文档库 最新最全的文档下载
当前位置:文档库 › 发电机异常运行现象的分析和处理

发电机异常运行现象的分析和处理

发电机异常运行现象的分析和处理
发电机异常运行现象的分析和处理

发电机异常运行现象的分析和处理

一、发电机过负荷

(1)原因:在小电网中,大用户增加负荷;某发电厂事故跳闸,大量负荷压向本站.

(2)现象:过负荷光字牌亮,并发出音响信号;定子电流表指示超过允许值;定子和转子温度升高.

(3)处理:与调度联系减少负荷或启动备用机组;调整各机组之间有功和无功负荷的分配.

二、励磁系统一点接地

励磁系统的绝缘电阻应在0.5MΩ以上,绝缘电阻降到0.5MΩ以下时,值班人员应进行认真检查,当绝缘电阻降到0.1MΩ时,应视为已发生一点接地故障.

(1)原因:励磁系统绝缘损坏;滑环、整流子、电刷架的炭粉过多,引起接地。

(2)现象:励磁系统的正极或负极,对地有电压指示;机组运转正常;各表计指示正常。

(3)处理:申请停机处理。

三、发电机温度不正常

(1)原因:电流过大或测温装置不正常;发电机冷却通风不畅或通风道气流短接。

(2)现象:定子绕组温度在100℃以上及发电机出风温度过高。(3)处理:检查测温装置;平衡各机组负荷或与调度联系减少负荷;查明是否由于内部局部短路而引起;排除通风受阻或短接现象。

四、电压互感器回路故障

(1)原因:电压互感器二次侧有短路;高低压侧的熔丝熔断或接触不良;系统故障导致。

(2)现象:熔丝熔断,测三相电压不平衡;“TV”熔丝熔断“发”信号

(3)处理:检查二次回路熔丝;如处理二次熔丝不能消除故障,应申请停机处理。

五、操作回路故障

(1)原因:直流设备故障;操作回路熔丝熔断、接触不良或操作回

路断线;断路器辅助触头接触不良;回路监视继电器动作后未复归等。(2)现象:操作屏上显示“操作回路断线(故障)”信号。

(3)处理:机组可继续运行;查明原因设法消除。

六、发电机断路器自动跳闸

(1)原因:发电机内部故障,如定子绕组短路或接地短路;发电机外部故障,如发电机的出线、母线或线路短路;继电保护装置及断路器操动机构误动或值班员误碰。

(2)处理:检查发电机灭磁开关是否已跳开,如没有应立即将其断开,以防过电压,而使发电机内部故障扩大;将磁场变阻器放到最大位置;查明断路器自动跳闸的原因,再酌情进行处理。

七、低压过流保护动作

(1)原因:大部分是由于发电机外部事故而引起,如母线及线路短路等,其次是大电厂跳闸,系统负荷过重。

(2)现象:喇叭响;控制屏上“发电机事故”光字牌亮;各表计均无指示;低压过流信号继电器掉牌。

(3)处理:发电机断路器跳闸,同时主变断路器、线路断路器也因过流而同时跳闸,则说明是由于线路事故而引起,运行人员可不经检查将机组启动升压,维持空载等调度命令送电。

八、差动保护动作

(1)原因:差动保护动作一般是发电机内部(包括其保护区域内的电缆和互感器等)故障。

(2)现象:喇叭响;控制屏上“发电机事故”光字牌亮;各表计均无指示;差动信号继电器掉牌。

(3)处理:立即停机灭磁。检查掉牌指示、差动回路、继电保护动作是否正确;检查发电机有否内部绝缘击穿而引起的弧光、冒烟、着火等现象;对差动保护范围内的设备:电压互感器、电流互感器、定子出线、电缆头进行详细检查,有否短路、接地情况;用1000V或2500V兆欧表测量发电机相间及相对地的绝缘电阻;经检查未发现故障点,绝缘电阻良好,可申请调度,从零起升压,在零起升压过程中应特别注意,发现异常停机;差动跳闸在未找出原因时,绝对不能开机强送。

九、过电压保护动作

(1)原因:变电所事故跳闸,本厂负荷送不出去,飞车引起电压过高;线路断路器跳闸,系统负荷减轻。

(2)现象:喇叭响;操作屏上“发电机事故”光字牌亮;跳闸后各表计均无指示;过电压信号继电器掉牌;断路器跳闸瞬间电压突然升高,晚间电灯亮度大增。

(3)处理:查明过电压跳闸的原因;除特别严重的飞车事故要检查机组绝缘外,可立即升压、并列。

十、发电机断路器误动作

(1)原因:操作机构失灵;人员误碰、误操作等。

(2)现象:保护装置未动作;跳闸前,所有表计无事故情况表示。(3)处理:立即调整发电机励磁及转速至空载位置;检查误动作原因,确认是误碰、误操作,可立即开机并入电网运行;一时无法处理时,可启动未运转的机组。

十一、发电机的非同期并列

(1)原因:同步发电机在不符合准同期并列条件就与系统并列。(2)现象:在合上待并发电机断路器的瞬间,定子电流突然增大,系统电压降低,发电机本体发出“吼”声,定子电流表剧烈摆动。(3)处理:发现上述情况应立即把发电机断路器和灭磁开关断开,停机检查;测定发电机定子绕组的绝缘电阻;打开发电机端盖,检查发电机端部绕组有无变形;查明非同期并列的原因,证明发电机机电部分正常,再启动、升压、并列。

十二、发电机升不起电压

(1)原因:励磁系统电源故障,失磁不能建压;励磁回路断线或接触不良;励磁回路短路或接地。

(2)处理:检查励磁系统电源;检查励磁回路接触情况。

十三、晶闸管自励系统不能建压

(1)原因:励磁系统主回路接触不良或快速熔断器烧断;晶闸管性能的变化,正向阻断电压的降低,引起管子击穿和短路;调节器故障,如虚焊、接触不良、回路不通等。

(2)处理:应根据不同情况进行针对性处理。

另注:晶闸管励磁调节器主要是按发电机机端电压偏差进行调节的闭环系统。调节过程如下:当机端电压U G下降时,测量变压器T C输出电压下降,CF单元输出U g上升,移相单元YM输出脉冲前移,即控制角减小,导通角增大,励磁电流I L上升,使机端电压上升或无功增加。反之,若U G上升,则以上各参数朝相反方向变化,以达到自动调节之目的。

