文档库 最新最全的文档下载
当前位置:文档库 › 地球的周长进行测量

地球的周长进行测量

地球的周长进行测量
地球的周长进行测量

在人类历史上,第一个对地球的周长进行测量,是由公元前3世纪的古希腊数学家埃拉托斯芬完成的,并且他也是比较精确地测算出地球周长的第一人。他才智高超,多才多艺,在天文、地理、机械、历史和哲学等领域里,也都有很精湛的造诣,甚至还是一位不错的诗人和出色的运动员。

人们公认埃拉托斯芬是一个罕见的奇才,称赞他在当时所有的知识领域都有重要贡献,但又认为,他在任何一个领域里都不是最杰出的,总是排在第二位,于是送他一个外号'贝塔"。意思是第二号。能得到"贝塔"的外号是很不容易的,因为古代最伟大的天才阿基米德,与埃拉托斯芬就生活在同一个时代!他们两人是亲密的朋友,经常通信交流研究成果,切磋解题方法。大家知道,阿基米德曾解决了"砂粒问题",算出填满宇宙空间至少需要多少粒砂,使人们瞠目结舌。大概是受阿基米德的影响吧,埃拉托斯芬也回答了一个令人望而生畏的难题:地球有多大?

怎样确定地球的大小呢?埃拉托斯芬想出一个巧妙的主意:测算地球的周长。地球是一个大球体,怎么来测量地球的周长呢?这是当时确实是一件伤脑筋的事,许多人想尽了办法也没能解决这个问题。埃拉

托斯芬经过认真观察,苦思冥想,终于找出了一个巧妙地测算地球周长的方法。埃拉托斯芬生活在亚历山大城里,在这座城市正南785Km 处,另有一座城市叫做塞尼。塞尼城中有一个十分有趣的现象,每年夏至日这一天中午12点,阳光都能直射城中一口枯井的底部,这就是说,每到夏至日这天正午,太阳就正好悬挂在塞尼城的正上方,即太阳直射塞尼城。亚历山大城与塞尼城几乎同在一条子午线上,在同一时刻,亚历山大城却没有这样的景象,太阳稍微偏离直上的位置。由此埃拉托斯芬受到了启示。于是在一个夏至日的正午,他在城里竖起一根小木棍,动手测量直上的方向与太阳光之间的夹角(如图中的∟2),测得这个夹角为7.2度,它等于360度的五十分之一,由圆的知识知∟1叫做圆心角,根据圆心角度数等于它所对的弧的度数,因为∟1=∟2,所以它的度数也等于360度的五十分之一。故图中表示亚历山大城和塞尼城距离的那段圆弧的长度,应该等于圆的周长的五十分之一,也就是说亚历山大城和塞尼城的实际距离正好是地球周长的五十分之一。于是只要测出亚历山大城到塞尼城的实际距离,再乘50,就是地球的周长。埃拉托斯芬测量的结果为:地球周长等于39250K m。地球的形状如一个鸭蛋,近似于一个球体,半径取6370Km,可求得地球的周长为40003.6Km,与39250Km相差不多。可见当时埃拉托斯芬的测算是比较准确的

。古人怎樣測量地球的周長?

這是古老的難題。當然,今天有了精密的測量儀器,它已不成為什麼困難的問題了。公元前240年,古希臘的數學家Eratosthenes已經應用巧妙的方法測算出地球的周長。

Eratosthenes於每年夏至中午觀測太陽在埃及亞歷山大港的標杆的影子,其入射角為7.2度;同時在其東南面500英里(1英里約等於1.6千米)外的一處地方,陽光恰好射到一個枯井的底部。如圖,點C表示枯井所在地,A點表示亞歷山大港的標杆所在地,O點表示地球中心,則AOC = ,arc AC = 500英里。設地球周長為s,利用比例計算得所以s = 500×50 = 25000 英里。即40232.5 千米。

