂中,锅炉排烟温度一般都在125℃~150℃之间,排烟温度偏高而导致的热能损失已经成为火电厂面临的困境之一。而目前对这部分余热的回收大多采用的是在排烟系统中安装烟气冷却器,通过空气或水等导热介质将余热传输至锅炉给水系统或进气系统,对助燃空气、冷凝水进行加热而达到节能的目的。但是由于烟气冷却之后会使烟气中的部分SO2等酸性腐蚀性气体结露而对管壁等造成腐蚀,因而在实际应用中仍有很多问题需要解决。经过该冷却器的高温烟气和其内部翅片管束中的冷水进行热置换,使水得到加热。该冷却器主要分为高低温设置于除尘器的前后,具体布置如图2所示。这种将冷却器按照高、低温段分开布置,并将高温段布置在除尘器之前,将低温段布置在除尘器之后的方式,能够通过布置于除尘器之前的高温段冷却器将烟气温度降至120℃左右,从而提高其后面除尘器的效率,使其除尘效果更好、能耗更低,并且对使用布袋式除尘器的装置而言,由于进入的烟气温度降低可以延长其使用寿命;而位于除尘器之后的冷却器则可以对烟气进行深度冷却,并将余热充分利用。 1.锅炉; 2.暖风机; 3.空气预热器; 4.烟气冷却器; 5.静电除尘器; 6.烟气冷却器; 7.脱硫塔; 8.耐酸泵; 9.湿烟囱 图2 分高低温布置在除尘器前后的冷却器示意图 采用这种冷却器布置策略的余热回收装置主要使用于以下三种情况:一是除尘器采用布袋式除尘器而对烟气温度较敏感的新建工程中;二是除尘器进气温度在130℃~150℃之间或更高,而且增压风机有400Pa上下裕量的改造工程中;三是烟气温度在130℃上下,在除尘器后方安装高低温一体型冷却器空间不够,且增压风机有400Pa上下裕量的改造工程中。 2 余热利用技术应用实例分析 2.1 汽水系统的余热利用实例 以某火电厂2×200MW机组为例,其额定蒸发量为670t/h,2台锅炉的设计连排流量为12t/h,实际运行流量为8~10t/h。对其采用螺杆膨胀动力发电装置改造之后,初期运行一台锅炉,并利用汽包排污阀来控制连排流量,使其达到装置设计要求,这样发电装置发电功率达到200kW。通过运行测试确定该装置的投入未对汽轮机发电机组造成不良影响,且机组运行安全可靠,实现了无人值守。应用效果得到验证后对另一台锅炉开展改造,投运后2台锅炉正常运行时,发电装置发电功率可达300kW的满负荷额定容量运行。 应用效果分析:在2台锅炉正常运行情况下按发电功率为300kW计算,刨去发电装置自损耗1.1kW,按锅炉全年运行6500h,上网电价按0.35元/(kW·h)的情况下,采用该系统可以增加发电量(300-1.1)×6500=194.285万度,可获收益68.0万元,而且同时还向社会提供了大量的热水。这样按机组的发电煤耗率为3209/(kW·h)计算,年可节省标煤621.71t。若按每吨煤燃烧要排放CO21.98t计算,每年可以

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

电厂循环水处理方案

电厂循环排污水处理方案 处理量:300m3/h 出水达到中水水质要求。 PH:6.5~9 浊度:5NTU BOD5:10mg/l COD cr:50mg/l 游离性余氯:末端大于0.2 总大肠菌群:小于3 氯化物:300mg/l 铁:0.3mg/l 锰:0.5mg/l 1、处理方案: 循环冷却水的排污水含有一定浓度的悬浮物、各种盐类、金属氧化物、阻垢剂等,为达到中水水质的要求,进行以下处理,先通过混凝处理,去除水中的悬浮物及金属氧化物等,再经过,过滤,超滤,消毒后,达到中水水质要求。 絮凝剂反冲系统 循环排污水→原水箱→原水泵→→超过滤装置→出水 2、设备及构筑物选型: 2.1预处理系统 2.1.1原水箱:150m3 2.1.2原水泵: 数量:3台 流量:150m3/h 扬程:28m 2.1.3絮凝剂加药系统两箱三泵 2.1.5.1多介质机械过滤器 1. 设备参数 1)形式与数量 形式:立式 数量:4台 2)设备出力 正常出力:80m3/h/台 3)运行流速 正常流速:10m/h 4)设备直径DN3200mm 5)本体材料Q235-A

