文档库 最新最全的文档下载
当前位置:文档库 › 牛顿第二定律的瞬时性

牛顿第二定律的瞬时性

牛顿第二定律的瞬时性
牛顿第二定律的瞬时性

牛顿第二定律的瞬时性

牛顿第二定律的几个特性:

瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受合力,加速度随合外力同时产生、同时变化、同时消失。

因果性

F是产生a的原因,物体具有加速度是因为物体受到了力。

矢量性加速度与合外力都是矢量,它们的方向始终相同,加速度的方向唯一由合外力的方向决定。

同一性①加速度a相对同一惯性系(一般指地面)

②ma

F=中,a

m

F、

、对应同一物体或同一系统。

③ma

F=中,各量统一使用国际单位。

独立性①作用于物体上的每个力都独立地产生一个加速度且遵循牛顿第二定律

②物体的实际加速度等于每个力产生的加速度的矢量和。(合加速度)

局限性①只适用于宏观物体(相对于分子、原子)、低速运动(小于光速)的情况

②只适用于宏观物体(相对于分子、原子)、低速运动(小于光速)的情况

例:如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是()

A.小球刚接触弹簧瞬间速度最大

B.从小球接触弹簧起加速度变为竖直向上

C.从小球接触弹簧到到达最低点,小球的速度先增大后减小

D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。

10.在光滑水平面上有一物块受水平恒力F的作用而运动,在其正前方固定一个足够长的轻质弹簧,如图所示,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法正确的是BCD

A.物块接触弹簧后即做减速运动

B.物块接触弹簧后先加速后减速

C.当弹簧处于压缩量最大时,物块的加速度不等于零

D.当物块的速度为零时,它所受的合力不为零

(2012?四川)如图所示,劲度系数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变.用水平力,缓慢推动物体,在弹性限度内弹簧长度被压缩了x0,此时物体静止.撤去F后,物体开始向左运动,运动的最大距离为4x0.物体与水平面间的动摩擦因数为μ,重力加速度为g.则()

A .撤去F 后,物体先做匀加速运动,再做匀减速运动

B .撤去F 后,物体刚运动时的加速度大小为g m

kx μ-0 C .物体做匀减速运动的时间为g

x μ02 D .物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg (x 0?k

mg μ)

2.力与加速度的瞬时对应关系

物体所受合外力的方向决定了其加速度的方向,合力与加速度的大小关系是ma F =,只要有合力,不管速度是大,还是小,或是零,都有加速度,只有合力为零,加速度才能为零,一般情况下,合力与速度无必然的关系,只有速度变化才与合力有必然的联系。

a 与F 对应同一时刻,即a 为某时刻的加速度时,F 为该时刻物体所受合力,加速度随合外力同时产生、同时变化、同时消失。

例:如图所示,两个质量相同的小球A 和B ,甲图中球用不可伸长的细线连接,然后用细绳挂起来,若剪断悬线OA 的瞬间,A 球和B 球的加速度分别是多少?乙图中两球间用轻弹簧连接,也用细绳悬挂起来,剪断细绳瞬间,A 球和B 球的加速度又分别是多少?

解析:不可伸长的细绳的张力变化时间可以忽略不计,因此可称为“突变弹力”。甲图中剪断OA 后,

A 、

B 两球立即达到共同加速度,A 、B 间的细绳张力立即变为零,故有g a a B A ==。

当A 、B 间是轻弹簧相连时,剪断OA 后,弹簧形变量尚未改变,其弹力将逐渐减小,可称为“渐变弹力”。因此,这时B 球加速度仍为零,即0=B a ,A 球加速度为g a A 2=。

①轻绳不需要形变恢复时间,在瞬时问题中,其弹力可以突变,成为零或别的值。

②轻弹簧(或橡皮绳)需要较长的形变恢复时间,在瞬时问题中,其弹力不能突变,大小不变。 如图所示,一质量为m 的物体系于长度分别为1l 、2l 的两要根细线上,1l 的一端悬挂在天花板上,与竖直方向夹角为θ,2l 水平拉直,物体处于平衡状态。现将2l 剪断,求剪断瞬间物体的加速度?