土壤地球化学测量工作设计说明书

土壤地球化学测量工作设计说明书 1.1项目概况 1.1.1项目来源 (略) 1.1.2工作周期、成果提交时间 (略) 1.2 目标任务 通过开展1∶10000土壤地球化学测量扫面,圈定并评价地球化学异常。通过综合分析,优选地球化学异常和找矿靶区,为进一步工作指出找矿方向和提供本区基础地球化学资料。 1.3工作区概况 (略) ********矿区拐点坐标表表1

2、以往工作程度 2.1区域地质、物化探工作 (略) 2.2矿区化探工作程度 1991~1993年,***************在*************开展了1∶5万水系沉积物地球化学测量工作,在矿区内圈定了T4号水系沉积物异常区。 2.3以往工作存在的问题 通过以往化探工作,虽然在在矿区内圈定了T4号水系沉积物异常区。并在异常区内发现了5条含矿构造破碎蚀变带,但限于投入少,工作程度低,因此对预查区的化探异常尚不能进行准确定位。急提高化探工作程度,准确圈定化探异常范围,为寻找金多金属矿床提供更准确的基础地球化学资料。 3、地质矿产及地球化学特征 3.1工作区地质概况 (略) 3.1.1矿区地质特征 (略) 3.1.2地层及岩性 (略)

3.1.3构造 (略) 3.1.4岩浆岩 (略) 3.1.5围岩蚀变 (略) 3.1.6矿体地质特征 (略) 3.2地球化学景观特征 土壤主要为黄壤、黄粘土。土壤发育,A、B、C层位清晰、明显,一般厚0.5~2.0米,B层较发育。综上所述,区内物理、化学风化较强烈,淋滤作用不明显,土壤层发育,适宜开展土壤地球化学测量工作 4 工作部署 4.1工作部署原则 根据本次土壤测量工作的目的和任务,从工作区实际出发,参照2003年1月1日颁布实施的《铜、铅、锌、银、镍、钼矿地质勘查规范》及其他有关规范和技术方法的要求,在前期地质工作的基础上,运用现代成矿理论,采用有效找矿手段在本区开展土壤测量工作。 本次土壤测量工作总体部署的基本原则主要以矿区已发现的5条(Ⅳ、Ⅷ、Ⅸ、Ⅹ、Ⅺ)含矿构造破碎蚀变带为重点目标,在综合分析已有的地质、物化探资料的基础上,遵循“由浅入深、由稀到密、

区域地球化学样品分析方法第3部分:钡铍铋等15个元素量测定 方法验证报告

方法验证报告 检测项目:钡、铍、铋、铈、钴、铯、铜、镧、 锂、镍、铅、锑、钪、锶、钍 方法名称及编号: 《区域地球化学样品分析方法第3部分:钡、铍、铋等15个元素量的测定电感耦合等离子体质 谱法》DZ/T 0279.3-2016 二O二O年四月

一、方法依据: 根据DZ/T 0279.3-2016电感耦等离子体质谱法测定区域地球化学样品水系沉积物和土壤中钡、铍、铋等15个元素量的含量。 二、方法原理 试料用氢氟酸、硝酸、高氯酸分解,并赶尽高氯酸,用王水溶解后转移到聚四氟乙烯罐中,定容摇匀。分取澄清溶液,用硝酸(3+97)稀释至1000倍。将待测溶液以气动雾化方式引入射频等离子体,经过蒸发、原子化、电离后,根据待测元素的离子质荷比不同用四级杆电感耦合等离子体质谱仪进行分离并经过检测器检测,采用校准曲线法定量分析待测元素量。样品基体引起的仪器响应抑制或增强效应和仪器漂移可以使用内标补偿。 三、仪器、试剂及标准物质 3.1 仪器 电感耦合等离子体质谱仪--安捷伦7900 感量天平--赛多利斯科学仪器有限公司 3.2 试剂 3.3 标准物质