衬里材料天然硫化橡胶1层3mm 6)设计压力:0.5Mpa 水压试验压力:0.8Mpa 7)设计温度0℃~50℃ 8)滤料 石英沙粒径/高度粒度0.45-0.6mm,层高800mm 无烟煤粒径/高度粒度1.0-1.5mm,层高400mm 9)反洗膨胀高度:300~600mm 10)水反洗强度:10~13L/m2.s 气洗压力:58.8KPa 气洗强度:10~20L/m2.s 11)运行压差(设备进出口) 正常出力压差0.02MPa 最大出力压差0.05MPa 12)本体材料Q235-A 13)控制方式手动控制 2. 内部装置 1)进水配水装置 形式:挡板喷淋 材料:Q235-A,内外衬塑 2)出水配水装置多孔板配水帽型 水帽材料:ABS水帽 3. 设备本体外部装置 1)设备人孔 形式:配吊盖人孔 数量:2套/台 直径:DN450 材料:Q235-A 2)设备窥视孔: 数量:1个/台 规格(长/宽):305mm/100mm 视镜材料:透明塑料板

循环水余热利用收益的算法讨论

循环水余热利用收益的算法讨论 利用热泵吸收电厂循环水中的余热用于冬季采暖,有节能减排的社会效益,但对于电厂自身而言,其获得的收益和其投入相比并不十分理想。就目前可供参考的此方面资料来看,其中对于电厂收益的计算都有或多或少的放大,热泵投运后的效果和预期相去较远。文章仅对热泵在电厂循环水余热利用中,就电厂自身所得收益的算法进行讨论、讨论中不涉及财务及税收问题,仅针对技术性的问题进行讨论。 标签:热泵;循环水余热利用;节能减排;算法 1 常见算法极其缺陷 1.1 按燃料价格计算 当下常见的算法之一,就是按燃料计算收益。持这种观点的人认为:电厂增加热泵后,其供热量就会增加且增加的供热量就是热泵所吸收的热量,电厂所得到的收益,就是热泵所吸收的热量折算燃料的费用,当然也考了热泵投入后所伴随的一些损失。这里的问题在于,对于电厂而言,热泵所吸收的热量并不能简单折算成燃料费用。下面详细解释一下。 为了使问题简化我们做一些假设,第一、热泵投入后不会对电厂产生任何附加损失,无论是汽轮机背压升高产生的损失还是由于管道阻力增加造成的热网循环泵电耗增加,第二,热泵自身不消耗任何形式的能量,其作用仅仅是将循环水中的余热吸收到供热系统中。 有了如上假设之后,可以这样描述热泵投入后的作用:当热泵投入后,就会有一些“白得的”热量进入热网系统,在供热量不变的情况下,供热抽汽就会相应的减少,减少的这部分抽汽当然会返回汽轮机中做功或者说发电。由于电厂发多少电,是由电网决定的,因此我们进一步假定,当供热抽汽被排挤到汽轮机中做功时,还需保证汽轮机组的发电功率不变。为此只有减少主蒸汽的进汽量。显然,减少的主蒸汽,或者说省下来的这部分主蒸汽所发的电,应等于被排挤到汽轮机中的供热抽汽所发的电。增加热泵后,电厂所得的收益就是这部分被剩下来的主蒸汽,确切的说,就是加热这部分主蒸汽所消耗的燃料。由此可见,把热泵吸收的热量直接折算成燃料费用,并以此作为电厂的收益,显然不尽合理。 为了此后叙述方便,把上面这种算法叫做“排挤抽汽法”。显然这种算法更为合理。需要指出的是,当电厂的供热抽汽量达到最大,再也无法增加供热时,这时热泵所吸收的热量可以按燃料费用计算收益,但也只有超出电厂最大供热能力的那部分热量可以如此计算。有关这一点在后面加以详细讨论。 1.2 按热价计算