(1)对图甲的情况,2l 剪断的瞬间,绳1l 不可伸缩,物体的加速度只能沿垂直1l 的方向,

有:1sin ma mg =θ

则θsin 1g a =,方向为垂直于1l 斜向下。

(2)对图乙的,设弹簧上拉力为1T F ,2l 线上拉力

为2T F ,重力为mg ,物体在三力作用下保持平衡,

有:mg F T =θcos 1

21sin T T F F =θ

得θtan 2mg F T =

剪断线的瞬间,2T F 突然消失,物体即在2T F 反方向获得加速度。因此2tan ma mg =θ,所以加速度θtan 2g a =,方向在2T F 的反方向,即水平向右。

2.如图所示,细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平衡时细绳与竖直方向的夹角为0

53,

求:小球静止时细绳的拉力大小?

烧断细线瞬间小球的加速度?

4.如图4所示,在光滑的水平面上,质量分别为m 1和m 2的木 块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度为a 1和

A .a 1=a 2=0

B .a 1=a ,a 2=0

C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2

a D .a 1=a ,a 2=-m 1m 2a

5.(2010·广州模拟)如图5所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )

A .0 B.233

g C .g D.33

g 如图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )

A .a 1=g ,a 2=g

B .a 1=0,a 2=g

C .a 1=0,M

M m a +=

2 D .D .a 1=g ,M

M m a +=2

人教版高一物理必修1同步练习:4.3牛顿第二定律

人教(新课标)高中物理必修1同步练习:4.3牛顿第二定律 一、单选题 1.一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示。乘客所受支持力的大小用F N表示,速度大小用v表示。重力加速度大小为g。以下判断正确的是() A. 0~t1时间内,v增大,F N>mg B. t1~t2时间内,v减小,F Nmg 2.中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。某运送防疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为() A. F B. C. D. 3.物体受到水平推力F的作用在粗糙水平面上做直线运动。通过力和速度传感器监测到推力 F、物体速度v随时间t变化的规律分别如图甲、乙所示。取g=10m/s2,则下列说法正确的是() A. 物体的质量m=1kg B. 物体与水平面间的动摩擦因数μ=0.5 C. 第2s内物体克服摩擦力做的功W=2J D. 前2s内推力F做功的平均功率P=3W 4.如图所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A、B两物体用一轻质弹簧连接着,B的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态,则A、B两物体的瞬时加速度大小和方向说法正确的是()

A. ,方向沿斜面向下;,方向沿斜面向下 B. , C. ;,方向沿斜面向下 D. ,方向垂直斜面向右下方;方向竖直向下 5.如图,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成角与横杆固定,下端连接一质量为m的小球横杆右边用一根细线吊一相同的小球当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为已知,则下列说法正确的是( ) A. 小车一定向右做匀加速运动 B. 轻杆对小球P的弹力沿轻杆方向 C. 小球P受到的合力大小为 D. 小球Q受到的合力大小为 6.质量m=1kg的物体静止放在粗糙水平地面上。现对物体施加一个随位移变化的水平外力F 时物体在水平面上运动。已知物体与地面间的滑动摩擦力与最大静摩擦力相等。若F-x图象如图所示。且4~5m内物体匀速运动。x=7m时撤去外力,取g=10m/s2,则下列有关描述正确的是() A. 物体与地面间的动摩擦因数为0.1 B. 撤去外力时物体的速度为m/s C. x=3m时物体的速度最大 D. 撤去外力后物体还能在水平面上滑行3s 7.一固定杆与水平方向夹角为,将一质量为m1的滑块套在杆上,通过轻绳悬挂一个质量为m2的小球,杆与滑块之间的动摩擦因数为μ=0.5.若滑块与小球保持相对静止以相同的加速度a=10m/s2一起向上做匀减速直线运动,则此时小球的位置可能是下图中的哪一个()

牛顿第二定律典型计算题精选

牛顿第二定律典型计算题精选 一、无相对运动的隔离法整体法(加速度是桥梁) 典例1:如图所示,bc 是固定在小车上的水平横杆,物块M中心穿过横杆,M通过细线悬吊着小物块m,小车在水平地面上运动的过程中,M始终未相对杆bc 移动,M、m与小车保持相对静止,悬线与竖直方向夹角为α,求M受到横杆的摩擦力的大小及方向。 二、有相对运动的隔离法整体法(12F ma Ma =+合) 典例2:如图所示,质量为M 的斜劈放置在粗糙的水平面上,质量为m 1的物块用一根不可伸长的轻绳挂起,并通过滑轮与在光滑斜面上放置的质量为m 2的滑块相连。斜面的倾角θ,在m 1、m 2的运动过程中,斜劈始终不动。若m 1=1kg ,m 2=3kg ,θ=37°,斜劈所受摩擦力大小及方向?(sin37°=0.6,g =10m/s 2)