U G↓→U g↑→↑→I L↑→U G↑

U G↑→U g↓→↓→I L↓→U G↓

十四、发电机失去励磁-失磁(失励)

(1)原因:发电机由于灭磁开关受振动或误碰而跳闸,磁场变阻器接触不良,励磁机磁场变阻器断线,电网电流突然冲击,自动电压调整器故障等原因,将使发电机失去励磁。

(2)现象:转子励磁电流突然为零,励磁电压也降低为零,发电机电压及母线电压都比原来值低;定子电流表指示升高,功率因数表指示进相;无功功率表指示零值以下,各表计指针都在摆动。

(3)处理:水轮发电机一般是不允许无励磁运行的。如果确认发电机无励磁运行时,就立即将发电机与系统解列,然后停机查原因。十五、发电机振荡和失步

(1)原因:当系统发生某些重大事故时,发电机的输出功率与用户的负荷不能平衡,将使发电机产生振荡和失步。

(2)现象:定子电流表指针激烈的冲撞针挡;定子电压表也激烈的摆动,通常电压值降低;有功功率表在全盘摆动;转子电流表指针在正常值摆动;发电机发出“鸣”声,起“鸣”声的变化与屏上仪表指针摆动的频率相对应;其他并列运行的发电机的仪表也相应地摆动,但幅度较小。

(3)处理:当发电机发生振荡时电气值班人员应设法尽快地增加发电机的励磁电流来创造恢复同期的条件;装有自动电压调整器和强行励磁装置时,它们会因发电机端电压的降低而动作,使励磁电流达到最大值;此时值班人员还应适当降低该机的负荷,以帮助尽快恢复周期。

整个电厂与系统失去同步时,全厂所有发电机都将发生振荡,此时值班人员除了设法增加各台机组的励磁电流外,在无法恢复同步时,经2分钟后,将电厂与系统解列。

十六、定子或转子的测量仪表指示突然消失

当定子和转子的测量仪表之一指示突然消失时,必须按照其他测量仪表的指示,检查是否由于仪表或二次回路导线的损坏而不通,应尽可能不改变发电机的运行方式,并采取措施以消除所发生的故障。十七、发电机跳闸时自动灭磁装置故障

在发电机跳闸时,如果发现灭磁装置有故障,应立即消除。自动灭磁装置的故障未消除前,不应将发电机投入运行。

十八、当发电机着火时,值班人员应立即采取的措施

(1)值班人员应立即操作紧急停机按钮,将发电机与系统解列。(2)水机值班人员应立即关小水轮机导叶的开度,但不能停机,如确认为发电机内部绝缘烧坏,可将机组停止转动。

(3)值班人员应按《电业安全工作规程》规定用四氯化碳和1211等灭火器进行灭火,如确认为电源已经切断,可用水灭火装置进行灭火;如现场无灭火装置,必须设法使用一切能灭火的设备及时扑灭火灾,但不得使用泡沫灭火器及沙子灭火。

如发电机旁地面上油类着火时,可用沙子灭火,但必须注意,不得使沙子落入发电机内及其轴承上。

(4)为避免卧轴机组由于一侧过热而使主轴弯曲,禁止在火灾完全熄灭前将机组完全停下。

1.如何检查励磁系统一点接地?

答:励磁系统的绝缘电阻应在0.5MΩ以上,绝缘电阻降到0.5MΩ以下时,值班人员应进行认真检查,当绝缘电阻降到0.1MΩ以下时,应视为已发生一点接地故障。

2.运行中的发电机定子绕组一点接地有何现象?如何处理? P587

答:现象:1.三相定子电流不平衡及三相电压不平衡.

2. 各表计摆动.

3. 发电机出现异常声音,

处理:当发生发电机定子绕组一点接地,当接地电容电流不超过5A时短时间运行一般不会有什么后果,规程规定当接地电容电流不超过5A时,在没有查清原因前允许运行2小时,在这期间应立即查找原因,避免相间短路.

3.发电机断路器自动跳闸如何处理?

答:检查发电机灭磁开关是否已跳开,如没有应立即将其断开,以防过电压,而使发电机内部故障扩大;将磁场变阻器放到最大位置;查明断路器自动跳闸的原因,再酌情进行处理。

4.发电机差动保护动作开关跳闸应如何处理?

答: 立即停机灭磁。检查掉牌指示、差动回路、继电保护动作是否正确;检查发电机有否内部绝缘击穿而引起的弧光、冒烟、着火等现象;对差动保护范围内的设备:电压互感器、电流互感器、定子出线、电缆头进行详细检查,有否短路、接地情况;用1000V或2500V 兆欧表测量发电机相间及相对地的绝缘电阻;经检查未发现故障点,绝缘电阻良好,可申请调度,从零起升压,在零起升压过程中应特别注意,发现异常停机;差动跳闸在未找出原因时,绝对不能开机强送。

5.发电机失去励磁有何现象?应如何处理?

答:现象:转子励磁电流突然为零,励磁电压也降低为零,发电机电压及母线电压都比原来值低;定子电流表指示升高,功率因数表指示进相;无功功率表指示零值以下,各表计指针都在摆动。

处理:水轮发电机一般是不允许无励磁运行的。如果确认发电机无励磁运行时,就立即将发电机与系统解列,然后停机查原因。

6.发电机升不起电压是何原因?

答:励磁系统电源故障,失磁不能建压;励磁回路断线或接触不良;励磁回路短路或接地。

7.发电机振荡时,值班人员应如何处理?P234

答:振荡是指发电机主力矩和阻力矩失去相对稳定,在主力矩和阻力矩作用下,使定子磁场转速和转子转速发生相对变化。

值班人员应采取下列措施:

1)增加发电机的励磁,这是为了增加同步的电磁转矩,使发电机在达到平衡点附近时被拉入同步。

2)当判明是某台发电机失步时,可适当减轻其有功出力,这样容易牵入同期条件。

3)按上述方法处理,经1-2min后,仍不能恢复同期时,则可将失步发电机从系统解列。

8.发电机误动作如何处理?

答:立即调整发电机励磁及转速至空载位置;检查误动作原因,确认是误碰、误操作,可立即开机并入电网运行;一时无法处理时,可启动未运转的机组。

9.当发电机着火时,值班人员应如何处理?

