文档库 最新最全的文档下载
当前位置:文档库 › 药物代谢酶基因多态性简介

药物代谢酶基因多态性简介

药物代谢酶基因多态性简介
药物代谢酶基因多态性简介

药物代谢酶基因多态性简介

代谢酶基因多态性是指由于编码代谢酶的DNA序列的单核苷酸多态性等可遗传变异,导致的不同种群之间代谢酶的底物特异性无变化,但是代谢酶的活性存在显著的差别的现象。由此可能造成个体间PK和药物反应的差异,进而造成不必要的治疗失败和毒副作用。单核苷酸多态性(SNPs)存在于Ⅰ相代谢酶、Ⅱ代谢酶和转运体等多个方面,其中临床影响较大的为CYP450酶的基因多态性,因此了解不同人群代谢酶活性的差异有助于理解种群间PK差异和实现个性化治疗。SNPs存在于许多亚型的代谢酶中,Sarah等人的研究结果显示如下图,其中高加索人种中CYP2D6多态性的频率最高,其次为CYP2A6和2B6。但是并非所有的CYPs均参与药物代谢,既存在较高频率的多态性,又与药物代谢相关的为CYP1A2, 2D6, 2C9和2C19,其中CYP2D6与多数药物的代谢相关,下文将以CYP2D6为代表阐述其进化特征、功能多样性和临床影响等相关内容。

CYP2D6是由497个氨基酸组成的多肽,其对生物碱类物质具有较高的亲和力,该酶不可被环境因素调控且不能被诱导。最早CYP2D6的多态性是由

于个体间PK差异引起人们注意的,而后随着生物技术手段的提升才逐渐揭开其遗传基础。CYP2D6位于染色体22q13.1上,其邻近包含两个假基因CYP2D7和CYP2D8。至今发现了几十种CYP2D6的等位基因,大多数编码有缺陷的基因产物,最常见的突变型等位基因分布于不同种群中,如CYP2D6*2, CYP2D6*4, CYP2D6*5, CYP2D6*10和CYP2D6*17等,详细见下图,其可分为彻底失活、活性降低、正常、活性增加和活性本质上的改变五大类,在不同种群中分布特点有明显的差异。亚洲人群最常见的CYP2D6*10,其发生了P34S的有害突变导致了P450折叠功能的丧失而造成不稳定性,且降低了底物的亲和力。非洲人群中常见突变体为CYP2D6*17发生的错义突变导致其活性位点结构发生改变,由此造成底物特异性发生改变,且其活性低于野生型。

如下图演示了CYP2D的演变规律,啮齿动物与人的活性CYP2D基因的数量存在巨大的差异,小鼠有9个不同的活性基因,而人只有1个,且7%的高加索人群缺失该活性基因。由于CYP2D6对于生物碱类的生物毒素具有高亲和力,进化角度可以认为小鼠需要保留较多的活性基因来维持解毒能力,而人类的饮食结构更为严谨进而逐渐不需要更多的活性基因。

不同人群中的CYP2D6的代谢活性可分为超快代谢(ultrarapid metabolizers, UMs)、快代谢(extensive metabolizers, EMs)、中等代谢(intermediate metabolizers, IMs)和慢代谢(poormetabolizers, PMs)四种类型。一般而言,白人种PMs的频率较高约为10%左右,而亚洲人群中

PMs频率较低约为0-1.2%,印第安人略高为1.8-4.8%。UMs在欧洲白人群中的频率约为1-3.6%,美国高加索和黑人约为4.-4.9%,地中海地区较高约为10%,埃塞尔比亚人(16%)和沙特阿拉伯人(20%)中最高。从整体来看白人人群中倾向于慢代谢的类型,埃塞尔比亚和沙特阿拉伯更倾向与快代谢的类型。

许多药物的代谢过程涉及CYP2D6,代谢活性高的个体会造成药物代谢速率的增加导致无法达到有效浓度,而代谢能力较弱的个体则可能造成毒副作用的风险。如,三苯氧胺通过CYP2D6的代谢释放其活性代谢物他莫昔芬,在PMs 个体中治疗效果显著降低,CYP2D6的基因型或表型可以作为治疗用药的参考依据。针对治疗窗较窄,急救或毒副作用严重的药物,一旦发生由代谢酶多态性导致的个体差异则会造成严重的后果。因此,从化合物筛选的角度,应该尽量避免CYP2D6代谢占整体总清除比例太高的化合物。尽量分散化合物的清楚途径,避免单一因素波动引起过大的整体变化。从化合物开发应用的角度,若发现代谢酶的多态性对于化合物的PK和药效有显著的影响,应将个体对探针化合物的代谢能力或代谢酶基因型纳入研究范围,通过模型工具结合试验结果制定合适的剂量调整策略,以满足个体化用药需求。另外,在引进或仿制其他地区的产品时,也应依据化合物的代谢途径和人群间代谢酶多态性特征设计相应的衔接试验,以实现化合物在不同人群应用的转化。

References:

1 Preissner S C , Hoffmann M F , Robert P , et al. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy[J]. PLoS ONE, 2013, 8(12):e82562-.