三、传送带(共速后运动研判) 典例3:如图所示,传送带与水平方向成θ=30°角,皮带的AB部分长L=3.25m,皮带以v=2m/s的速率顺时针方向运转,在皮带的A端上方无初速地放上一个 μ=,求: 小物体,小物体与皮带间的滑动摩擦系数/5 (1)物体从A端运动到B端所需时间; (2)物体到达B端时的速度大小. 四、有动力滑板(最大静摩擦力决定分离点) 典例4:如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g=10m/s2。现给铁块施加一个水平向左的力F,若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中做出铁块受到的摩擦力f随力F大小变化的图像。

牛顿第二定律的瞬时性

牛顿第二定律的瞬时性 牛顿第二定律的几个特性: 瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受合力,加速度随合外力同时产生、同时变化、同时消失。 因果性 F是产生a的原因,物体具有加速度是因为物体受到了力。 矢量性加速度与合外力都是矢量,它们的方向始终相同,加速度的方向唯一由合外力的方向决定。 同一性①加速度a相对同一惯性系(一般指地面) ②ma F=中,a m F、 、对应同一物体或同一系统。 ③ma F=中,各量统一使用国际单位。 独立性①作用于物体上的每个力都独立地产生一个加速度且遵循牛顿第二定律 ②物体的实际加速度等于每个力产生的加速度的矢量和。(合加速度) 局限性①只适用于宏观物体(相对于分子、原子)、低速运动(小于光速)的情况 ②只适用于宏观物体(相对于分子、原子)、低速运动(小于光速)的情况 例:如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() A.小球刚接触弹簧瞬间速度最大 B.从小球接触弹簧起加速度变为竖直向上 C.从小球接触弹簧到到达最低点,小球的速度先增大后减小 D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。 10.在光滑水平面上有一物块受水平恒力F的作用而运动,在其正前方固定一个足够长的轻质弹簧,如图所示,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法正确的是BCD A.物块接触弹簧后即做减速运动 B.物块接触弹簧后先加速后减速 C.当弹簧处于压缩量最大时,物块的加速度不等于零 D.当物块的速度为零时,它所受的合力不为零 (2012?四川)如图所示,劲度系数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变.用水平力,缓慢推动物体,在弹性限度内弹簧长度被压缩了x0,此时物体静止.撤去F后,物体开始向左运动,运动的最大距离为4x0.物体与水平面间的动摩擦因数为μ,重力加速度为g.则()

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

人教版高一物理必修一4.3《牛顿第二定律》课时同步练习(Word版含答案)

高一物理必修一4.3《牛顿第二定律》课时同步练习 一、单选题: 1、关于牛顿第二定律,正确的说法是( ) A.合外力跟物体的质量成正比,跟加速度成正比 B.加速度的方向不一定与合外力的方向一致 C.加速度跟物体所受合外力成正比,跟物体的质量成反比;加速度方向与合外力方向相同D.由于加速度跟合外力成正比,整块砖自由下落时加速度一定是半块砖自由下落时加速度的2倍 2、小明同学在水平面上用水平恒力推动木箱做与加速直线运动。小明在思考,怎么样才能使木前的加速度变为原来的2倍() A.将水平推力增大到原来的2倍 B.将阻力减少到原来的 C.将物体的质量增大到原来的2倍 D.将物体的推力和阻力都增大到原来2倍 3、如图所示,从某一高处自由下落的小球,落至弹簧上端并将弹簧压缩到最短.问小球被弹簧弹起直至离开弹簧的过程中,小球的速度和所受合力变化情况是() A. 合力变大,速度变大 B. 合力变小,速度变大 C. 合力先变小后变大,速度先变大后变小 D. 合力先变大后变小,速度先变小后变大 4、一物体质量为20kg,放在水平地面上,当用水平力F1=30N推它时,其加速度为1m/s2;当水平推力增为F2=45N时,其加速度为() A.1m/s2 B.1.5m/s2 C.2.5m/s2 D.3m/s2 5、某同学在粗糙水平地面上用水平力F向右推一木箱沿直线前进.已知推力大小是80N,物体的质量是20kg,物体与地面间的动摩擦因数μ=0.2,取g=10m/s2,下列说法正确的是() A. 物体受到地面的支持力是40N B. 物体受到地面的摩擦力大小是40N C. 物体沿地面将做匀速直线运 D. 物体将做加速度为a=4m/s2的匀加速直线运动 6、为了节省能量,某商场安装了智能化的电动扶梯。无人乘行时,扶梯运转得很慢;有人