四、样品 4.1 样品采集和保存 按照HJ/T166的相关规定进行土壤样品的采样和保存,样品采集和保存应使用塑料或玻璃容器,采样量不少于500g,新鲜样品小于4℃时可保存180天。 4.2 样品的制备 将采集的土壤样品放置于风干盘中自然风干,适时压碎、翻动,检出砂砾、植物残体。 在研磨室将风干的样品倒在有机玻璃板上,用木锤敲打,压碎,过孔径2mm尼龙筛,过筛后的样品全部置于无色聚乙烯薄膜上,充分搅匀,用四分法取两份,一份留样保存,一份用作样品细磨。 用于细磨的样品混匀,再用四分法分成四份,取一份研磨到全部过孔径0.074mm筛,装袋待分析。 4.3 样品前处理 称取约0.10g(精确到0.0001g)样品,置于50ml聚四氟乙烯(PTFE)烧杯中,用少量水湿润,加10ml硝酸、10ml氢氟酸和2.0ml 高氯酸,将烧杯置于250℃的电热板上蒸发至高氯酸冒烟约3min,取

地球的周长进行测量

在人类历史上,第一个对地球的周长进行测量,是由公元前3世纪的古希腊数学家埃拉托斯芬完成的,并且他也是比较精确地测算出地球周长的第一人。他才智高超,多才多艺,在天文、地理、机械、历史和哲学等领域里,也都有很精湛的造诣,甚至还是一位不错的诗人和出色的运动员。 人们公认埃拉托斯芬是一个罕见的奇才,称赞他在当时所有的知识领域都有重要贡献,但又认为,他在任何一个领域里都不是最杰出的,总是排在第二位,于是送他一个外号'贝塔"。意思是第二号。能得到"贝塔"的外号是很不容易的,因为古代最伟大的天才阿基米德,与埃拉托斯芬就生活在同一个时代!他们两人是亲密的朋友,经常通信交流研究成果,切磋解题方法。大家知道,阿基米德曾解决了"砂粒问题",算出填满宇宙空间至少需要多少粒砂,使人们瞠目结舌。大概是受阿基米德的影响吧,埃拉托斯芬也回答了一个令人望而生畏的难题:地球有多大? 怎样确定地球的大小呢?埃拉托斯芬想出一个巧妙的主意:测算地球的周长。地球是一个大球体,怎么来测量地球的周长呢?这是当时确实是一件伤脑筋的事,许多人想尽了办法也没能解决这个问题。埃拉

托斯芬经过认真观察,苦思冥想,终于找出了一个巧妙地测算地球周长的方法。埃拉托斯芬生活在亚历山大城里,在这座城市正南785Km 处,另有一座城市叫做塞尼。塞尼城中有一个十分有趣的现象,每年夏至日这一天中午12点,阳光都能直射城中一口枯井的底部,这就是说,每到夏至日这天正午,太阳就正好悬挂在塞尼城的正上方,即太阳直射塞尼城。亚历山大城与塞尼城几乎同在一条子午线上,在同一时刻,亚历山大城却没有这样的景象,太阳稍微偏离直上的位置。由此埃拉托斯芬受到了启示。于是在一个夏至日的正午,他在城里竖起一根小木棍,动手测量直上的方向与太阳光之间的夹角(如图中的∟2),测得这个夹角为7.2度,它等于360度的五十分之一,由圆的知识知∟1叫做圆心角,根据圆心角度数等于它所对的弧的度数,因为∟1=∟2,所以它的度数也等于360度的五十分之一。故图中表示亚历山大城和塞尼城距离的那段圆弧的长度,应该等于圆的周长的五十分之一,也就是说亚历山大城和塞尼城的实际距离正好是地球周长的五十分之一。于是只要测出亚历山大城到塞尼城的实际距离,再乘50,就是地球的周长。埃拉托斯芬测量的结果为:地球周长等于39250K m。地球的形状如一个鸭蛋,近似于一个球体,半径取6370Km,可求得地球的周长为40003.6Km,与39250Km相差不多。可见当时埃拉托斯芬的测算是比较准确的 。古人怎樣測量地球的周長? 這是古老的難題。當然,今天有了精密的測量儀器,它已不成為什麼困難的問題了。公元前240年,古希臘的數學家Eratosthenes已經應用巧妙的方法測算出地球的周長。