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

热电厂循环水处理方案(详细版)—北京邦驰世纪水处理科技有限公司

热电厂循环冷却水处理方案(最完善版) 文章系统说明了热电厂循环冷却水处理的方案,分为以下:循环冷却水预处理、循环冷却水化学药剂处理、系统清洗预膜。循环冷却水正常运行处理方案。 热电厂循环冷却水处理前言 某化工有限公司新建10万吨/年高等级重交沥青项目即将竣工投产,为此该司委托我司制定热电厂循环冷却水处理技术方案。根据这一要求,我公司专业技术人员经过现场考察,取样分析并结合我司在循环水处理项目中的成功案例和实践经验,本着技术先进、安全可靠、操作方便、经济合理的宗旨,筛选出了对该循环冷却水系统适用性强的高效缓蚀阻垢剂和杀菌灭藻剂配方,正常使用时循环冷却水系统中金属的腐蚀速率低于国家标准,可以延长设备使用寿命;阻垢性强,浓缩倍数k可达2.5,为安全生产运行、降低成本,提高经济效益创造了良好条件。 1循环冷却水预处理 某化工有限公司循环水系统的补给水为该司附近的河道水,根据河道水表观现状和取样分析的结果,我们建议循环水系统前设置一个清水调节池。其作用如下:一是调节缓冲循环冷却水系统水量;二是使大颗粒的悬浮物质自然沉淀;三是定期投加絮凝剂(聚合录化铝)可去除河道水中微小粒径的悬浮物和胶体杂质,节省后期处理用药量。 1.1循环冷却水清水调节池容积确定 1.1.1依据: 循环系统保有水量500m3和现有场地。 1.1.2清水调节池 有效容积:100m3 有效水深:2m 尺寸:10×5×2m

1.2预处理流程: 投加聚合氯化铝 河沟水 二、循环冷却水化学药剂处理 1循环冷却水系统概况: 1.1循环水系统参数: 保有水量:500 m 3 循环水量:500m 3/h 设备材质:碳钢等金属 进水温度:32℃ 回水温度:42℃ 温差(△t ):10℃ 1.2循环冷却水水质分析:

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

北京2018年投7亿建热电厂余热回收项目

北京投7亿建热电厂余热回收项目!每年可省燃气1.8亿m32018-07-12 21:10 近日,从北京市发改委获悉,北京将建一批余热回收项目,建成后可增加供热面积超过2000万平方米,每年可节约燃气约1.8亿立方米,相当于135万户普通居民生活全年用量。 项目将分4年建成 近日,北京市发改委会同北京市城管委制定出台了《北京市中心热网热源余热利用工作方案(2018-2021年)》。按照安排,北京将分4年时间建成一批余热回收项目。 据悉,今年和明年将要进行余热利用改造的热电厂包括太阳宫燃气热电厂、华能二期、华能三期、京能草桥、大唐高井和郑常庄燃气热电厂等。 据介绍,北京市政府将对这批余热回收项目加快审批流程。方案重点任务中的余热利用项目,将列入各区当年重点推进项目,按照审批权限由项目所在区加快办理各项前期手续。 同时,对于这些余热回收项目,北京市政府加大了资金支持。其中,市政府固定资产投资对热源和一次管网给予30%的资金补助,同步配套建设的水蓄热项目享受同比例的资金支持。预计项目全部建成后,政府固定资产投资将累计支持约7亿元。 烟气余热回收为主要利用形式 据媒体报道,热电厂的余热利用主要有两种形式,一个是烟气余热利用,另一个是循环水余热利用。 “结合北京市热电厂实际情况,烟气余热资源在供暖季稳定性相对较好,因此北京地区的热电厂就将采用烟气余热回收为余热利用的主要形式。”北京市发改委相关负责人说。 值得一提的是,这也是我国首次在燃气电厂大规模建设烟气余热热泵系统。 那么这些“余热”价格如何确定呢?北京市发改委相关负责人介绍,北京实施的余热利用项目供热价格参照北京现行价格政策执行,其中燃气热电厂余热利用项目参照北京燃气热电厂热力出厂价格相关政策执行。