2 Ingelman-Sundberg, M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity[J]. Pharmacogenomics Journal, 2004, 5(1):6-13.

3 Zhou S F . Polymorphism of Human Cytochrome P450 2D6 and Its Clinical Significance[J]. Clinical Pharmacokinetics, 2009, 48(12):761-804.

4 Palden, Wangyel, Dorji, et al. CYP2C9, CYP2C19, CYP2D6 and CYP3A

5 polymorphisms in South-East and East Asian populations: A systematic review.[J]. Journal of Clinical Pharmacy & Therapeutics, 2019.

药物代谢酶基因多态性简介

药物代谢酶基因多态性简介 代谢酶基因多态性是指由于编码代谢酶的DNA序列的单核苷酸多态性等可遗传变异,导致的不同种群之间代谢酶的底物特异性无变化,但是代谢酶的活性存在显著的差别的现象。由此可能造成个体间PK和药物反应的差异,进而造成不必要的治疗失败和毒副作用。单核苷酸多态性(SNPs)存在于Ⅰ相代谢酶、Ⅱ代谢酶和转运体等多个方面,其中临床影响较大的为CYP450酶的基因多态性,因此了解不同人群代谢酶活性的差异有助于理解种群间PK差异和实现个性化治疗。SNPs存在于许多亚型的代谢酶中,Sarah等人的研究结果显示如下图,其中高加索人种中CYP2D6多态性的频率最高,其次为CYP2A6和2B6。但是并非所有的CYPs均参与药物代谢,既存在较高频率的多态性,又与药物代谢相关的为CYP1A2, 2D6, 2C9和2C19,其中CYP2D6与多数药物的代谢相关,下文将以CYP2D6为代表阐述其进化特征、功能多样性和临床影响等相关内容。 CYP2D6是由497个氨基酸组成的多肽,其对生物碱类物质具有较高的亲和力,该酶不可被环境因素调控且不能被诱导。最早CYP2D6的多态性是由

于个体间PK差异引起人们注意的,而后随着生物技术手段的提升才逐渐揭开其遗传基础。CYP2D6位于染色体22q13.1上,其邻近包含两个假基因CYP2D7和CYP2D8。至今发现了几十种CYP2D6的等位基因,大多数编码有缺陷的基因产物,最常见的突变型等位基因分布于不同种群中,如CYP2D6*2, CYP2D6*4, CYP2D6*5, CYP2D6*10和CYP2D6*17等,详细见下图,其可分为彻底失活、活性降低、正常、活性增加和活性本质上的改变五大类,在不同种群中分布特点有明显的差异。亚洲人群最常见的CYP2D6*10,其发生了P34S的有害突变导致了P450折叠功能的丧失而造成不稳定性,且降低了底物的亲和力。非洲人群中常见突变体为CYP2D6*17发生的错义突变导致其活性位点结构发生改变,由此造成底物特异性发生改变,且其活性低于野生型。 如下图演示了CYP2D的演变规律,啮齿动物与人的活性CYP2D基因的数量存在巨大的差异,小鼠有9个不同的活性基因,而人只有1个,且7%的高加索人群缺失该活性基因。由于CYP2D6对于生物碱类的生物毒素具有高亲和力,进化角度可以认为小鼠需要保留较多的活性基因来维持解毒能力,而人类的饮食结构更为严谨进而逐渐不需要更多的活性基因。 不同人群中的CYP2D6的代谢活性可分为超快代谢(ultrarapid metabolizers, UMs)、快代谢(extensive metabolizers, EMs)、中等代谢(intermediate metabolizers, IMs)和慢代谢(poormetabolizers, PMs)四种类型。一般而言,白人种PMs的频率较高约为10%左右,而亚洲人群中