2牛顿第二定律瞬时性问题

牛顿运动定律专题(二) ※【模型解析】——瞬时性问题 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理. (2)弹簧(或橡皮绳):当弹簧的两端与物体相连 (即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变. 【典型例题】 例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为( ) A.g,0 B.g,g C.0,g D.2g,g

例1题图例2题图例3题图

例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是( ) A.a P=a Q=g B.a P=2g,a Q=0 C.a P=g,a Q=2g D.a P=2g,a Q=g 例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别 为a1、a2、a3、a4.重力加速度大小为g,则有( ) A.a1=a2=a3=a4=0 B. a1=a2=a3=a4=g C.a1=a2=g,a3=0,a4=g D.a1=g,a2=g,a3=0,a4=g 例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)( ) 大智者必谦和,大善者比宽容。

牛顿第二定律基础计算终审稿)

牛顿第二定律基础计算文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

牛顿第二定律基础计算 1、如图所示,光滑水平面上有一个质量m=7.0kg的物体,在 F=14N的水平力作用下,由静止开始沿水平面做匀加速直线运 动.求: (1)物体加速度的大小; (2)5.0s内物体通过的距离. 2、如图所示,光滑水平面上,质量为5 kg的物块在水平拉力F=15 N的作用下,从静止开始向右运动。求: (1)物体运动的加速度是多少 (2)在力F的作用下,物体在前10 s内的位移 3、质量为2kg的物体,在水平拉力F=5N的作用下,由静止开始在水平面上运动,物体与水平面间的动摩擦因素为0.1,求: (1)该物体在水平面上运动的加速度大小。 (2)2s末时,物体的速度大小。 4、如图所示,质量为20Kg的物体在水平力F=100N作用下沿水平面做匀速直线运动,速度大小V=6m/s,当撤去水平外力后,物体在水平面上继续匀减速滑行3.6m后停止运动.(g=10m/s2)求: (1)地面与物体间的动摩擦因数;

(2)撤去拉力后物体滑行的加速度的大小. 5、一质量为2kg的物块置于水平地面上.当用10N的水平拉力F拉物块时,物块做匀速直线运动.如图所示,现将拉力F改为与水平方向成37°角,大小仍为10N,物块开始在水平地面上运动.(sin 37°=0.6,cos 37°=0.8,g取10m/s2)求:(1)物块与地面的动摩擦因数; (2)物体运动的加速度大小. 6、如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,小球和车厢相对静止,球的质量为. 已知当地的重力加速度 ,,求: (1)车厢运动的加速度,并说明车厢的运动情况. (2)悬线对球的拉力. 7、如图所示,位于水平地面上质量为M的物块,在大小为F、方向与水平方向成α角的拉力作用下沿地面作加速运动,若木块与地面之间的动摩擦因数为μ,求:(1)地面对木块的支持力; (2)木块的加速度大小. 8、如图所示,一个人用与水平方向成的力F=10N推一个静止 在水平面上质量为2kg的物体,物体和地面间的动摩擦因数为 0.25。(cos37o=0.8,sin37o=0.6, g取10m/s2)求:

牛顿第二定律-同步练习题

二、牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是[ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是[] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: []

A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是[] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块[ ] A.有摩擦力作用,方向向右 B.有摩擦力作用,方向向左 C.没有摩擦力作用 D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是[ ] A.先加速后减速,最后静止 B.先加速后匀速 C.先加速后减速直至匀速 D.加速度逐渐减小到零

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律计算题2汇总

1.(9分)如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以v0=1 m/s 的速度匀速向右运动。现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s2。 (1)求旅行包经过多长时间到达传送带的右端。 (2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件? 2.(18分)如图所示,倾角α=30的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8m 、质量M= 3kg 的薄木板,木板的最右端叠放一质量m=lkg 的小物块,物块与木板间的动摩擦因数μ=3 2.对木板施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=l02 /m s . (1)为使物块不滑离木板,求力F 应满足的条件; (2)若F=37.5N ,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离. 3.如图所示,一质量为M =4 kg ,长为L =2 m 的木板放在水平地面上,已知木板与地面间的动摩擦因数为0.1,在此木板的右端上还有一质量为m =1 kg 的铁块,小铁块可视为质点,木板厚度不计.今对木板突然施加一个水平向右的拉力.(g =10 m/ ) (1)若不计铁块与木板间的摩擦,且拉力大小为6 N ,则小铁块经多长时间将离开木板? (2)若铁块与木板间的动摩擦因数为0.2,铁块与地面间的动摩擦因数为0.1,要使小铁块相对木板滑动且对地面的总位移不超过1.5 m ,则施加在木板水平向右的拉力应满足什么条件?