火力发电厂烟气余热利用的分析与应用

火力发电厂烟气余热利用的分析与应用 随着我国经济与科技的发展,对资源的需求越来越大,而由于我国资源一直处于供不应求的状态,使得我国国民越来越重视对资源的有效利用,研发出了很多节能减排的科技手段。火力发电厂是我国非常重要的发电来源,在传统的火力发电当中,其损耗的能源非常多,远大于其转化的电能,在发电过程中大量资源被浪费,与我国节约能源的政策完全不符。如何改变以往的火力发电模式,将多余的烟气余热加以有效利用成为了行业内讨论的重点话题。本文就如何确保煙气余热的有效利用做了简要分析,并详细介绍了烟气余热利用系统的一些理论,望能给业内人士提供一些参考和建议。 标签:火力发电厂;烟气余热;能源利用 所谓火力发电厂其主要发电手段就是将可以燃烧的物体进行燃烧加工,让其转化为可供人们使用的电能。在其发电过程中仪器设备和操作工艺严重影响了能源的转化效率。我国大部分火力发电厂仍然使用的是传统的锅炉发电设备,这类设备在使用中并不能有效的保证能源的高效率转化,如在锅炉的排烟过程中,能源就会被大量的浪费。因此改良发电设备,研究更有利于转化的技术和器材与如何利用这些多余的能源已经成为当前行业内研究的重要方向,为了达到节约用能的目的,业内人士必须不断深入研究,来确保有更好的方式被运用到实际火力发电当中。 一、烟气余热利用条件分析 将火力发电中的烟气余热高效利用是有一定条件的,如果不能满足烟气余热利用的条件,那么就很难保证烟气余热能够被有效收集,也会降低电能的转化率。当前要想达到烟气余热的有效利用,一般需要满足以下条件: (一)确保设备的防腐蚀性 在锅炉设备排出的烟气当中,其存在很多具有腐蚀性的酸性气体,这些酸性气体在排出过程中会导致发电厂很多设备被腐蚀,不仅影响发电厂的发电效率,还影响烟气的排出率,导致大部分烟气在排出过程中就被损耗,故火力发电厂必须采取一定措施来保证设备的防腐蚀性。首先发电厂的工作人员应该先对发现酸性气体的位置进行标记,记录好出现问题的设备,然后再使用热水再循环工艺来解决仪器表面的问题,防止仪器在高温情况下和酸性气体发生腐蚀反应。此外工作人员还可以安装低温省煤器,通过仪器降温来达到防腐的目的,一般可将低温省煤气安装在烟气的出口和入口处,在两处进行烟气温度的处理,大大降低了最终的烟气温度,在某些情况下低温省煤气还可被安装在烧煤设备上,工作人员可以根据设备的反应迅速对烟气的温度进行控制,在防止设备腐蚀的同时,还能有效地提高能源的转化效率,也同时提高了烟气的排出率[1]。 (二)保证设备的干燥和整洁

热电厂循环水系统水处理技术的应用(doc 11页)

热电厂循环水系统水处理技术的应用(doc 11页)

热电厂循环水系统水处理技术的应用 摘要:独山子热电厂有三台发电机组,分别为25MW、 25MW、50MW,合计发电量为100MW。有三台双曲线自然通风式冷却塔,总循环水量为10 300m3/h,保有水量为11 000 m3。自投产以来,一直未做处理,同时与鱼池相连,存在着较为严重的腐蚀问题和生物粘泥问题,每年因腐蚀问题造成凝汽器铜管泄漏达200根,由于生物粘泥,每个季度都需要胶球清洗,有时需要高压水冲击,造成检修费用大大增加。因为冷却不下来,各用水部门在天热时加生水冷却,造成用水量增加。针对这些问题,我们做了全面调研,采取切断鱼池和化学加药的水处理技术方案,提高了汽轮机凝汽器的真空度和水资源的利用率,达到了经济发供电。 关键词:热电厂循环水水处理技术 1 前言