ALDH2基因多态性检测

ALDH2基因多态性检测 项目简介:ALDH ( aldehyde dehydrogenase gene ) 人类乙醛脱氢酶,是一种四 联体蛋白,催化乙醛和其他脂肪族醛氧化。目前已发现ALDH 有19 种同工酶,主要有ALDH1~4 四种,其中ALDH2最为重要。在肝和胃中具有很高的表达量,是乙醇代谢途径中最重要的酶之一。ALDH2基因位于人类第12号染色体,由于ALDH2 基因存在G1510A 多态性,导致氨基酸序列第487位上的谷氨酸被赖氨酸所替换( Glu487 Lys),其中具有催化活性的野生型称为G等位基因(ALDH2*1),催化能力失活的变异型称为 A 等位基因(ALDH2*2)。在亚洲的黄种人群中, ALDH2*2是频率最高且最重要的突变型。 临床用药医生应考虑的因素: ALDH2基因突变致乙醛脱氢酶活性下降引起的临床表现: 1、ALDH2与硝酸甘油治疗:硝酸甘油是治疗心绞痛的经典药物,研究发现硝酸甘油的舒血管作用是通过释放一氧化氮(NO)所介导。但临床上部分病人舌下含服硝酸甘油不能迅速有效地缓解心绞痛,使心肌严重缺血加重。近来发现, ALDH2与硝酸甘油转化为NO密

切相关。有研究表明,ALDH2*1基因型的患者硝酸甘油治疗心绞痛的疗效明显优于ALDH2*2患者,且前者迅速起效率也明显高于后者。 2、ALDH2与酒精性疾病:乙醛脱氢酶( aldehyde dehydrogenase, ALDH)和乙醇脱氢酶( alcohol dehydrogenase, ADH) 在人体内共同组成了人乙醇脱氢酶系, 负责催化人体的乙醇分解代谢。ALDH2在肝和胃中具有很高的表达量,是乙醇代谢途径中最重要的酶之一。研究发现,突变型基因ALDH2*2的存在能导致ALDH2活力的严重缺失,并与过度饮酒导致的酒精依赖、酒精性中毒、酒精性肝病、消化道癌症等疾病之间存在深刻的联系。过度的饮酒行为,不仅使ALDH2*2 携带者对酒精产生依赖,还可能引起肝癌等的酒精性肝病(alcoholic liver disease,ALD)。ALD是长期、大量饮酒所引起的肝脏病变,已成为现代社会的主要健康隐忧之一。研究显示,携带ALDH2 变异基因型者大量饮酒将显著增加患肝癌的危险性。虽然摄入人体的乙醇有90 %以上是在肝脏内完成代谢过程的,但其在摄入过程中与消化道上皮细胞的直接接触也不容忽视。在饮酒人群中,尤其是重度饮酒者,由于其上消化道长期地与大量酒精直接接触,该区域出现癌变(食道癌、口咽癌等)的几率较高。研究发现,ALDH2*2突变与饮酒人群患消化道癌的风险之间具有明显的联系。此外,ALDH2*2显性突变与胃癌的易感性也存在一定的联系。由此可见,ALDH2*2突变是增加区域性癌化几率的重要因素之一。 ALDH2基因多态性检测标本采集及出报告时间:病人抽静脉血2ml(用 EDTA-K2抗凝)送检验科分子生物诊断室,4个工作日出报告。 电话:8801063 手机:余宗涛65327 高波 64444 ALDH2基因多态性检测临床意义: 1、指导临床硝酸甘油的个体化差异用药剂量:虽然硝酸甘油是心绞痛急性发作的常规首选药物,但该药的临床疗效常因人而异。中国汉族人群中,硝酸甘油含服无效的比例高达25%以上。复旦大学、瑞金医院、华山医院等的一项研究显示:部分国人服用硝酸甘油治疗心绞痛无效的原因为线粒体乙醛脱氢酶2(ALDH2)基因发生突变。ALDH2*2携带者服用硝酸甘油无效风险大幅增加;ALDH2*2携带者在中国约占30-50%,比重大;建议患者在使用硝酸甘油前进行ALDH2基因检测,ALDH2*2携带者建议慎用或不用硝酸甘油,改用其它药物。 2、ALDH2与酒精代谢:①ALDH2异常的饮酒者与正常人群相比,其发生肝癌的风险是正常人的3倍以上;②乙肝病毒携带者,如果又正好是ALDH2异常,其饮酒发生肝癌的危险性将升高52.17倍;③持续的过量饮酒导致肾的代谢压力过大,残留的酒精附着在肾细胞上,致使大量肾细胞处于休眠状态,会导致肾功能下降。 3、ALDH2与消化系统疾病:ALDH2异常的饮酒者与正常人群相比,其发生食道癌的风险是正常人的12.95倍,出现口腔癌的风险则为11.72倍。 4、ALDH2与心血管系统疾病:ALDH2异常的冠心病患者,发生心肌梗死的相对风险也为ALDH2正常的3.42倍。 5、ALDH2与内分泌系统疾病:ALDH2异常的人发生II型糖尿病的风险是正常人的6.08倍。