牛顿第二定律的应用(瞬时性问题)教学文稿

牛顿第二定律的应用(瞬时性问题)

仅供学习与交流,如有侵权请联系网站删除 谢谢 2 牛顿第二定律的应用 -----瞬时性问题练习题 1.如图所示,在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹 簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度为a 1和a 2,则 A .a 1= a 2=0 B .a 1=a, a 2=0 C .a 1= m 1a/( m 1+ m 2), a 2= m 2a/( m 1+ m 2) D .a 1=a , a 2= m 1a/ m 2 2.如右图所示,吊篮P 悬挂在天花板上,与吊篮质量相等的物体Q 由在吊篮中的轻质弹簧托住,当悬挂吊篮的细绳剪断的瞬间,吊篮P 和物体Q 的加速度是 A .a P =g ,a Q =g B .a P =2g ,a Q =g C .a P =g ,a Q =2g D .a P =2g ,a Q =0 3.如图所示,物体甲、乙质量均为m ,弹簧和悬线的质量可以 忽略不计.当悬线被烧断的瞬间,甲、乙的加速度数值应是 下列哪一种情况: A .甲是0,乙是g B .甲是g ,乙是g C .甲是0,乙是0 D .甲是 2 g ,乙是g 4.如图所示,球A 、B 、C 质量分别为m 、2m 、3m ,A 与天花板间、B 与C 之间用轻弹簧相连,当该系统平衡后,突然将AB 间轻绳绕断, 在绕断瞬间,A 、B 、C 的加速度(以向下为正方向)分别为 A .0、g 、g B .-5g 、2.5g 、0 C .5g 、2.5g 、0 D .-g 、2g 、2g 5.如图所示,质量分别为m 1和m 2的甲、乙两物体用细绳相连,甲、乙中间有一个竖直放置的被压缩的弹簧,乙放在地面上,此时细绳的张力为F ,在把细绳剪断的一瞬间,甲的加速度为a ,此时乙对地面的压力为 A .(m 1+m 1)g B .(m 1+m 2)g+F C .m 1g+F D .m 1(g+a)+m 1g 6.如图所示,一根轻质弹簧上端固定,下端挂一质量为m 的平盘,盘中有一物体,质量为M 。当盘静止时,弹簧的长度比其自然长度伸长了L 。今向下拉盘使弹簧再伸长ΔL 后停止。然后 松手放开。设弹簧总处在弹性限度内,则刚松手时,盘对物体的支持力等于 A .(1+ L L ?)Mg B .(1+L L ?)(M + m )g C .L L ?Mg D .L L ?(M + m )g 7.(多选题) 如图所示,竖直平面内两根光滑细杆所构成的角AOB 被铅垂线OO ′平 分,∠AOB A B F 甲 乙

