文档库 最新最全的文档下载
当前位置:文档库 › 4遗传算法与函数优化

4遗传算法与函数优化

4遗传算法与函数优化
4遗传算法与函数优化

第四章遗传算法与函数优化

4.1 研究函数优化的必要性:

首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。

其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。

4.2 评价遗传算法性能的常用测试函数

在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括:

●连续函数或离散函数;

●凹函数或凸函数;

●二次函数或非二次函数;

●低维函数或高维函数;

●确定性函数或随机性函数;

●单峰值函数或多峰值函数,等等。

下面是一些在评价遗传算法性能时经常用到的测试函数:

(1)De Jong函数F1:

这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2:

这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。

(3)De Jong 函数F3:

这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值

30),,,,(543213-=x x x x x f 。

(4)De Jong函数F4:

这是一个含有高斯噪声的4次函数,当不考虑噪声的影响时,它具有一个全局极小值f4(0,0,…,0)=0。

(5)De Jong函数F5:

这是一个多峰值函数,它总共有25个局部极小点,其中有一个是全局极小点,全局极小值为f5(-32,-32)=0.998。

(6)Shaffer函数F6:

该函数在其定义域内只具有一个全局极小点f6(0,0)=0。

(7)Shaffer函数F7:

该函数在其定义域内只具有一个全局极小点f7(0,0)=0。

(8)Goldstein-Price函数:

该函数在其定义域内只具有一个全局极小点f(0,-1)=3。

(9)Shubert函数:

这是一个多峰值函数,在其定义域内它总共有760个局部最小点,其中的18个点是全局最小点,全局最小值为f=-186.731。

(10)六峰值驼背函数(Six-hump Camel Back Function):

该函数共有六个局部极小点,其中(-0.0898,0.7126)和(0.0898,-0.7126)为全局最小点,最小值为f(-0.0898,0.7126) =f(0.0898,-0.7126) = -1.031628。

(11)带有复杂约束条件的函数(之一):

该函数的全局最小点为:f(1,1,1,1,1,1,1,1,3,3,3,1) = -15。

(12)带有复杂约束条件的函数(之二):

该函数的全局最大点为:f(1,0,0) = 2.471428。

4.3 De Jong的研究结论

De Jong用来进行函数优化问题研究的研究对象是前面所介绍的De Jong测试函数F1~F5。他采用了下面的一些研究方法:

1.编码方法

用二进制编码符号串来表示个体。

2.算法的影响参数

●群体大小M;

●交叉概率p c;

●变异概率p m;

●代沟G。

3.算法种类(子代群体复制策赂)

●R1:基本遗传算法(比例选择、单点交叉、基本位变异);

●R2:保留最佳个体模型;

●R3:期望值模型;

●R4:保留最佳期望值模型;

●R5:排挤因子模型;

●R6:广义交叉模型。

群体规模对等位基因损失的影

响(优化策略为R1,测试函数

为F1)

群体规模对离线性能的影响

(优化策略为R1,测试函数为

F1)

群体规模对在线性能的影响

(优化策略为R1,测试函数为

F1)

变异概率对等位基因损失的影

响(优化策略为R1,测试函数

为F1)

变异概率对离线性能的影响

(优化策略为R1,测试函数为

F1)

变异概率对在线性能的影响

(优化策略为R1,测试函数为

F1)

优化策略R1,R2,R3在基因

损失方面的性能比较(测试函

数为F1)

优化策略R1,R2,R3的离线

性能比较(测试函数为F1)

经过仔细分析和计算,De Jong得到了下述几条重要的结论:

结论1

群体的规模越大,遗传算法的离线性能越好,越容易收敛。

结论2

规模较大的群体,遗传算法的初始在线性能较差;而规模较小的群体,遗传算法的初始在线性能较好。

结论3

虽然变异概率的增大也会增加群体的多样性,但它却降低了遗传算法的离线性能相在线性能,并且随着变异概率的增大,遗传算法的性能越来越接近于随机搜索算法的性能。

结论4

使用保留最佳个体模型或期望值模型的遗传算法比基本遗传算法的性能有明显的改进。

结论5

对于广义交叉算子,随着交叉点数的增加会降低遗传算法的在线性能和离线性能。

这些结论在遗传算法的开发研究和实际应用中具有重要的指导意义。

4.4 多目标优化

多目标优化问题一般可描述为下面的数学模型:

优化策略R1,R2,R3的在线

性能比较(测试函数为F1)