答:(1)值班人员应立即操作紧急停机按钮,将发电机与系统解列。

(2)水机值班人员应立即关小水轮机导叶的开度,但不能停机,如确认为发电机内部绝缘烧坏,可将机组停止转动。

(3)值班人员应按《电业安全工作规程》规定用四氯化碳和1211等灭火器进行灭火,如确认为电源已经切断,可用水灭火装置进行灭火;如现场无灭火装置,必须设法使用一切能灭火的设备及时扑灭火灾,但不得使用泡沫灭火器及沙子灭火。

如发电机旁地面上油类着火时,可用沙子灭火,但必须注意,不得使沙子落入发电机内及其轴承上。

(4)为避免卧轴机组由于一侧过热而使主轴弯曲,禁止在火灾完全熄灭前将机组完全停下。

10.发电机并入系统的条件?

答:1.待并发电机电压与系统电压相等(±5%);

2.待并发电机频率与系统频率相同(±0.5Hz);

3.待并发电机相位与系统相位一致。

11.若三台发电机,两台主变都在运行状态,此时升压站四条35KV 线路都因故障同时跳闸,应如何处理?

答:

12.若三台发电机,两台主变都在运行状态,试问两台主变同时跳闸如何处理?

答:

13.运行中调速器突然失灵应如何处理?

答:

14.碳刷打火如何处理?

答: 可用干净的步擦拭,如擦拭不见效,则可在布上沾微量的工业酒精,以擦去积垢和刷迹。但用酒精布擦拭时必须细心地选定适当的地点,以免火花引起燃烧。若火花仍不熄灭时,可用“00”号细玻璃砂纸装在特制的研磨工具上进行研磨,不允许用金刚砂纸装在或粗玻璃砂纸进行研磨。

15.轴承温度升高如何处理?

答:运行人员应立即检查轴承冷却系统的工作情况:

1)水流是否畅通,水压是否正常;

2)轴承油位、油色是否正常。有时会因轴承油槽内油中含水,使冷却、润滑条件恶化而导致轴瓦温度上升。有时会因冷却器冷却水压、水量不够而导致轴承温度上升,要查明原因,对症处理。

3)为维持继续运行,临时可采取加大冷却水压、水量及水系统倒向的措施,如轴承温度还在升高,则应立即停机。

4)空气冷却器温度升高,可采取增大冷却水压或向调度申请降低负荷的降温。如仍不见效,可考虑打开发电机的风洞盖板,增加通风流量以降温,或停机检查处理。

5)如轴承温度过高系机组摆动过大所致,应立即汇报,停机处理。

16.运行中大轴漏水如何处理?

答:当值班人员发现机组大轴漏水以后,立即采取措施进行处理,如果漏水量较小,可用棉布或橡胶垫进行堵漏处理,从而防止漏水进入推力轴承影响机组安全运行。如果漏水量较大,应立即降低机组负荷,减少漏水量并且迅速进行处理,处理完毕后,根具漏水情况带机组负荷,但应注意不要影响推力轴承的正常运行。如果运行中无法处理,应立即与调度联系申请停机处理。

17.前池水位已蓄到正常水位线如何提前池工作闸门?

答:前池水位已蓄到正常水位线以后,值班人员再得到站领导进行压力管道灌水命令以后,将前池压力管道进水口的闸门缓慢提其10—20cm往压力管道灌水,注意不要一次将前池压力管道进水口的闸门提其的过高,防止压力管道内由于空气没有及时排尽,在水压的作用下使空气和水流反冲出去,从而防止人身和设备事故的发生。等到压力管道内空气以排尽并且全部关满水后,再将前池闸门全部提起,并通知厂房值班人员,压力管道闸门以全部提起。18.

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

变电站异常与事故处理方法

变电站异常与事故处理方法 一、事故处理规定 1、事故处理的原则 1) 迅速限制事故的发展,消除事故的根源,解除对人身和设备的威胁。 2)及时隔离故障设备。 3)尽一切可能保持或立即恢复站用电及重要线路的供电。 4)尽快对已停电的线路、用户恢复供电,并恢复原运行方式。 (2、尽一切可能保持电网稳定运行;3、调整系统运行方式,使其恢复正常;) 2、变电站发生事故时,当值值班员必须做到: 1)发生事故时,运行值班人员应坚守岗位,加强与值班调度员的联系,随时听候调度指挥。 2)发生事故时无关的人员应退出现场,与处理事故的无关的电话一律停止。发生事故时应通知现场工作人员停止一切工作,撤离工作现场,待事故处理完毕或告一段落后方可进行工作。如与调度失去联系暂时无法恢复通信时,应按通信中断的方法处理。 3)事故处理时,必须严格执行发令、复诵、汇报、录音及记录制度,必须使用规范的调度术语和操作术语,指令与汇报内容应简明扼要,汇报工作应由变电站当值值班负责人担任。 4)应立即检查并记录开关的位置、电流、母线电压的指示、监控机显示的信息,检查保护装置信号灯指示情况及故障信息,打印故障报告和录波图。 5)迅速对设备进行检查,判明故障性质、地点和范围。 6)对事故处理的每一阶段,应及时地将情况向值班调度员汇报。 3、系统运行出现异常时,如系统振荡、较大的潮流突变、设备过负荷、发现设备紧急缺陷及其它影响电网的安全稳定运行情况等,值班员应立即汇报调度并加强监视。如果系统发生振荡,应将振荡发生的时间、母线电压、开关电流及功率变化情况在运行日志上记录。 4、为了防止事故的扩大,下列情况允许先操作设备,事后尽快向值班调度员和管理所领导汇报