3 水处理技术方案 3.1 杀菌剥离清洗 杀菌剥离的目的是去除附着在系统中的粘泥和粘泥附着物,切断其对药剂的隔绝作用,使药剂最大限度发挥其缓蚀阻垢作用。 A、集水池水位降至最低安全水位,以节约药剂用量。 B、投加粘泥剥离剂400mg/L进行杀菌剥离。

C、观察冷却塔顶部配水装置和塔内壁的粘泥、菌藻的去除情况,出水孔堵塞缓解情况,塔内壁绿苔消失,通过测试循环水浊度变化,在浊度2~4小时不变,可以结束杀菌剥离。可开大补充水及排污阀进行置换排放。 测试项目:浊度,1次/2h;pH值,1次/h。 3.2 正常运行加药方案 (1)阻垢缓蚀剂:DL-6,投加浓度20mg/l。缓蚀阻垢剂在进行基础投加后,应用加药装置连续均匀地加入系统,以维持药剂浓度的平稳。如果药剂浓度波动较大,则对循环水系统运行不利,低则影响药剂使用效果,高则浪费药剂。 (2)杀菌剂:非氧化性杀菌剂和氧化性杀菌剂交替使用。 非氧化性杀菌剂,每月投加一次,投加浓度50mg/l。 氧化性杀菌剂,每天投加一次,投加浓度50mg/l。 3.3 水质控制指标和分析频次 表2 水质控制指标和分析频次

余热回收利用报告

关于“第八届余热回收利用研讨会”学习报告11月1号有幸参加了“第八届余热回收利用研讨会”,通过参加此次研讨会了解了国内外在余热回收利用方面的新技术,其中一些技术已经用于实践生产,并取得了良好的经济效益,以下是本次报告主要的内容: 1、介绍余热综合利用的潜力及必要性; 2、介绍国内外关于钢厂余热回收利用的最新技术。 3、总结适用于我公司的余热再回收技术。 一、余热综合利用的潜力及必要性。 钢铁工业是能源消耗的大户,我国钢铁工业生产过程中的能源有效利用率仅为30%左右,能源使用效率的低下造成钢铁企业能源成本增加,产品竞争力下降。钢铁行业在生产过程中产生大量余热能源,吨钢产生的余热总量约占吨钢能耗的37%。 我国大型钢铁联合企业余热、余能资源的回收利用率约为30%-50%,但与国际先进水平相比仍有很大的差距。国际平均利用率达80%以上,我们的节能工作仍有很大的空间,大量的余热资源可以回收产生蒸汽,做好余热蒸汽的回收和科学利用可以使钢铁企业对一次能源的需求量减少约8%。 当前,在钢铁行业面临产能过剩、结构调整、资料能源成本和环保代价日益加大,回收余热、余能越来越受到关注,成为钢铁企业节能降耗、降低成本的重点。 二、现国内在余热回收方面的研究及应用于实际工业生产的最新技术。 研究一:提高换热器的换热效率,改善换热器的换热结构及材质,使换热器能 够在更加恶劣的换热环境下使用。 在节能减排的新形势下天津大学朱教授发明了新一代高效节能平行流管壳式换热器,实现了换热器管/壳程空间可控的纯逆流,提高了总传热效率30%-60%,降低运行阻力20%-70%,大大降低了动力设备的能耗,节能15%-40%、节材20%-40%、节地30%-70%,此项研究成果已获得国家相关部门认可并已应用于实际生产当中。 设计原理:传统管壳式换热器由折流板改变流体方向,通过冷热介质在管内外的换热,使工质达到冷却或加热的目的,而朱教授摒弃了这种以碰撞形式进行

相关文档
相关文档 最新文档