牛顿第二定律-同步练习-3

3 牛顿第二定律 【例题解析】 例1 在光滑的水平面上做匀加速直线运动的物体,当它所受的合力逐渐减小而方向不变时,物体的( ) A. 加速度越来越大,速度越来越大 B. 加速度越来越小,速度越来越小 C. 加速度越来越大,速度越来越小 D. 加速度越来越小,速度越来越大 解析: 开始时物体做匀加速直线运动,说明合力方向与速度方向相同。当合力逐渐减小时,根据牛顿第二定律可知,物体的加速度在逐渐减小。但合力的方向始终与物体运动的方向相同,物体仍做加速运动,速度仍在增加,只是单位时间速度的增加量在减小,即速度增加得慢了。正确选项为D 。 点评: 有同学可能会错误地认为:合力减小了,速度也随之减小,产生这种错误的原因是没有弄清合力对速度的影响。合力的大小会影响到加速度的大小,影响到速度变化的快慢;速度是增加还是减小要看合力方向与速度方向的关系。要注意正确理解力、加速度和速度之间的关系。加速度与合力有直接的关系,加速度的大小与合力的大小成正比,方向总与合力的方向相同;一般情况下,速度的大小与合力的大小无直接联系。 例2 如图4—3—1所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点。今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止。小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( ) A. 物体从A 到B 速度越来越大 B. 物体从A 到B 速度先增加后减小 C. 物体从A 到B 加速度越来越小 D. 物体从A 到B 加速度先减小后增加 解析:物体从A 到B 的过程中水平方向一直受到向左的滑动摩擦力F f =μmg ,大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为0。开始时,弹力大于摩擦力,合力向右,物体向右加速,随着弹力的减小,合力越来越小;到A 、B 间的某一位置时,弹力和摩擦力大小相等、方向相反,合力为0,速度达到最大;随后,摩擦力大于弹力,合力增大但方向向左,合力方向与速度方向相反,物体开始做减速运动。所以,小物体由A 到B 的过程中,先做加速度减小的加速运动,后做加速度增加的减速运动,正确选项为B 、D 。 点评:对于本题,有些同学可能会因受力分析不全面(漏掉滑动摩擦力)而误选A 、C 。注意分析物体运动时,将复杂过程划分为几个简单的过程,找到运动的转折点是关键。对此类运动过程的动态分析问题,要在受力分析上下功夫。 例3 有一个恒力能使质量为m 1的物体获得3m/s 2 的加速度,如将其作用在质量为m 2的 物体上能产生1.5m/s 2 的加速度。若将m 1和m 2合为一体,该力能使它们产生多大的加速度? 解析:以m 1为研究对象,有 F =m 1a 2; 以m 2为研究对象,有 F =m 2a 2; 以m 1、m 2整体为研究对象,有 F =( m 1+ m 2)a 。 图4—3— 1 O A B C

牛顿第二定律各种典型题型

牛顿第二定律 牛顿第二定律 1.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。 2.表达式F=ma。 3.“五个”性质 考点一错误!瞬时加速度问题 1.一般思路:分析物体该时的受力情况―→错误!―→错误! 2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。 [例] (多选)(2014·南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是() A.两个小球的瞬时加速度均沿斜面向下,大小均为gsin θ B.B球的受力情况未变,瞬时加速度为零 C.A球的瞬时加速度沿斜面向下,大小为2g sin θ D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零

[例](2013·吉林模拟)在动摩擦因数μ=0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0 针对练习:(2014·苏州第三中学质检)如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F,此时突然剪断细线。在线断的瞬间,弹簧的弹力的大小和小球A的加速度的大小分别为( ) A.错误!,错误!+gB.错误!,错误!+g C.错误!,错误!+g D.错误!,\f(F,3m)+g 4.(2014·宁夏银川一中一模)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B A.都等于错误! B.错误!和0 C.错误!和错误!·错误!?D.错误!·错误!和错误! 考点二错误!动力学的两类基本问题分析 (1)把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。一个桥梁:物体运动的加速度是联系运动和力的桥梁。 (2)寻找多过程运动问题中各过程间的相互联系。如第一个过程的末速度就是下一个过程的初速度,画图找出各过程间的位移联系。

牛顿第二定律 提升计算

牛顿第二定律提升计算 1、如图所示,一个质量的物块,在的拉力作用下,从静止开始沿水平面做匀加速直线运动, 拉力方向与水平方向成,假设水平面光滑,取重力加速度,,。(1)画出物体的受力示意图; (2)求物块运动的加速度大小; (3)求物块速度达到时移动的距离。 2、如图所示,质量为10kg的金属块放在水平地面上,在大小为100N,方向与水平成37°角斜向上的拉力作用下,由静止开始沿水平地面向右做匀加速直线运动.物体与地面间的动摩擦因数μ=0.5.2s后撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远?(已知sin37°=0.6,cos37°=0.8.g取10m/s2) 3、如图所示,长度l=2m,质量M=kg的木板置于光滑的水平地面上,质量m=2kg的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F=10N,取 g=10m/s2.求: (1)将木板M固定,小物块离开木板时的速度大小; (2)若木板M不固定,m和M的加速度a1、a2的大小; (3)若木板M不固定,从开始运动到小物块离开木板所用的时间.