药物代谢动力学完整版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

药物代谢酶和药物作用靶点基因检测项目

药物代谢酶和药物作用靶点基因检测项目 药物体代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具,部分上市的新药仅限于特定基因型的适应症患者。美国FDA已批准在140余种药物的药品标签中增加药物基因组信息,涉及的药物基因组生物标记物42个。此外,部分行业指南也将部分非FDA批准的生物标记物及其特性(如MGMT基因甲基化)的检测列入疾病的治疗指南。药物反应相关基因及其表达产物的分子检测是实施个体化药物治疗的前提。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体吸收、分布、代谢和排泄规律,侧重于阐明药物的体过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变

化,侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。目前美国FDA和我国食品药品监督管理局(CFDA)都已批准了一系列的个体化用药基因诊断试剂盒。这些试剂盒基本都是对人DNA样本进行基因检测。而在基因表达的检测方面,由于RNA的稳定性差,样本处置不当可导致目标RNA降解,使得检测结果不准确,影响临床判断。因此,RNA检测试剂的研发相对滞后。1. 药物代谢酶与转运体基因多态性检测 1.1 ALDH2*2多态性检测线粒体乙醛脱氢酶2(ALDH2)同时具有乙醛脱氢酶和酯酶活性,参与乙醇、硝酸甘油等药物的代谢。ALDH2代谢活化硝酸甘油成其活性代谢产物一氧化氮。ALDH2*2(Glu504Lys,rs671)多态导致所编码蛋白质504位谷氨酸被赖氨酸所取代,携带突变等位基因(ALDH2*2)的个体ALDH2酶活性下降,杂合子个体酶活性仅为野生型个体的10%,突变纯合子个体酶活性缺失。因此,携带ALDH2*2等位基因的个体酒精代谢能力下降,少量饮酒即出现脸红、心跳加速等不适;代谢硝酸甘油的能力下降,硝酸甘油抗心肌缺血的效应减弱。亚洲人群中ALDH2*2等位基因的携带率为30~50%。携带ALDH2*2等

中国药科大学药物代谢动力学实验考查知识点整理

中国药科大学药物代谢动力学实验考查知 识点整理 药物代谢动力学实验考查知识点整理 第一部分:HPLC使用注意事项 1、HPLC组成:泵、进样器、色谱柱、检测器、数据系统/积分仪 2、反相色谱: 分离机理:“反相色谱”固定相极性小于流动相极性常用流动相:乙腈、甲醇,水 3、色谱柱的分类: 按填料:球形、无定形按含碳量:C18、C8 按应用:分析柱、制备柱、预处理柱按粒径:150mm*,5μm等按填料类型:正相柱、反相柱、手性柱 4、键合相色谱柱的优缺点: 优点:稳定不易流失; 应用广泛,可使用多种溶剂;消除硅羟基的不良影响; 缺点:pH得在3~8范围内 5、C18柱的活化:90% 10% 90%的甲醇溶液1ml/min依次冲洗30min 6、流动相: 使用之前需超声脱气目的:色谱泵输液准确提高检测性能 保护色谱柱

流动相脱气的方法:加热,抽真空,超声,通惰性气体流动相组成:流动相配置: 缓冲溶液现用现配,不要储存时间过长,避免pH值发生变 化和成分分解,影响色谱分离的效果; 有机溶液和缓冲液使用前均需经μm微孔滤膜过滤;流动相使用前脱气。 7、常用定量方法:外标法内标法内标物的要求: 化学结构与待测品相似;样品中不存在; 不与样品组分发生化学反应;保留值与待测值接近;浓度相当;与其他色谱峰分离好 8、样品的预处理: 目的:除杂质;浓缩微量成分;改善分离;保护色谱柱;提 高检测灵敏度 方法:高速离心,过滤,选择性沉淀,衍生反应;液固萃取、 液液萃取 沉淀蛋白的溶剂: 有机溶剂:乙腈、甲醇强酸:三氯乙酸、过氯酸盐:50%硫酸铵、10%TCA 分析测定用试剂为色谱纯及以上,水为超纯水第二部分:实验设计