发电机异常及处理

发电机异常运行及事故处理 (一)、发电机的异常运行 1.发电机过负荷 现象: a.定子电流起过额定值,过负荷信号可能发出 b.转子电压,转子电流,可能超过正常值 c.发电机电压降低,周波可能下降 d.机组可能发生振动 处理: a.在事故情况下,允许发电机定子线圈按下表规定值过负荷,同时也允许转子线圈有相应的过负荷。 b.发电机在事故情况下过负荷,值班人员应首先检查功率因数和电压,注意过流时间,可以适当降低定子电压,但不允许过低。因功率因子不应超过0.95迟相,必要时可以按规定限制部分负荷。 2.发电机定子线圈和铁芯温度高于规定值处理。 a.检查发电机是否过负荷。 b.配合电工人员检查表记是否正常。 c.联系汽机检查空冷的冷却是否正常。

d.检查处理温度计升高时必须降低发电机出力,请示车间进行处理。 e.若发电机线圈,铁芯温度急剧上升,处理无效且漏风也不正常。 3.励磁系统接地 a.微机报警“发电机转子一点接地”,检查发电机后备接地保护确认接地为稳定性,并联系检修人员检查处理。 b.有刷励磁发电机转子接地范围包括转子,励磁电缆,灭磁开关,自动励磁屏内部分组件。 4.励磁回路两点接地 (1)现象: a.保护投入时,励磁电压降低,保护动作。 b.励磁电流剧增或降低。 c.定子电流表指示升高,发电机剧烈振动。 d.无功负荷降低。 处理: a.励磁保护投入时,机端开关及励磁开关应掉闸,未投入 或掉闸时应手动拉开。 b.向汽机发“注意”,“已掉闸”信号。 c.检查发电机励磁系统。 d.清除后发电机重新并列。 (2)、发电机正常运行时,必须检查发电机转子上接地电刷接触

6.发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

电机学第14章同步发电机的异常运行和突然短路

第14章同步发电机的异常运行和突然短路 14.1同步发电机不对称运行对电机有哪些影响?主要是什么原因造成的? 答:(1)引起转子表面发热。这是由于负序电流所产生的反向旋转磁场以二倍同步转速截切转子, 在励磁绕组、阻尼绕组、转子铁心表面及转子的其它金属结构部件中均会感应出倍频电流,因此在励磁 绕组、阻尼绕组中将产生额外铜损耗,转子铁心中感应涡流引起附加损耗。 (2)引起发电机振动。由于负序旋转磁场以二倍同步转速与转子磁场相互作用,产生倍频的交变电 磁转矩,这种转矩作用在定子、转子铁心和机座上,使其产生100 Hz的振动。 可以看出,这些不良影响主要是负序磁场产生的,为了减小负序磁场的影响,常用的方法是在发电 机转子上装设阻尼绕组以削弱负序磁场的作用,从而提高发电机承受不对称负载的能力。 14.2为什么变压器中X(=X_?而同步电机中X.?X_? 答:由于变压器是静止电器,正序电流建立的正序磁场与负序电流建立的负序磁场所对应的磁路是 完全相同的,所以X:F X _。而在同步电机中,正序电流建立的正序磁场是正转旋转磁场,它与转子无 相对运动,因此正序电抗就是发电机的同步电抗,它相当于异步电机的励磁电抗;而负序磁场是反转旋 转磁场,它以二倍同步速切割转子上的所有绕组(励磁绕组、阻尼绕组等),在转子绕组中感应出二倍基 频的电动势和电流,这相当于一台异步电机运行于转差率s=2的制动状态。根据异步电动机的磁动势平 衡关系,转子主磁通对定子负序磁场起削弱作用,因此负序电抗就小于励磁电抗,所以在同步电机中 X X _。 14.3试分析发电机失磁运行时,转子励磁绕组中感应电流产生的磁场是什么性质的?它与定子旋转 磁场相互作用产生的转矩是交变的还是恒定的? 答:发电机失磁运行时,转子转速n略大于定子磁场转速n1,同步发电机转入异步发电运行状态, 其转差率S :::0 ,此时定子旋转磁场在励磁绕组中感应出频率为f2= sf1的交变电动势和交变电流,由于转子励磁绕组为单相绕组,因此励磁绕组将产生一个以f2频率交变的脉动磁场。该脉动磁场可以分解为 大小相等、转速相同、转向相反的两个旋转磁场,其中和转子转向相反的旋转磁场与定子磁场之间无相 对运动,二者作用对转子产生恒定的制动电磁转矩,而和转子转向相同的旋转磁场与定子磁场之间有相 对运动,二者作用对转子产生交变电磁转矩,总的合成电磁转矩是制动性质,方向不变,大小脉动。 14.4简述同步发电机的阻尼绕组对抑制振荡的作用。 答:同步发电机振荡时,转子转速不再是同步转速,转子与定子磁场之间存在相对运动,阻尼绕组

2.1同步发电机数学模型及运行特性

2.1同步发电机数学模型及运行特性 本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。 2.1.1 同步发电机稳态数学模型 理想电机假设: 1)电机铁心部分的导磁系数为常数; 2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称; 3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布; 4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。“同步”之名由此而来。 同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。 1.同步发电机的相量图 设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。U和I的d、q分量为: 图 2-1电势电压相量图 电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为: (2-3)