排挤因子对离线性能的影响(优

化策略为R5,测试函数为5)

式中,V-min 表示向量极小化,即向量目标中的各个子

目标函数都尽可能地极小化的意思。

多目标优化问题的难点在于,在很多情况下,各个子目标有可能是相互冲突的,一个子目标的改善有可能会引起另一个子目标性能的降低,也就是说,要同时使这多个子目标都一起达到最优值是不可能的,而只能是在它们中间进行协调和折衷处理,使各个子目标函数都尽可能地达到最优。

多目标优化问题的最优解与单目标优化问题的最优解有着本质上的不同,所以为了正确地求解多目标优化问题,必须对其最优解的概念进行定义。

定义:设m R X ?是多目标优化模型的约束集,p R x f ∈)(是多目标优化时的向量目标函数,X x X x ∈∈21, 。

)()(21x f x f k k ≤

),2,1(p k =?

并且

)()(21x f x f k k <

),2,1(p k =?

则称解x 1比解x 2优越。

定义:设m R X ?是多目标优化模型的约束集,p R x f ∈)(是向量目标函数,若X x ∈*,并且x *比X 中的所有其他点都优越,则称x *是多目标极小化模型的最优解。

由该定义可知,多目标优化问题的最优解x *就是使向量目标函数f (x )的每一个子目标函数都同时到达最优点的解,如图所示。显然,在大多数情况下*多目标优化问题的最优解是不存在的。

定义:设m R X ?是多目标优化模型的约束集,p R x f ∈)(是向量目标函数,若X x ∈~,并

且不存在比x~更优越的x,则称x~为多目标极小化模型的Pareto最优解,或称为非劣解。

由该定义可知,多目标优化问题的Pareto最优解仅仅只是它的一个可以接受的“不坏”的解,并且通常的多目标优化问题大多都具有很多个Pareto最优解,如图所示。

由上述三个定义可知,着一个多目标优化问题存在最优解的话、则这个最优解必定是Pareto最优解,并且Pareto最优解也只由这些最优解所组成,再不包含有其他解。所以可以这么说,Pareto最优解是多目标优化问题的合理的解集合。

求解多目标优化问题的遗传算法

对于如何求多目标优化问题的Pareto最优解,目前已经提出了多种基于遗传算法的求解方法。下面介绍其中几种主要的方法。

1.权重系数变化法

对于一个多目标优化问题,若给其各个子目标函数f i(x),(i=1,2,…,p),赋予不同的权重w i(i=1,2,…,p),其中各w i的大小代表相应子目标f i(x)在多目标优化问题中的重要程度。则各个子目标函数的线性加权和可表示为:

若以这个线性加权和作为多目标优化问题的评价函数,则多目标优化问题就可转化为单目标优化问题。权重系数变化法就是在这个评价函数的基础上,对每个个体取不同的权重系数,就可以利用通常的遗传算法来求出多目标优化问题的多个Pareto最优解。

2.并列选择法

并列选择法的基本思想是:先将群体中的全部个体按子目标函数的数目均等地划分为一些子群体,对每个子群体分配一个子目标函数.各个子目标函数在其相应的子群体中独立地进行选择运算,各自选锋出一些适应度较高的个体组成一个新的子群体,然后再将所有这些新生成的子群体合并为一个完整的群体,

在这个完整的群体中进行交叉运算和变异运算,从而生成下一代的完整群体,如此这样不断地进行“分割——并列选择——合并。过程,最终可求出多目标优化问题的Pareto最优解。

这种方法很容易产生个别子目标函数的极端最优解,而要找到所有目标函数在某种程度上较好的协调最优解却比较困难。

3.排序选择法

排序选择法的基本思想是:基于“Pareto最优个体”的概念来对群体中的各个个体进行排序,依据这个排列次序来进行进比过程中的选择运算.从而使得排在前面的Pareto最优个体将有更多的机会遗传到下一代群体中。如此这样经过一定代数的循环之后,最终就可求出多目标优化问题的Pareto最优解。

这里所谓的Pareto最优个体,是指群体中的这样一个或一些个体,群体中的其他个体都不比它或它们更优越。需要说明的是,在群体进化过程个所产生的Pareto最优个体并不一定就对应于多目标优化问题的Pareto最优解。当然,当遗传算法运行结束时,我们需要取排在前面的几个Pareto最优个体,以它们所对应的解来作为多目标优化问题的Pareto最优解。

对群体中的所有个体进行Pareto最优个体排序的算法是:

算法ParetoIndividual

①设置初始序号r = 1。

②求出群体中的Pareto最优个体,定义这些个体的序号为r

③从群体中去掉Pareto最优个体.并更改序号r = r+1。

④转到第②步,直到处理完群体中的所有个体。

由上述Pareto最优个体排序算法可知,排序选择法仅仅度量了各个个体之间的优越次序,而未度量各个个体的分散程度,所以它易于生很多个相似的Pareto最优解,而难于生成分布较广的Pareto最优解。

4.共享函数法

求解多目标优化问题时,一般希望所得到的解能够尽可能地分散在整个Pareto最优解集合内,而不是集中在其Pareto最优解集合内的某一个较小的区域上。为达到这个要求,可以利用小生境遗传算法的技术来求解多目标优化问题。这种求解多目标优化问题的方法称为共享函数法,它将共享函数的概念引入求解多目标优化问题的遗传算法中。

在利用通常的遗传算法求解最优化问题时,算法并未限制相同个体或类似个体的数量。但当在遗传算法中引入小生境技术之后,算法对它们的数量就要加以限制,以便能够产生出种类较多的不同的最优解。对于某一个个体X而言,在它的附近还存在有多少种、多大程度相似的个体,这是可以度量的,这种度量值称之为小生境数(Niche Count)。小生境数有很多种不同的度量计算方法,一般可定义为:

式中,s(d)为共享函数,它是个体之间距离d的单调递减函数。

例如,共享函数s(d)的一种定义是:

式中,d(X, Y)是两个个体X、Y之间的海明距离,σ>0是预先指定的一个表示小生境范围的参数。

在计算出各个个体的小生境数之后.可以使小生境数较小的个体能够有更多的机会被选

中遗传到下一代群体中,即相似个体较少的个体能够有更多的机会被遗传到下一代群体中.这样也就增加了群体的多样性,相应地也会增加解的多样性。

下面描述一种遗传算法中的选择操作方法,它综合运用联赛选择和共享函数的思想来选择当前群体中的优良个体遗传到下一代群体中。

算法TournamentSharingSelection

①从群体中随机选取k个个体组成个体比较集合C,其中k是预先指定的一个表示比较集合规模的常数。

⑦从群体中随机选择2个个体组成个体联赛集合T。

③分别比较个体联赛集合T中的2个个体与个体比较集合C中各个个体之间的优越关系,根据这个比较结果,按下述方法从个体联赛集合T中选择出一个个体遗传到下一代群体中。

a.如果集合T中的一个个体(记为X)比集合C中的所有个体都优越,而集合T中的另一个个

体都不比集合C中的所有个体优越,则将个体X遗传到下一代群体中;

b.如果由上面的一种情况未能选择出一个个体,则利用共享函数的概念从集合T中选择出

一个小生境数较小的个体遗传到下一代群体中。

使用这个选择操作方法的遗传算法可用于求解多目标优化问题的Pareto最优解。该方法的优点是它能够得到多种不同的Pareto最优解,但另一方面,由于每次进行选择操作时都需要进行大量的个体之间优越关系的评价和比较运算,所以使得算法的搜索效率较低。

5.混合法

前面所介绍的几种求解多目标优化问题的遗传算法各有各的优点,也各有各的缺点。例如,并列选择法易于生成单个目标函数的极端最优解,而较难生成一种多个目标在某种程度上都比较满意的折衷解;共享函数法虽然易于生成分布较广的Pareto最优解集合,但其搜索效率却比较低。于是会很自然地意识到,如果混合使用上述几种求解多目标优化问题的方法,将有可能尽量地克服各自的缺点,而充分地发挥各自的优点。

下面介绍一种使用遗传算法求解多目标优化问题的混合方法。该方法的主要思想是:选择算子的主体使用并列选择法,然后通过引入保留最佳个体和共享函数的思想来弥补仅仅只使用并列选择法的不足之处。算法的主要过程如下:

算法Hybrid Selection

①并列选择过程:

按所求多目标优化问题的子目标函致的个数,将整个群体均等地划分为一些子群体,各个子目标函数在相应的于群体中产生其下一代子群体。

②保留Pareto最优个体过程:

对于各个子群体中的Pareto最优个体,不让其参与个体的交叉运算和变异运算,而是将这个或这些Pareto最优个体直接保留到下一代于群体中。

③共享函数处理过程:

若所得到的Pareto最优个体的数量已超过规定的群体规模,则需要利用共享函数的处理方法来对这些Pareto最优个体进行挑选,以形成规定规模的新一代群体。

算例:

考虑下述含有二个优化目标的多目标优化问题:

对于该多目标优化问题,分别用并列选择法、排序选择法、共享函数法和混合法进行了求解。各种方法的运行结果分别如图所示,在各个图中,表示出了在遗传算法运行结束时的最终群体中所含全部个体的分布情况。

在求解时所使用的遗传算法中,各个变量用8位长的二进制编码串来表示,交叉运算使用单点交叉其子,变异运算使用基本位变异算子,各个运行参数为:

{M, T, p c, p m} = {100, 100, 0.8, 0.01}

并列选择法的运行结果排序选择法的运行结果

共享函数法的运行结果混合法的运行结果

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

使用遗传算法求解函数最大值

使用遗传算法求解函数最大值 题目 使用遗传算法求解函数 在及y的最大值。 解答 算法 使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。 定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。 设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。 然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。 一选择操作 首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。 二交叉操作 首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。 三变异操作 首先是根据变异概率probMutation选择要变异的个体。 变异时先随机生成变异的位置,然后把改位的01值翻转。

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

各种优化算法求解函数优化问题

各种优化算法求解函数优化问题 1.遗传算法的简单介绍及流程 1.1遗传算法的基本原理 遗传算法 ( Genetic Algorithm ,简称 GA) 是近年来迅速发展起来的一种全新的随机搜索优化算法。与传统搜索算法不同 ,遗传算法从一组随机产生的初始解 (称为群体 )开始搜索。群体中的每个个体是问题的一个解 ,称为染色体。这些染色体在后续迭代中不断进化 , 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体,称为后 代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择一定数量的个 体 ,作为下一代群体 ,再继续进化 ,这样经过若干代之后 ,算法收敛于最好的染色体 ,它很可能就是问题的最优解或次优解。遗传算法中使用适应度这个概念来度量群体中的各个个体在优化计算中有可能达到最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关。 1.2遗传算法的流程 第一步:确定决策变量及各种约束条件,即确定出个体的表现型X和问题的解空间; 第二步:确定出目标函数的类型,即求目标函数的最大值还是最小值,以及其数学描述形式或量化方法,建立其优化模型; 第三步:确定表示可行解的染色体编码方法,即确定出个体的基因型X和遗传算法的搜 索空间。 第四步:确定解码方法,即确定出个体的基因型 X和个体的表现型 X的对应关系或转换方法; 第五步:确定个体时候适应度的量化评价方法,即确定出由目标函数 f(X) 值到个体适应度F(X) 的转换规则; 第六步:设计遗传算子,即确定出选择运算、交叉运算、变异运算等遗传算子的具体操作方法; 第七步:确定出遗传算法的运行参数,即确定出遗传算法的M、 T、 Pc、 Pm等参数。1.3 遗传算法求解函数优化问题中的参数分析 目前,函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用范 例。对于函数优化中求解实数型变量的问题,一般采用动态编码和实数编码的方法来提高其搜

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

基于遗传算法的多式联运组合优化

第四章基于遗传算法的集装箱多式联运运输组合优化模型 的求解 4.1 遗传算法简介 4.1.1 遗传算法 遗传算法(Genetic Algorithm,GA)是在20世纪六七十年代由美国密歇根大学的Holland J.H.教授及其学生和同事在研究人工自适应系统中发展起来的一种随机搜索方法,通过进一步的研究逐渐形成了一个完整的理论和方法体系取名为基本遗传算法(Simple Genetic Algorithm)。在接下来几年的研究过程中Holland在研究自然和人工系统的自适应行为的过程中采用了这个算法,并在他的著作《自然系统和人工系统的适配》中对基本遗传算法的理论和方法进行了系统的阐述与描写,同时提出了在遗传算法的理论研究和发展中具有极为重要的作用的模式理论,它的编码技术和遗传操作成为了遗传算法被广泛并成功的应用的基础,经过许多学者多年来的研究,遗传算法逐渐成熟起来,到现在已经成为了一个非常大的体系,广泛的应用于组合优化、系统优化、过程控制、经济预测、模式识别以及智能控制等多个领域。De Jong于1975年在他的博士论文中设计了一系列针对于各种函数优化问题的遗传算法的执行策略,详细分析了各项性能的评价指标。在此基础上,美国伊利诺大学的Goldberg于1989年系统全面的阐述了遗传算法理论,并通过例证对遗传算法的多领域应用进行了分析,为现代遗传算法的研究和发展奠定了基础。 遗传算法是一种模仿基于自然选择的生物进化过程的随机方法,它以类似于基因的编码作为种群的个体,首先,随机的产生初始种群的个体,从这个群体开始进行搜索,根据类似于生物适应能力的适应度函数值的大小,按照不同问题各自的特点,在当前的种群中运用适当的选择策略选择适应能力大的个体,其中所选择出来的个体经过遗传操作、交叉操作以及变异操作产生下一代种群个体。如此反复,像生物的进化过程一样逐代进化,直到满足期望的终止条件为止。