基因检测与用药

基因与用药指导 新用药时代 科学的发展让许多不可能变为了可能,攀月登空,潜海游龙。如今我们身边充斥着诸多高科技的元素,基因——DNA更是这其中耀眼的明星。日常我们听到的转基因大豆、转基因动物、DNA眼霜。这些看似高科技外衣下的产品,使我们越来越习惯于听说基因的消息,那基因DNA到底离我们有多远呢? 平日老百姓生活最普通的一部分,感冒发烧,到医院拿点药,或者干脆自己到药店买点儿药。好了也便好了,不好只能归咎于“病毒性的”。遇到大病,医生幵药也是按照常规处方,摸着石头过河。患者更是糊里糊涂,听大夫的便是。至于好不好,好到什么程度,那只能说个人差异了。 岂不知,这差异就体现在基因上,而这吃药也是有讲究的。我们的基因决定了我们吃什么药管用,吃什么药不管用。正确合理的用药是未来个体化医疗的重要组成部分。据世界卫生组织统计,全球死亡患者中,1/3是死于不合理用药,而非死于自然疾病本身。 “基因指导用药” 这个概念并不等同于一般意义上的“抗生素耐药”。后者是针对侵害人体的细菌而言,抗生素是一类能够破坏细菌生理结构或生长代谢的物质。 细菌通过不断的优胜劣汰以抗拒抗生素对它们的杀灭,导致耐药菌株队伍不断壮大,这导致了细菌耐药性的出现,并且这种耐药形势在抗生素滥用的情况下不断恶化,以至于出现了“超级病菌”。 “基因指导用药”则是针对我们每个人先天的遗传基因而言,在一般情况下,基因是伴随我们一生不变的,上面提到医生常规用药,同样的病、同样剂量的药,不同患者服用后疗效可能大相径庭,比如:高血压,据不完全统计,我国现有高血压病人约2亿。高血压是心肌梗死、脑卒中发病的重要危险因素,高血压每年在全球造成的死亡超过700万人,也就是每分钟约有13个人因高血压而与世长辞。很多高血压患者有过用药、疗效不佳、换药的经历。为什么同是高血压,同样的药却结果不一样呢?答案是:基因。基因决定了一个人吃何种药有效、吃何沖药无效,甚至有不良反 应。根据现有研究表明,部分抗高血压的药物降压疗效及不良反应的个体差异主要是因为相关药物的代谢酶、转运体和受体的基因多态性所致。临床常用抗高血压药物包括利尿剂、13-受体阻滞剂(如美托洛尔、卡维地洛等)、钙离子拮抗剂、血管紧张素转换酶抑制剂 (ACE-I)、血管紧张素受体拮抗剂(ARB)等,其中大部分抗高血压药物可能因为基因多态性差异,致使不同患者个体间出现降压效应的差异。 患者当发现患上高血压时,应到相关医院咨询,医生幵具化验单检测上述基因,并在医生指导下合理选择药物,进行有针对性的用药,以免贻误病情或造成不必要的经济损失。

药物代谢酶和药物作用靶点基因检测技术指南(试行)

药物代谢酶和药物作用靶点基因检测技术指南(试行)

前言 药物体内代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体内浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具,部分上市的新药仅限于特定基因型的适应症患者。美国FDA已批准在140余种药物的药品标签中增加药物基因组信息,涉及的药物基因组生物标记物42个。此外,部分行业指南也将部分非FDA批准的生物标记物及其特性(如MGMT基因甲基化)的检测列入疾病的治疗指南。药物反应相关基因及其表达产物的分子检测是实施个体化药物治疗的前提。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体内吸收、分布、代谢和排泄规律,侧重于阐明药物的体内过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其内容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变化,侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。目前美国FDA和我国食品药品监督管理局(CFDA)都已批准了一系列的个体化用药基因诊断试剂盒。这些试剂盒基本都是对人DNA样本进行基因检测。而在基因表达的检测方面,由于RNA的稳定性差,样本处置不当可导致目标RNA降解,使得检测结果不准确,影响临床判断。因此,RNA检测试剂的研发相对滞后。 本指南旨在为个体化用药基因检测提供一致性的方法。本指南中所指的药物基因组生物标志物不包括影响抗感染药物反应性的微生物基因组变异。此外,肿瘤靶向治疗药物个体化医学检测指南见《肿瘤个体化治疗的检测技术指南》。 本指南起草单位:中南大学湘雅医院临床药理研究所、中南大学临床药理研究所、中南大学湘雅医学检验所,并经国家卫生计生委个体化医学检测技术专家委员会、中国药理学会药物基因组学专业委员会、中国药理学会临床药理学专业委员会和中华医学会检验分会组织修订。 本指南起草人:周宏灏、陈小平、张伟、刘昭前、尹继业、李智、李曦、唐洁、俞

乙醇脱氢酶―1B(ADH1B)基因的生物信息学分析

乙醇脱氢酶―1B(ADH1B)基因的生物信息学分析 摘要:本研究通过对ADH1B编码基因产物的亚细胞定位、信号肽、疏水性等预测,分析其基因编码蛋白的功能。结果显示,ADH1B编码基因产物为亲水性蛋白,不具备信号肽和跨膜结构。二级结构以α-螺旋与无规则卷曲为主。序列分析表明,ADH1B 基因编码产物很可能在免疫应答中起到关键作用。 关键字:ADH1B基因;生物信息学;结构与功能 乙醇脱氢酶乙醇氧化体系是肝脏中代谢酒精的一条主要途径。乙醇脱氢酶氧化体系包括醇脱氢酶(ADH)和醛脱氢酶(ALDH)。国内外研究发现ADH和ALDH都是多个同工酶组成的大家族,现有研究已发现ADH包括ADH1A、ADH1B、ADH1C、ADH4、ADH5、ADH6和ADH7共7个基因。根据ADH同工酶的电泳泳动度、动力学特性、对酒精的亲和力和是否受四甲基吡唑的抑制将ADH分为5种类型,ADH1A,ADH1B和ADH1C为I型,ADH4,ADH5,ADH7和ADH6分别为Ⅱ,Ⅲ,Ⅳ和V型。ADH1B 和ADH1C还具有基因多态性。