4、如图甲所示,t=0时,一质量为m=2kg的小物块受到水平恒力F的作用,从A点由静止开始运动,经过B点时撤去力F,最后停在C点.图乙是小物块运动的速度一时间图象.已知重力加速度g=l0m/s2,求: (1)从第Is末到第2s末,物体运动的距离; (2)恒力F的大小. 5、一质量为的小球用轻细绳吊在小车内的顶棚上,如图所示.车厢内的地板上有一质量为 的木箱.当小车向右做匀加速直线运动时,细绳与竖直方向的夹角为θ=30°,木箱与车厢地板相对静止. (空气阻力忽略不计,取g=10 m/s2) 求: (1)小车运动加速度的大小 (2)细绳对小车顶棚拉力的大小 (3)木箱受到摩擦力的大小 . 6、质量分别为m1和m2的木块,并列放置于光滑水平地面,如图所示,当木块1受到水平力F的作用时,两木块同时向右做匀加速运动,求: (1)匀加速运动的加速度多大? (2)木块1对2的弹力.

牛顿第二定律题型总结

牛顿运动定律的应用(张胜富) 一、知识归纳: 1、牛顿第二定律 (1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同. (2)定义式:F 合=ma 2、对牛顿第二定律的理解 (1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、同时消失,保持一一对应关系. (2)矢量性.F=ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的方向决定.已知F 合的方向,可推知a的方向,反之亦然. (3)同体性:a = m F 合各量都是属于同一物体的,即研究对象的统一性. (4)独立性:F合产生的a 是物体的合加速度,x方向的合力产生x 方向的加速度,y 方向的合力产生y 方向的加速度.牛顿第二定律的分量式为F x =ma x,F y =ma y. (5)相对性:公式中的a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒: (1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度. (2)不能根据m= m F 得出m∝F ,m ∝a 1 的结论.物体的质量m 与物体受的合外力和运动的加速度无关. 3、合外力、加速度、速度的关系 (1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是F=ma ,只要有合外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无关.只有速度的变化率才与合外力有必然的联系. (2)合力与速度同向时,物体做加速运动,反之减速. (3)力与运动关系: 力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小无必然的联系. (4)加速度的定义式与决定式: a= t v ??是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的方法;a =m F 是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加 速度的因素. 特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即a 与合力F方向总是相同,但速度v 的方向不一定与合外力的方向相同. 讨论点一:如图所示,对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用瞬间 ( ) A .物体立即获得速度 B.物体立即获得加速度 C.物体同时获得速度和加速度

牛顿第二定律计算题

牛顿第二定律计算题(难度) 1.(17分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为 1m 和2m ,各接触面间的动摩擦因数均为μ。重力加速度为g 。 (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对砝码运动,求所需拉力的大小范围; (3)本实验中, 1m =0.5kg , 2m =0.1kg , μ=,砝码与纸板左端的距 离d=0.1m ,取g=102 /m s 。 若砝码移动的距离超过l =0.002m ,人眼就能感知。 为确保实验成功,纸板所需的拉力至少多大 2.如图所示,竖直光滑的杆子上套有一滑块A,滑块通过细绳绕过光滑滑轮连接物块B,B 又通过一轻质弹簧连接物块C ,C 静止在地面上。开始用手托住A,使绳子刚好伸直处于水平位置但无张力,现将A 由静止释放,当速度达到最大时,C 也刚好同时离开地面,此时B 还没有到达滑轮位置.已知:m A =, m B =1kg, m c =1kg ,滑轮与杆子的水平距离L=。试求: (1)A 下降多大距离时速度最大 (2)弹簧的劲度系数 (3)的最大速度是多少 3.如图甲所示,平板小车A 静止在水平地面上,平板板长L=6m ,小物块B 静止在平板左端,质量m B = 0.3kg ,与A 的动摩擦系数μ=,在B 正前方距离为S 处,有一小球C ,质量m C = 0.1kg ,球C 通过长l = 0.18m 的细绳与固定点O 相连,恰当选择O 点的位置使得球C 与物块B 等高, 且C 始终不与平板A 接触。在t = 0时刻,平板车A 开始运动,运动情况满足如图乙所示S A – t 关系。若BC 发生碰撞,两者将粘在一起,绕O 点在竖直平面内作圆周运动, 并能通过O 点正上方的最高点。BC 可视为质点,g = 10m/s 2 , 求:(1)BC 碰撞瞬间,细绳拉力至少为多少 (2)刚开始时,B 与C 的距离S 要满足什么关系 4.如图所示为某钢铁厂的钢锭传送装置,斜坡长为L =20 m ,高为h =2 m ,斜坡上紧排着一排滚筒.长为l =8 m 、质量为m =1×103 kg 的钢锭ab 放在滚筒上,钢锭与滚筒间的动摩擦因数为μ=,工作时由电动机带动所有滚筒顺时针匀速转动,使钢锭沿斜坡向上移动,滚筒边缘的线速度均为v =4 m/s.假设关闭电动机的瞬时所有滚筒立即停止转动,钢锭对滚筒的总压力近似等于钢锭的重力.取当地的重力加速度g =10 m/s2.试求: (1)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶所需的最短时间; (2)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶的过程中电动机至 C B A L S O 图甲 3 S A t 12 图乙