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

基本遗传算法及其在函数优化中的作用

《人工智能及其应用大作业(一)》 题目:基本遗传算法及其在函数优化中的作用 学号: 姓名:

基本遗传算法及其在函数优化中的应用 摘要: 从遗传算法的编码、遗传算子等方面剖析了遗传算法求解无约束函数优化问题的一般步骤,并以一个实例说明遗传算法能有效地解决函数优化问题。本文利用基本遗传算法求解函数优化问题,选用f(x)=xsin(10πx)+2.0,取值范围在]2,1 [ 中,利用基本遗传算法求解两个函数的最优值,遗传算法每次100代,一共执行10次,根据运算结果分析得到最优解。 关键字:遗传算法选择交叉变异函数优化 1.前言 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。遗传算法是一种群体型操作,该操作以群体中的所有个体为对象。选择(Selection)、交叉(Crossover)和变异(Mutation)是遗传算法的3个主要操作算子,它们构成了所谓的遗传操作(genetic operation),使遗传算法具有了其它传统方法所没有的特性。 1.2 遗传算法的特点 其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。 1.3遗传算法的应用 函数优化,组合优化,机器人智能控制,及组合图像处理和模式识别等。 2.基本遗传算法 2.1简单遗传算法的求解步骤 Step1:参数设置及种群初始化; Step2:适应度评价; Step3:选择操作; Step4:交叉操作; Step5:变异操作; Step6:终止条件判断,若未达到终止条件,则转到Step3; Step7:输出结果。 2.2停机准则

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。 关键词:遗传算法、旅行包问题 一、旅行包问题描述: 旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。 用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n) 旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。 在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

用于函数优化的遗传算法

一、遗传算法介绍 1.综述 遗传算法(Genetic Algorithm)是由美国Michigan 大学Holland 教授和他的学生发展建立起来的,其思想是起源于生物遗传学适者生存的自然规律,是一种新兴的自适应随机搜索方法,它对优化对象既不要求连续,也不要求可微,并具有极强的鲁棒性和内在的并行计算的机制,特别适合于非凸空间中复杂的多极值优化和组合优化问题。 2.基本原理 传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。遗传算法的搜索结果会有很大的差异。遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。遗传算法实质上是在群体空间中寻求较优解。 3.主要构成 遗传算法主要由编码、适应度、遗传算子(选择算子、交叉算子、变异算子)构成,包含的主要进化参数有编码长度、种群规模、交叉概率、变异概率、终止进化代数。 4.基本步骤 (1)初始化:确定种群规模,交叉概率 P,变异概率m P和终止进化准则,随 c 机生成初始种群() X t;置0 t ; (2)个体评价:计算或估计() X t中各个个体的适应度。 (3)选择:从() X t运用选择算子选择出一些母体。 (4)交叉:对所选个体依概率 P执行交叉,形成新的种群。 c (5)变异:随所选个体依概率 P执行变异,形成新的种群。 m 反复执行步骤(2)-(4),直到满足终止进化准则为止。

遗传算法

遗传算法 开放分类:编程、程序、数学、计算机、算法 目录 ? 遗传算法定义 ? 遗传算法特点 ? 遗传算法的应用 ? 遗传算法的现状 ? 遗传算法的一般算法 ? 遗传算法实例 遗传算法定义 [编辑本段] 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 遗传算法特点 [编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。 2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。 3、遗传算法使用多个点的搜索信息,具有隐含并行性。 4、遗传算法使用概率搜索技术,而非确定性规则。 遗传算法的应用 [编辑本段] 由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响