1 分析原理与方法 从GenBank数据库中获得ADH1B基因及其同源蛋白质基因;采用DNAMAN及DNA Star软件预测分析理化性质;用ProtScale在线软件分析疏水性和亲水性;采用SignalP3.0预测蛋白信号肽;用PSORT Ⅱ软件进行亚细胞定位分析;用在线分析软件PBIL 和SWISS―MODEL预测二级和三级结构。 2 分析过程与结果 2.1 ADH1B基因编码产物的理化性质 用Bioedit及DNA Star分析软件对乙醇脱氢酶-1B(ADH1B)基因编码产物的理化性质进行预测,由ADH1B基因的氨基酸组成可知,ADH1B基因编码375个氨基酸,组成中最多的氨基酸是Val(缬氨酸),所占比例为10.40%;在pH7.0环境下其电荷量偏低、为-13.732;其理论分子量为39.833 kD,理论等电点为8.53。 2.2 ADH1B基因编码产物疏水性,亲水性预测 分析蛋白质的疏水性/亲水性由ExPASAy服务器的Protscale分析软件,采用K―D法预测。分析氨基酸的得分可知。多肽链第62位的亮氨酸(Leu)具有最高的分值(2.267),疏水性最强;第249位的赖氨酸(Lys)具有最低的分值(―2.244),亲水性最强。

CYP2C19药物代谢酶基因多态性检测试剂注册技术审查指导原则

附件2 CYP2C19药物代谢酶基因多态性检测试剂 注册技术审查指导原则 本指导原则旨在指导注册申请人对CYP2C19药物代谢酶基因多态性检测试剂注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。 本指导原则是对CYP2C19药物代谢酶基因多态性检测试剂的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。 本指导原则是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,也不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要提供详细的研究资料和验证资料,相关人员应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本指导原则相关内容也将适时进行调整。 一、适用范围 药物代谢酶在药物体内代谢过程中起着重要作用,其活性强弱是药物代谢速率的重要影响因素,直接决定了药物作

用的强度和持久性。人体内的药物代谢酶主要有细胞色素P450(CYP450)同工酶和N-乙酰转移酶(NAT)等。CYP2C19酶是一种重要的CYP450同工酶,临床以CYP2C19酶为主要代谢酶的药物包括抗血小板药物(如:氯吡格雷)和质子泵抑制剂等。氯吡格雷是一种抗血小板药物,广泛用于:急性冠脉综合征(ACS)患者,包括非ST段抬高性ACS(不稳定性心绞痛UA或非Q波心肌梗死)和ST段抬高性心肌梗死(NSTEMI)患者,其中,非ST段抬高性ACS包括经皮冠状动脉介入术后置入支架的患者;外周动脉性疾病患者;近期心肌梗死或近期缺血性卒中患者。氯吡格雷作为一种前体药物,本身并无药理活性,主要经CYP2C19酶代谢活化,产生活性代谢产物,后者与血小板表面的P2Y12受体不可逆结合,抑制血小板聚集,干扰ADP介导的血小板活化,发挥抗血小板效应。 CYP2C19酶的编码基因为CYP2C19基因,位于人类10号染色体上。CYP2C19基因含有42个等位基因,CYP2C19*1为野生型等位基因,其编码的酶具有正常活性。CYP2C19*2(rs4244285,c.681G>A)和CYP2C19*3(rs4986893,c.636G>A)编码的CYP2C19酶活性降低,是中国人群中存在的2种主要的等位基因,在中国人群的发生频率分别为23.1%~35%和2%~7%。CYP2C19*17(rs12248560,c.-806C>T)编码的CYP2C19酶活性增强,在中国人群的发生频率约为0.5%~4%。除CYP2C19*2/*3/*17之外,可能影响CYP2C19酶活性的CYP2C19等位基因还包