1牛顿第二定律瞬时性问题

瞬时性问题 【模型解析】 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理. (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变. 【典型例题】 例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为() A.g,0B.g,g C.0,g D.2g,g 例1题图例2题图例3题图 例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是() A.a P=a Q=g B.a P=2g,a Q=0 C.a P=g,a Q=2g D.a P=2g,a Q=g 例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有() A.a1=a2=a3=a4=0 B. a1=a2=a3=a4=g C.a1=a2=g,a3=0,a4=m+M M g D.a1=g,a2= m+M M g,a3=0,a4= m+M M g 例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()

牛顿第二定律同步练习

牛顿第二定律-同步练习-

————————————————————————————————作者: ————————————————————————————————日期:

3 牛顿第二定律 【例题解析】 例1 在光滑的水平面上做匀加速直线运动的物体,当它所受的合力逐渐减小而方向不变时,物体的( ) A. 加速度越来越大,速度越来越大 B. 加速度越来越小,速度越来越小 C. 加速度越来越大,速度越来越小 D. 加速度越来越小,速度越来越大 解析: 开始时物体做匀加速直线运动,说明合力方向与速度方向相同。当合力逐渐减小时,根据牛顿第二定律可知,物体的加速度在逐渐减小。但合力的方向始终与物体运动的方向相同,物体仍做加速运动,速度仍在增加,只是单位时间内速度的增加量在减小,即速度增加得慢了。正确选项为D 。 点评: 有同学可能会错误地认为:合力减小了,速度也随之减小,产生这种错误的原因是没有弄清合力对速度的影响。合力的大小会影响到加速度的大小,影响到速度变化的快慢;速度是增加还是减小要看合力方向与速度方向的关系。要注意正确理解力、加速度和速度之间的关系。加速度与合力有直接的关系,加速度的大小与合力的大小成正比,方向总与合力的方向相同;一般情况下,速度的大小与合力的大小无直接联系。 例2 如图4—3—1所示,一轻质弹簧一端固定在墙 上的O 点,自由伸长到B点。今用一小物体m把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B点运动到C点而静止。小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( ) A . 物体从A 到 B 速度越来越大 B. 物体从A 到B 速度先增加后减小 C. 物体从A 到B 加速度越来越小 D . 物体从A 到B 加速度先减小后增加 解析:物体从A到B 的过程中水平方向一直受到向左的滑动摩擦力Ff =μmg,大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为0。开始时,弹力大于摩擦力,合力向右,物体向右加速,随着弹力的减小,合力越来越小;到A 、B 间的某一位置时,弹力和摩擦力大小相等、方向相反,合力为0,速度达到最大;随后,摩擦力大于弹力,合力增大但方向向左,合力方向与速度方向相反,物体开始做减速运动。所以,小物体由A 到B 的过程中,先做加速度减小的加速运动,后做加速度增加的减速运动,正确选项为B 、D 。 点评:对于本题,有些同学可能会因受力分析不全面(漏掉滑动摩擦力)而误选A 、C 。注意分析物体运动时,将复杂过程划分为几个简单的过程,找到运动的转折点是关键。对此类运动过程的动态分析问题,要在受力分析上下功夫。 例3 有一个恒力能使质量为m 1的物体获得3m/s 2 的加速度,如将其作用在质量为m 2 的物体上能产生1.5m/s 2 的加速度。若将m 1和m 2合为一体,该力能使它们产生多大的加速度? 解析:以m 1为研究对象,有 F =m1a2; 以m 2为研究对象,有 F =m 2a 2; 图4—3—1 O A B C

牛顿第二定律总结

牛顿第二定律应用的典型问题 1. 力和运动的关系 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 故正确答案选C。 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。 ③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。

相关文档
相关文档 最新文档