遗传算法解决函数优化问题

实验一 遗传算法解决函数优化问题 XXX XXX XXXX 一、实验目的 1. 掌握遗传算法的基本原理和步骤。 2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗 传算法程序。 二、实验设备 微机 三、实验原理 遗传算法是一类随机优化算法,但它不是简单的随机比较搜索,而是通过对染色体的评价和对染色体中基因的作用,有效地利用已有信息来指导搜索有希望改善优化质量的状态。 标准遗传算法流程图如图1.1所示,主要步骤可描述如下: ① 随机产生一组初始个体构成初始种群。 ② 计算每一个体的适配值(fitness value ,也称为适应度)。适应度值是对染色体(个体) 进行评价的一种指标,是GA 进行优化所用的主要信息,它与个体的目标值存在一种对应关系。 ③ 判断算法收敛准则是否满足,若满足,则输出搜索结果;否则执行以下步骤。 ④ 根据适应度值大小以一定方式执行复制操作(也称为选择操作)。 ⑤ 按交叉概率p c 执行交叉操作。 ⑥ 按变异概率p m 执行变异操作。 ⑦ 返回步骤②。 四、实验内容及步骤 1. 上机编写程序,解决以下函数优化问题:()221min 10i i i f x x =??=≤ ??? ∑X 2. 调试程序。 3. 根据实验结果,撰写实验报告。

图1.1 标准遗传算法流程图 五、实验程序 % % 清工作空间workspace,清屏幕显示 % clear all; clc; % % tic; % 启动计时器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 参数赋值 PopSize =30; % 种群规模 Pc =0.65; % 交叉概率 Pm =0.01; % 变异概率 precision =22; % 根据精度要求,二进制字符串长度为22 iterative_thre =20; % 若连续iterative_thre次解无改进,则退出遗传算法 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 初始化变量 fitness = zeros(PopSize,1); % 存放所有染色体的适应度值SelectRate = zeros(PopSize,1); % 存放染色体的选择概率AccumulateRate = zeros(PopSize,1); % 存放染色体的累积概率 num =0; % 结束遗传算法控制量 bestfitness = 0; % 存放进化过程中最优的适应度值 bestX =0; % 存放进化过程中最优解 population = dec2bin(rand(PopSize,1)*(2^precision));

遗传算法解决函数优化问题

实验一 遗传算法解决函数优化问题 一、实验目的 1.掌握遗传算法的基本原理和步骤。 2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗传算法程序。 二、实验内容 1. 上机编写程序,解决以下函数优化问题: ()1021min 100i i i f x x =?? =≤ ? ?? ∑X 2. 调试程序。 3. 根据实验结果,撰写实验报告。 三、实验原理 遗传算法是一类随机优化算法,但它不是简单的随机比较搜索,而是通过对染色体的评价和对染色体中基因的作用,有效地利用已有信息来指导搜索有希望改善优化质量的状态。 标准遗传算法流程图如下图所示,主要步骤可描述如下: ① 随机产生一组初始个体构成初始种群。 ② 计算每一个体的适配值(fitness value ,也称为适应度)。适应度值是对染色体(个体) 进行评价的一种指标,是GA 进行优化所用的主要信息,它与个体的目标值存在一种对应关系。 ③ 判断算法收敛准则是否满足,若满足,则输出搜索结果;否则执行以下步骤。 ④ 根据适应度值大小以一定方式执行复制操作(也称为选择操作)。 ⑤ 按交叉概率p c 执行交叉操作。 ⑥ 按变异概率p m 执行变异操作。 ⑦ 返回步骤②。

图1.1 标准遗传算法流程图四、程序代码 #include #include #include #include #define byte unsigned char #define step 200 //步长 #define MAX 50 #define N 10 //随机数个数 #define Pc 0.74 //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理 #define Pt 0.25 //交叉的概率,个数 =Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉 #define Pm 0.01 //变异的概率,个数 =Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机 数%(n2+1)=该个体基因位置 #define n2 15//2的15次方,共16位 #define next_t (int)(Pt*N)//交叉个数#define next_m (int)(Pm*N+1)//变异个数向后约等于 #define e 0.001//次数限制阈值 /* int N=10; //随机数个数 float Pc=0.74; //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理 float Pt=0.25; //交叉的概率,个数=Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉 float Pm=0.01; //变异的概率,个数 =Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机 数%(n2+1)=该个体基因位置 */ byte bitary[N][n2+1],bitary0[N][n2+1];//二进制 int src1[N];

遗传算法与优化问题

遗传算法与优化问题 (摘自:华东师范大学数学系;https://www.wendangku.net/doc/0017318844.html,/) 一、问题背景与实验目的 二、相关函数(命令)及简介 三、实验内容 四、自己动手 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).

(1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: (2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过

相关文档
相关文档 最新文档