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

非那西丁药代动力学研究实验报告分析

非那西丁的药代动力学研究实验报告 一.概述: 非那西丁(Phenacetin)为一种解热镇痛药,因为潜在副作用在临床已基本不使用。但由于其是CYP1A2酶的特异性底物,被广泛选择作为底物用于酶活性测定实验以及影响酶活性作用药物的研究。本学期临床药代动学实验课以非那西丁在大鼠体内的代谢实验、大鼠肝微粒体温孵实验两部分为例,通过实验设计,实验操作,结果评价等一系列过程,系统地学习了药代动力学中药物体内外的简单研究方法、实验数据的处理、以及相关药动学参数的计算与评价。 二.正文 1.非那西丁在大鼠体内的药代动力学研究 1.1实验目的 研究非那西丁在大鼠体内代谢的药代动力学,学习大鼠眼底静脉丛取血等操作。 1.2实验材料与方法 仪器:HPLC-UV色谱仪,高速冷冻离心机,涡旋振荡器; HPLC色谱条件:检测波长:254nm 色谱柱:inertsil-ODS-SP,5um,4.6*150mm 流速:1.0ml/min 柱温:40℃ 流动相:40(乙腈):60(50mM磷酸盐缓冲液)(注:50mM磷酸盐缓冲液配制:6.8g磷酸二氢钾,加入150ml氢 氧化钠溶液(0.1M),配制成1L的磷酸盐缓冲液) 试剂:非那西丁注射剂,对乙酰氨基酚标准品,肝素钠,10%高氯酸; 实验动物:雄性大鼠,180g—220g 1.3实验步骤 1.3.1标准曲线的制备:取空白血浆,加入对乙酰氨基酚标准品,使其 浓度分别为0.156,0.313,0.625,1.25,2.50,5.00,10.00ug/ml。在给定的色谱条件下进行HPLC分析,以样品的峰面积对样品浓度进行线性回归。 1.3.2给药及血浆采集处理:取大鼠一只,尾静脉注射非那西丁 (10mg/kg)后,分别于0,5,10,15,30,45,60,90,120min于尾静脉取血

药物基因组学

药物基因组学 PART 01 药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… PART 02 基因多态性 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 艾司奥美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。

药物代谢酶细胞色素P450 2D6的遗传多态性研究进展

中国抗生素杂志2009年7月第34卷第7期?385? 文章编号:1001-8689(2009l07-0385-07药物代谢酶细胞色素P45021)6的遗传多态性研究进展 徐田雪1杨信怡1赵昆1张喜川2游雪甫¨ (1中国医学科学院北京协和医学院医药生物技术研究所,北京100050; 2凌源市第一人民医院,凌源122500) 摘要:CYP2D6是肝脏中重要的药物代谢酶,其代谢的药物占I临床应用药物的20%一25%。其遗传多态性对依赖CYP2D6代谢的药物具有重要的影响。本文综述了CYP2D6在遗传多态性方面的研究进展及其临床意义。 关键词:CYP2D6;药物代谢;遗传多态性 中图分类号:R969.1;R968文献标识码:A Progressonresearchforgeneticpolymorphismofdrugmetabolic enzymecytochromeP4502D6 XuTian—xuel,YangXin.yil,ZhaoKunl,ZhangXi—chuan2andYouXue—ful (1InstituteofMedicinalBiotechnology,ChineseAcademyofMedicalSciencesand PekingUnion MedicalCollege,Beijing100050; 2LingyuanFirstHospital。Lingyuan122500) ABSTRACTCytochromeP4502196(CYP2D6)isanimportantmicrosomeenzymeinliverwhichmetabolizesabout20%~25%ofdrugsusedinclinic.AndthesesubstratesofCYP2D6areaffectedintensivelybyitsgeneticpolymorphism.Inthepresentarticle,geneticpolymorphismofCYP2D6anditsclinicalimplicationswerereviewed.KEYWORDSCytochromeP4502D6;Drugmetabolism;Geneticpolymorphism 药物代谢酶的遗传多态性是药物代谢个体差异的主要原因,该种差异会导致药物对机体产生毒副作用或者使其疗效发生明显变化。上世纪70年代以来,已经有超过50种的细胞色素P450(CYP)同工酶被确定,其中20多种酶是由具有多态性的基因编码的,包括CYP2D6,CYP2A6,CYP2C9和CYP2C19。CYP2D6遗传多态性的研究最为全面,已经有超过一百多种CYP2D6等位基因的变异被确定。这些变异包括点突变、缺失或插入、基因重排和整个基因的缺失或复制,最终导致酶活性的增强、减弱或完全缺失。虽然CYP2D6的含量只占肝脏中所有CYP同工酶的2%一5%,但是它参与代谢的药物却占所有临床应用药物的四分之一左右,因此CYP2D6是CYP酶系中一种非常重要的药物代谢酶。 1遗传多态性 1.1CYP2D6等位基因的频发率 人CYP2D位点位于第22号染色体长臂上,由具有活性的基因CYP2D6、上游无活性的假基因CYP2D8P和无活性同系序列CYP2D7串联而成,包含有9个外显子和8个内含子。CYP2D8P和CYP2D7基因在人体组织中无表达。只有CYP2D6在肝脏或其它组织(如肠、肾和脑)中表达活性酶,其基因位于染色体22q13.1。 CYP等位基因的主页http://www.imm.ki.se/ 收稿日期:2008-03.18修回日期:2008一Il—30 基金项目:国家十一五科技重大专项课题(2009ZX09303--005,2008ZX09305--001);国家自然科学基金课题(30472058,30672502); 北京市自然科学基金课题(7062044)。 作者简介:徐田雪。男,生于1978年,在读硕士研究生。?通讯作者,E.。0l:。。向y。舀。矗。.com:?‘