汽油发电机常见故障汇总及解决方法

汽油机点火不着的原因具体有哪些方面? 汽油机要实现正常启动,必须具备三个条件:一、配气系统正常;二、供油系统正常;三、点火系统正常;这三个条件缺一不可。分析发动机不能启动故障,就从这三个方面进行逐一排查,定能事半功倍。当然在判断正常与非正常时,需要有一定经验积淀。工作过程中,发动机自行熄火后,不能启动。检查步骤是:1、握住起动手柄,慢慢拉转轴,感受压缩行程时的阻碍力,若阻力大则汽缸压缩力正常,初定配气系统正常,2、拆下火花塞后,重新装入火花塞冒中,并使火花塞搭铁,打开,迅速拉动起动手柄,观察火花塞跳火(俗称跳火试验)情况,若火花正常,则初定点火系统正常。问题可能出现在燃油供给系统,燃油供给系统故障有二种情况:其一:油流不畅或无油。主要原因有:①、油箱中无油;②、油箱盖小孔堵塞;③、油箱底部滤网堵塞;④、化油器开关油道堵塞;⑤、浮子室卡滞;⑥、主量孔堵塞。其二:油流通畅。主要原因有:①、燃油中有水;②、气缸内燃油过多;③、混合汽通道漏气。需要特别提醒的是,搁置较长时间的起动时,除作上述检查外,还要注意检查开关位置和风门的开度,以及燃油质量问题。安装有机油传感器的发动机首先检查箱内机油是否足够,传感器是否搭铁或损坏。若燃油供给系正常,气缸压缩正常,则故障在点火系。故障原因有:①、电极度脏污、积炭;②、火花塞绝缘体损坏;③、火花塞间隙不对;④、高压线漏电;⑤、火花塞损坏;⑥、点火线圈损坏;⑦、不够。点火系故障判断方法是:做火花塞跳火试验,观察有无火花或火花强弱,若无火花,拆下火花塞冒,用高压线直接跳火试验,若火花正常,故障在火花塞及火花塞冒。再将火花塞放置机体上,用高压线接触火花塞尾部进行跳火试验,若跳火正常,则火花塞冒损坏;若跳火微弱,或不跳火,则火花塞可能:①、火花塞积炭;②、火花塞电极间隙过大或过小;③、火花塞绝缘损坏;若高压线无电火花,断开点火器与点火开关的联接线,再作跳火试验,若跳火正常,则点火开关搭铁,清除搭铁点即可正常启动。若仍不跳火,可拆点火器上的熄火搭铁线,再跳火试验,若跳火正常,则熄火搭铁线有搭铁现象;若跳火微弱或不跳火则点火器损坏或磁场变弱。若燃油供给正常,点火系正常。则故障在配气系统。配气系统故障有两种现象:其一,气缸无压缩拉动曲轴无转动阻力。压缩过程漏气,可能产生的原因有:①、汽门密封不严漏气;②、气门发卡;③、汽缸垫损坏;④、气缸头螺丝松动;⑤、花塞松动;⑥、活塞环焦结;⑦、活塞环磨损;⑧、磨损;⑨、活塞磨损;⑩、过小或无间隙。其二,压缩正常。可能产生的原因有:①、启动负荷大,启动转速不够;②、进气或排气门推杆脱出;③进排气道堵塞;④、气门间隙过大。还应注意别人拆装过曲轴箱盖的发动机,应检查配气正时,确保万无一失。自行熄火的发动机,当检查确认配气正时、压缩良好、无进排气堵塞。然油供给正常,化油器雾化可靠。火共塞跳火也正常,但仍不能启动时,这时唯一应检查的部位是--飞轮键,若飞轮键被剪切就会使飞轮与曲轴正常装配位置发生改变,使飞轮上的相对曲轴的定位发生改变,最终造成点火不正时,故发动机不能启动,这一故障须拆卸飞轮才能检查。本人在工作中遇到二例。发动机工作中自行熄火,手拉起动盘不能

水轮发电机组的异常运行

水轮发电机组的异常运行

————————————————————————————————作者:————————————————————————————————日期:

第十章水轮发电机组的异常运行 第一节水轮机的常见故障与事故处理 水轮机运行中难免会发生各种各样的异常情况,同一异常现 象可能有不同 的产生原因,因此,在分析故障现象时,要根据仪表指 示,机组运转声响,振动,温度 等现象,结合事故预兆,常规处理经验进行分析判断, 必要时采用拆卸部件解体检 查等方法和手段,从根本上消除设备故障. 一水轮机出率下降 水轮机导叶开度不变的情况下,机组出率下降 明显,造成水轮机出率下降 的常见原因有; (1)上游水位下降,渠道来水量急剧减少. (2)前池进水口栏污栅杂草严重阻塞. (3)电站尾水位抬高. (4)水轮机导叶剪断销断裂,个别导叶处于自由开度状态. (5)水轮机导水机构有杂物被卡住,冲击式机组的喷嘴堵塞. (6)冲击式机组折向器阻挡水流. 针对上述原因进行相应的检查处理 (1)若水库水位下降,有效水头减小,则水轮机效率降低,机组出力下降. 水库水位过低,应停止发电运行,积蓄水量,抬高水位 后再发电.渠道来水量急剧 减少,或上游电站已经停机,渠道发生事故断流,应停 机后检查处理. (2)要及时清理栏污栅杂草,防止杂草阻塞以致影响水轮机出力. (3)检查尾水渠道有否被堵塞,是否强降雨造成河道水位抬高. (4)详细检查水轮机导叶拐臂的转动角度是否一致,发现个别导叶角度 不一致时停机处理. (5)检查水轮机内部噪声情况,做全开,全关动作,排除杂物.必要时拆卸 水轮机尾水管或打开进人孔进入蜗壳,取出杂物. (6)检查冲击式机组折向器位置,如其阻挡水流,须调整折向器角度. 水轮机出力下降,往往会出现异常声响和振动,蜗壳压力表指 示下降或大 幅度波动等现象,要根据情况进行分析和判断处理. 二水轮机振动 水轮机运行过程中振动过大会影响机组正常 运行,轻则机组运行不稳定, 出力波动大,轴承温度高,机组运转噪声大,而其机组 并网困难;重则引起机组固定 部件(地角螺栓)损坏,尾水管金属焊接部件发生裂纹, 轴承温度过高而无法连续运 行.应针对不同情况,查清机组振动原因,采取对应措 施,恢复机组正常运转.水轮机

发电机常见故障原因及对策分析

发电机常见故障原因及对策分析 [摘要]近年来,随着我国社会经济的快速发展,科技技术、自动化技术等都有了进一步的发展。目前,发电机广泛应用于各行各业,若发电机出现故障,将严重影响着企业的正常运营,甚至给企业带来巨大的经济损失与社会损失。文中就常见的发电机故障展开分析,重点探讨其故障原因,针对其原因所在,有针对性的提出了相应的解决对策,避免发电机事故的发生。 [关键词]发电机常见故障故障原因对策 作为大型动力设备的发电机,不仅具备体积小的优点,而且具有功率大、转速高、运行平稳、安全性高的优势。但其运行过程中难免会出现一些故障,如何才能更好的防治、解决发电机运行中的常见故障,这对真正提高发电机的运行效率及运行安全性能具有重要的意义,下面将就此展开分析、论述。 1发电机常见故障及其原因分析 1.1绝缘电阻低于标准或产品技术条件规定的数值 出现绝缘电阻低于标准或产品技术条件规定的数值故障的原因:(1)原动机转速过低;或是由于二极管被击穿。(2)励磁回路中的电阻高于正常规定值;或是励磁电刷偏离中性线。(3)运输、存放、长时间停机或有水滴入电机内使线圈受潮或变形。(4)电机刷压力过小,接触面积过小,使其发生接触不良的现象。 1.2发电机电压过低 出现发电机电压过低的故障原因:(1)原动机转速太低,励磁回路电阻过大。(2)定子绕组或励磁绕组中有短路或接地故障。 1.3发电机电压过高 出现发电机电压过高的故障原因:(1)转速过高,分流电抗器铁心气隙过大。(2)磁场变阻器短路,发电机事故飞车。 1.4发电机线圈损坏故障 (1)一般使用年限较久的发电机极为容易出现线圈损坏的故障,即发电机的线圈绝缘出现局部损坏的现象,或是由于其线圈绝缘被击穿而出现故障。(2)若定子线圈处的绝缘层与绝缘线圈常年受外部环境中的土尘、水泥等颗粒性物质及水和油污等物质浸湿,而且在槽口拐弯部位浸漆的不完全,都容易损坏定子线圈的绝缘层,进而引发电压击穿或接地烧毁等故障,严重影响发电机的对正常及安全运行。(3)此外,在使用发电机的过程中,由于发电机在其运转工作的过程中其轴承会产生一定的磨损,若未定期对其进行必要的检测、维修与保养,当其

变电站事故分析资料报告及处理

1 事故处理的主要任务 1)及时发现事故,尽快限制事故的发展和扩大,消除事故的根源,迅速解除事故对人身和设备的威胁。 2)尽一切可能确保设备继续运行,以保证对用户的正常供电。 3)密切与调度员联系,尽快恢复对已停用户供电,特别是要尽可能确保重要用户的供电。 4)调整电网运行方式,使其恢复正常。 2 处理事故的一般原则 1)电网发生事故或异常情况时,运行值班员必须冷静、沉着、正确判断事故情况,不可慌乱匆忙或未经慎重考虑即行处理,以免造成事故的发展和扩大。 2)迅速、准确地向当值调度员汇报如下情况: ①异常现象、异常设备及其它有关情况; ②事故跳闸的开关名称、编号和跳闸时间; ③保护装置的动作情况; ④频率、电压及潮流的变化情况; ⑤人身安全及设备损坏情况; ⑥若未能及时全面了解情况,可先做简单汇报,待详细检查清楚后,再做具体汇报。 3)处理事故,凡涉及到设备操作,必须得到所辖调度的命令或同意。 4)处理事故时,值长、主值、副值均应坚守岗位,不可擅自离开,

随时保持通讯联系。 5)处理事故时,地调向运行人员发命令时,运行人员应立即执行,并将执行结果同时汇报地调。 6)处理事故时,除领导和有关人员外,其它无关工作人员均应退出事故现场。 7)处理事故时,值班员应迅速执行当值调度员一切指令。若值班员认为当值调度员有错误时,应予指出,当值班员仍确定自己的指令是正确的,值班员应立即执行。但直接威胁人身和设备安全的指令,任何情况下均不得执行,并将拒绝理由汇报当值调度员和上级领导。 8)处理事故时,当值班员对当值调度员的指令不了解或有疑问时,应询问明白后再执行。 9)事故处理中出现下列情况,值班员可立即自行处理,但事后应迅速汇报当值调度员: ①运行中设备受损伤威胁,应加以隔离; ②直接对人身有严重威胁的设备停电; ③确认无来电的可能,将已损坏的设备隔离。 10)交接班时发生事故,且交接班后的签字手续尚未完成,仍由交班者负责处理,接班者协助处理。事故处理告一段落或已结束,才允许交接班。 11)处理事故中,值班员必须集中精力。事故处理结束后,应详细记录事故发生原因、现象以及处理经过,并将上述情况汇报调度。

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0 的条件下,测取空载特性曲线U0=f(I f) 。 3、三相短路实验:在n=n N、U=0 的条件下,测取三相短路特性曲线I K =f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈的0条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cos φ =1和cos φ =0.8滞(后)的条件下,测取外特性曲线U=f(I) 。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I) 。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1 中。

源 电 磁 励 2 5 +D +D 图 5-1 三相同步发电机实验接线 图 4、空载实验 (1) 按图 5-1 接线, 校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发 电机G S旋转, GS的定子绕组为 Y 形接法 (U N =220V) 。R f2用 R4 组件上的 90Ω与 90Ω 串联加 R6 上 90Ω 与 90Ω并联共 225Ω 阻值, R st 用 R2 上的 180Ω 电阻值, R f1用 R1 上的 1800Ω电阻值。开关 S 1, S 2 选用 D51 挂箱。 (2) 调节 D52 上的 24V 励磁电源串接的 R f2 至最大位置。调节 MG 的电枢串联电阻 R st 至最大值, MG 的励磁调节电阻 R f1 至最小值。开关 S 1、S 2 均断开。将控制屏左侧调压器旋钮向逆时针方向旋 转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在 “关 ”断的位置,作 好实验开机准备。 (3) 接通控制屏上的电源总开关, 按下 “启动 ”按钮,接通励磁电源开关, 看到电流表 A 2有励磁电 流指示后,再接通控制屏上的电枢电源开关 ,起动 MG 。MG 起动运行正常后 , 把 R st 调至最小,调节 R f1使 MG 转速达到同步发电机的额定转速 1500 r/min 并保持恒定。 (4) 接通 GS 励磁电源,调节 GS 励磁电流 (必须单方向调节 ),使 I f 单方向递增至 GS 输出电压 U 0≈ 1.3U N 为止。 (5) 单方向减小 GS 励磁电流,使 I f 单方向减至零值为止,读取励磁电流 I f 和相应的空载电压 U 0。 (6) 共取数据 7~9 组并记录于表 5-2 中。 表 5-2 n=n N =1500r/min I=0 序号 1 2 3 4 5 6 7 8 9 10 11 I(mA) 48.1 26.7 33.8 33.8 26.7 40.8 26.7 33.5 47.1 U(V) 0.76 0.42 0.53 0.53 0.42 0.64 0.42 0.53 0.74 R(Ω) 63.3 63.6 63.8 63.8 63.6 63.8 63.6 63.2 63.6 COSФ R L S 1 R L A R L I C R f2 + x A MG X + y B V 1 C 同步电机 励磁绕组 同步电机 电枢绕组 TG R t s 源 电 磁 励 GS 3~ 励磁绕组