药物代谢酶

药物代谢酶的分子遗传学* 蔡卫民张银娣1 (南京军区南京总医院临床药理科,南京210002) 中国图书分类号R345;R966;R968 文献标识码A文章编号100121978(1999)0620491206 摘要综述近10年来国内外有关药物代谢酶的分子遗传学进展,介绍药物代谢酶的基本概念并重点探讨了具有遗传多态性的两种氧化酶(细胞色素P450酶CYP2D6,CYP2C19)和一种结合酶(N2乙酰化转移酶)的个体和种族差异。最后主要讨论了表型分型和基因分型在药物代谢酶研究中的一些应用。 关键词药物代谢;分子遗传学;细胞色素P450;N2乙酰化 1998212223收稿,1999203212再修回 *国家人事部留学回国人员基金资助课题 1南京医科大学临床药理研究所,南京210029 作者简介:蔡卫民,男,40岁,博士生,副主任药师; 张银娣,女,62岁,教授,博士生导师,临床药理专业委员 会委员,药物代谢专业委员会委员转移酶;遗传多态性;表型分型;基因分型;人类 分子遗传学与药理学尤其是药物代谢研究有着密切的关系,药物代谢酶活性在不同种族、不同人群中的个体差异受遗传因素和环境因素共同影响。其中遗传因素影响表现在体内关键代谢酶的基因发生变化,导致其表达的蛋白质在结构、功能和活性上发生改变。本文就近10年来国内外分子遗传学在药物代谢酶研究的一些最新进展作一回顾。 1药物代谢与药物代谢酶 大多数药物为脂溶性的弱电解质化合物,进入体内后均需进行生物转化,生成极性较大的化合物而易于从肾脏和胆汁排泄。生物转化一般为灭活反应,使药物的作用和毒性减弱或消失;但也有些药物的代谢物仍有活性或活性更强;还有些药物本身并无活性,只有经过体内代谢后生成活性代谢物起作 Calcium2activated chloride channel on smooth muscle cell membrane WANG Ze2Jun,YU De2Jie,DENG Yan2Chun,BAO Guang2Hong (I nstitute of Basic Me dic a l Sciences Chine se Academy o f Medical Sciences Schoole of Basic Medicine Peking Union Medical Colle ge,Beijing100005) A BSTRACT Calcium2activated chloride channel ex2 isted on several kind of smooth muscle cells.The nec2 essary condition for activating calcium activated chlorede channel is intracellular calcium[Ca2+]i level rising.Both potassium channel and chloride channel are activated by several kind of activators induced cal2 cium releasing from calcium store.The threshold val2 ues for activating I Cl(Ca)are differente from animal categories and https://www.wendangku.net/doc/026575222.html,ing flourometric measure2 ment of[Ca2+]i of rat portacaval smooth muscle cells get that least[Ca2+]i value of activated I K(Ca)should be considered more than70~80nmol#L-1.This val2 ue is smaller than the least[Ca2+]i of180nmol#L-1 of I Cl(Ca),therefore considered that I K(Ca)is more sensitive than that of I Cl(Ca)for[Ca2+]i.I Cl(Ca)is ac2 tivated by[Ca2+]i rising resulting from extracellular calcium pass through the voltage dependent calcium channels.Because of IP3is activated by G protein coupling with some receptor,so that I Cl(Ca)is activat2 ed.According to analyse whole cell currents,the conductance of I Cl(Ca)should be considered smaller than10pS.The chloride equilibrium potential(ECl) of smooth muscle cells is more positive than resting membrane potential.The chloride outflow from chlo2 ride channels opening,which promote membrane po2 tential approaching to ECl,therefore membrane de2 polarizing.When the calcium activated cholride chan2 nels are opening the cell membrane depolarized,so that induced cells exciting.This channel plays an im2 portant role during smooth muscle cells exciting which induced by hormones and neuro2transmiters. KEY WORDS smooth muscle cell;calcium2activated chloride channel # 491 # 中国药理学通报Chines e P har macological Bulletin1999D ec;15(6):491~6

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

相关文档
相关文档 最新文档