大型汽轮发电机常见故障的检查及状态监测

大型汽轮发电机常见故障的检查及状态监测 内容预览 李伟清 东北电力科学研究院,辽宁沈阳 110006 近十几年来,已并网发电的200 MW以上汽轮发电机组大部分能达到额定出力并持续运行,各项技术参数和性能也基本上能满足各种正常或非正常运行方式的要求。据原电力部可靠性中心统计,1991~1995年国产200 MW机组的等效可用率(EAF)由80.54%提高至86.68%;300 MW机组由76.82%提高至81.86%。尽管如此,由于设计及工艺原因,特别是制造工艺和质量检验等存在问题较多,导致发电机各类事故频繁,延续时间长,性质严重,损失巨大;其次,电机的安装、检修质量及运行维护水平也存在诸多问题,常常成为事故发生的诱因。以下论述汽轮发电机运行中常见故障的检查处理方法以及状态监测技术。 1 水内冷定子绕组漏水 国产及引进200~600 MW汽轮发电机采用水氢氢冷却方式的比重很大,定子水内冷绕组渗漏水是一种常见故障,严重者往往导致接地和相间短路事故。这类事故发生的主要原因是设计、工艺及材质等问题。渗漏部位多为空心导线并头套封焊处,聚四氟乙烯绝缘管交叉碰磨处,或因空心铜线材质不好(有砂眼或裂隙)和在运行中断裂等。如渗漏部位系微细裂纹或孔洞,则压力较高的氢气往往渗入水中,并可在定子内冷水箱顶部发现氢气;渗漏部位的裂缝或孔洞较大时,则水渗出与氢渗入并存,极易造成定子接地事故。 多年来,现场一直采用水压试验法来检查线棒漏水,但这种方法对由空心导体金属组织致密性差,而引起的微泄漏现象就显得灵敏度不够,常常无法查出。如某电厂对一台300 MW发电机进行1 MPa、8 h水压试验,未发现漏点,后提高至1.2 MPa,8 h亦未找出漏点,但进行1 MPa

发电机的异常运行及处理

发电机的异常运行及处理 发电机的异常运行及处 理 李伟清 教授级高级工程师

2013-5 、发电机的正常运行方式 1-1 发电机的铭牌出力和运行范围图 1-2 发电机运行监视和维护 二、发电机的异常运行分析和事故处理 2-1 发电机进相运行 1. 进相运行对吸收电网无功功率和调压的作用 2. 进相运行机理、能力(深度)及限制条件 2-2 发电机失磁异步运行 1. 发电机运行中失磁的原因及特点 2. 失磁机组运行对电网的影响及处理的有关规定 2-3 发电机失步振荡和处理 发电机发生振荡失步的原因及现象发生振荡时的处理规则及措施 起发电机振荡失步处理实例 2-4 防止汽轮发电机组超速运行事故

1 .关于机组超速运行事故的事例及界定 2 防止机组超速运行事故的措施 、发电机的的正常运行方式 1-1 发电机的铭牌出力和运行范围图 发电机的正常运行方式是指按照制造厂规定的技术条件和铭牌数据运行的方式,发电机可在这种方式下,在出力图范围内长期连续运行。 发电机铭牌上标明了以下额定数据:额定功率、额定电压、额定电流、额定功率因数、额定频率、额定励磁电压及电流、额定转速等。 还标明了冷却介质的温度及压力等。 额定功率是指额定功率因数时发电机端输出的视在功率(以MVA 或KVA表示),也可以是发电机端的有功功率(以MW或KW表之)。 发电机按以上条件,在各相电压及电流都对称的稳态状态下运行时,具有损耗少、效率高、转矩均匀等较好效能,故运行部门应力图保持发电机在正常状态下(按铭牌规定的技术数据)稳定运行。

发电机正常运行时各主要参量(电压、电流、频率、功率因数)的允许变化范围:发电机运行电压的变化范围在额定电压的正负5% 以内而功率因数为额定值时,其额定容量保持不变;发电机连续运行的最高允许电压不得大于额定值的110%;最低运行电压不得低于额定值的90%,此时定子电流不得超过额定值的105%,以保持定子绕 组温升不超过规定值;发电机应能在额定功率因数,频率变化不超过正负0.5Hz 时,按额定容量运行;发电机应在迟相功率因数不大于0.95,进相功率因数不小于0.95 范围内,按额定容量运行。图1-1、系发电机的出力图,即运行范围图。

变电站值班员-异常及事故处理(权威)

变电站值班员——异常运行及事故处理 1、什么叫事故处理?事故处理常用的操作种类有哪些? 答: 是指在发生危及人身、电网及设备安全的紧急状况或发生电网和设备事故时,为迅速解救人员、隔离故障设备、调整运行方式,以便迅速恢复正常运行的操作过程。种类: 试送、强送、限电、拉闸限电、保安电、开放负荷。 2、断路器在哪些异常情况下应立即停电处理? 答: 1、"套管有严重破损和放电现象; 2、"多油开关内部有爆裂声; 3、"少油开关灭弧室冒烟或内部有异常声响; 4、"油开关严重漏油,看不到油位; 5、"SF6气室严重漏气发出操作闭锁信号; 6、"真空开关出现真空损坏的丝丝声; 7、"液压机构突然失压到零; 8、"设备外壳破裂或突然严重变形、过热、冒烟。 3、主变压器在那些异常情况下应立即停止运行? 答: 1、"有强烈而不均匀的噪音或内部有爆裂的火花放电声; 2、"上层温与平时记录比较,在同样负荷、气温和冷却条件下温度高出10℃以上,且油温不断上升时(确认温度表指示正常);

3、"油枕或防爆管破裂向外喷油(应鉴别呼吸器通道无闭塞); 4、"油色变化过甚,油内出现炭质; 5、"套管破裂并有严重放电现象; 6、"严重漏油致油枕及瓦斯继电器看不到油面; 7、"变压器着火; 8、"达到《红外测温工作标准》规定必须停电的条件。 4、互感器有哪些异常情况下应立即停止运行? 答: 1、"内部有放电声; 2、"有焦臭味或冒烟、喷油; 3、"套管破裂、闪络放电; 4、"温度升高并不断发展; 5、"严重漏油。 5、液压机构的断路器在运行中液压降到零如何处理? 答: 液压机构的断路器在运行中由于某种故障液压降到零,处理时,首先应用卡板将断路器卡死在合闸位置,然后断开控制电源的熔断器。1、如有旁路断路器则立即改变运行方式,带出负荷。将零压断路器两侧隔离开关拉开,然后查找原因。2、若无旁路断路器,又不允许停电的,可在开关机械闭锁的情况下带电处理。 5、液压机构的断路器发出“跳闸闭锁”信号时应如何处理? 答:

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 一、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0的条件下,测取空载特性曲线U0=f(I f)。 3、三相短路实验:在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈0的条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cosφ=1和cosφ=0.8(滞后)的条件下,测取外特性曲线U=f(I)。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I)。 四、实验方法 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻 被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1中。

图5-1 三相同步发电机实验接线图 4、空载实验 (1) 按图5-1接线,校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y 形接法(U N =220V)。R f2用R4组件上的90Ω与90Ω串联加R6上90Ω与90Ω并联共225Ω阻值,R st 用R2上的180Ω电阻值,R f1用R1上的1800Ω电阻值。开关S 1,S 2选用D51挂箱。 (2) 调节D52上的24V 励磁电源串接的R f2至最大位置。调节MG 的电枢串联电阻R st 至最大值,MG 的励磁调节电阻R f1至最小值。开关S 1、S 2均断开。将控制屏左侧调压器旋钮向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,作好实验开机准备。 (3) 接通控制屏上的电源总开关,按下“启动”按钮,接通励磁电源开关,看到电流表A 2有励磁电流指示后,再接通控制屏上的电枢电源开关,起动MG 。MG 起动运行正常后, 把R st 调至最小,调节R f1使MG 转速达到同步发电机的额定转速1500 r/min 并保持恒定。 (4) 接通GS 励磁电源,调节GS 励磁电流(必须单方向调节),使I f 单方向递增至GS 输出电压U 0≈1.3U N 为止。 (5) 单方向减小GS 励磁电流,使I f 单方向减至零值为止,读取励磁电流I f 和相应的空载电压U 0。 (6) 共取数据7~9组并记录于表5-2中。 z

同步发电机的基本结构和工作原理

同步发电机的基本结构和工作原理 一、同步发电机的类型 同步发电机按其原动机的不同,可分为汽轮发电机和水轮发电机两种。在火电厂中,用汽轮机作为发电机的原动机,转速高(常为1500~3000r/min);在水力发电站中,用水轮机作为发电机的原动机,转速低(通常在1000r/min以下)。按发电机转子结构的不同,同步发电机可分为隐极式和凸极式两种,如图1-1所示。隐极式转子呈圆形,转速高,转子直径小,但长度长,汽轮发电机通常为隐极式。凸极式转子具有突出的磁极,发电机的励磁绕组绕在磁极上,转速低,常用于水轮发电机。按发电机与原动机的连接方式不同,同步发电机又有立式和卧式之分,汽轮发电机均为卧式的,水轮发电机两种型式都有;按冷却介质及冷却方式可分为:空气冷却、氢气冷却、水冷却和混合冷却方式等;按照发电机励磁方式来分,同步发电机可分为他励方式和自励方式;按发电机旋转部分划分,有旋转磁场式和旋转电枢式,以旋转磁场式发电机居多,其电枢绕组是定子的一部分,又叫定子绕组。 图1-1 (a)隐极式;(b)凸极式 二、同步发电机的基本结构 同步发电机由定子(固定部分)和转子(转动部分)两部分组成。 1.定子 定子是同步发电机的电枢部分,用以产生三相交流电能。定子由定子铁芯、定子绕组、机座等组成。定子铁芯由内圆冲有嵌线槽的硅钢片叠装而成,定子绕组用绝缘扁铜线或漆包线绕制而成,并三相对称地嵌放在定子铁芯槽内,如图1-1、图1-2所示。定子三相绕组通常接成星形,机座是用来固定铁芯和承受荷重的 2.转子 由上述,同步发电机的转子有两种结构型式,即凸极式和隐极式。 水轮发电机的转子是凸极式,凸极式转子由磁极铁芯、磁轭、励磁绕组、转子支架、转轴等主要部分组成。磁极是用1~1.5mm厚的钢板冲成磁极冲片后铆装成一个整体。在磁极铁芯上套有励磁绕组。励磁绕组是由扁铜线绕成,匝间垫有绝缘,励磁绕组与磁极本身之间隔有绝缘。各励磁绕组串联后接到滑环上。磁轭通常由整块钢板或用铸钢做成,它用来固定磁极,是磁路的一部分。

发电机常见故障及解决方案汇总样本

双馈发电机简介及常见故障 一: 双馈电机简介及工作原理 ( 1) 简介: 双馈异步风力发电机( DFIG, Double-Fed Induction Generator) 是一种绕线式感应发电机, 是变速恒频风力发电机组的核心部件, 也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成, 冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连, 转子绕组经过变流器与电网连接, 转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节, 机组能够在不同的转速下实现恒频发电, 满足用电负载和并网的要求。由于采用了交流励磁, 发电机和电力系统构成了"柔性连接", 即能够根据电网电压、电流和发电机的转速来调节励磁电流, 精确的调节发电机输出电压, 使其能满足要求。 ( 2) 工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应 发电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。 ”双馈”的含义是定子电压由电网提供, 转子电压由变流器提供。该系统允许在限定的大范围内变速运行。经过注入变流器的转子电

流, 变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间, 发电机的运转状态由变流器及其控制器管理。 变流器由两部分组成: 转子侧变流器和电网侧变流器, 它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器经过控制转子电流分量控制有功功率和无功功率, 而电网侧变流器控 制直流母线电压并确保变流器运行在统一功率因数( 即零无功功率) 。 功率是馈入转子还是从转子提取取决于传动链的运行条件: 在超同步状态, 功率从转子经过变流器馈入电网; 而在欠同步状态, 功率反方向传送。在两种情况( 超同步和欠同步) 下, 定子都向电网馈电。 ( 3) 优点: 首先, 它能控制无功功率, 并经过独立控制转子励磁电流解耦有功功率和无功功率控制。其次, 双馈感应发电机无需从电网励磁, 而从转子电路中励磁。最后, 它还能产生无功功率, 并能够经过电网侧变流器传送给定子。可是, 电网侧变流器正常工作在单位功率因数, 并不包含风力机与电网的无功功率交换。 二: 电机常见故障及解决办法 1: 电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: ( 1) 磁场不对称;

相关文档
相关文档 最新文档