认识地球七年级地理小测试卷

认识地球 班级姓名座号成绩 一、选择题(每题5分共60分) 1.人类首次证实地球是一个球体的事件是() A.麦哲伦环球航行 B.人造卫星上天 C.郑和下西洋 D.人类登上月球 2.下图为位于伦敦的“本初子午线地面标志”本初子午线是指() A.0°经线 B.0°纬线 C.180°经线 D.180°纬线 3.由于地球自转所产生的自然现象() A.昼夜交替 B.四季更替 C.极昼和极夜 D.昼夜长短变化 4.关于本初子午线的说法,正确的是() A.东西两半球的分界线 B.最长的经线 C.划分经度的起始线 D.180°经线 5.下列关于纬线的说法,正确的是() A.所有的纬线长度都相等 B.纬线指示东西方向 C.纬线指示南北方向 D.纬线的条数是有限的 6.我们利用经纬网的目的是() A.确定地球表面任意一点的位置 B.更好认识地球的形状 C.了解地球是怎样划分的 D.认识经纬度长短的变化 7.下列纬线圈中,长度最长的是() A.10°N B.20°S C.40°N D.60°S 8.下列表述中,能够最科学且直观的证明地球是一个球体的是() A.站得越高,看得越远 B.太阳每天东升西落 C.河水总是从高处流向低处D,宇航员在太空拍摄的地球照片

9.下列关于地球形状的大小描述,正确的是() ①地球是圆形②地球是个球体③地球的平均半径是6371千米④地球的最大周长是5.1万千米 A.①③ B.②③ C.②④ D.①④ 10.关于经纬线的说法,正确的是() A.纬线指示南北方向 B.经线是连接南北两极并且垂直于纬线的弧线 C.0°和180°经线是东西半球的分界线 D.20°W和160°E组成的经线圈是南北半球的分界线 下图是局部区域经纬网图,①②③④表示阴影 区。读图,回答11-12题。 11.全部位于低纬度的是() A.① B.② C.③ D.④ 12.同时位于西半球和北半球的是() A.①与② B.②与③ C.③与④ D.①与④ 二、综合题:读图回答问题(每空5分共40分)。 (1)写出图中字母所表示的经纬度位置(先纬 度后经度)。 A()B()C()D() (2)在A,B,C,D四点中,位于东半球的是 点,位于西半球的是点。 (3)在A,B,C,D四点中,位于赤道上的是点,位于中纬度的是点。

地质勘查常用标准汇编3-08土壤地球化学测量规范

3—8 土壤地球化学测量规范 (DZ/T 0145-94) 1 主题内容与适用范围 1.1 本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则。 1.2 本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 GB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺1:50 000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤测量),是以土壤为采样对象所进行的地球化学勘查工作。 3.2 土壤地球化学测量主要用于矿产勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区。 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法,其主要技术要求,按化探区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测量应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,一般应收集和分析以下资料: 地质矿产部1995-01-27批准1995-12-01实施 ·929·

a. 测区的地理和交通、生活情况以及测地资料; b. 测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c. 测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d. 测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型,植被特征,人工污染情况等有关资料; e. 表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a. 检查核对所收集资料的可靠程度; b. 确定试验地点和测区的有效范围; c. 实地考察工区的交通、生活及工作条件。 4.2.2 设计前的技术实验 4.2.2.1 有前人工作过的测区或邻区,设计时其主要技术指标和方案可参照前人的工作成果。如果认为资料不足,可补作部分技术试验。 4.2.2.2 前人未工作过的地区、特殊景观、为寻找特殊矿种、特殊矿产类型为目的的地区,必须开展技术实验。试验内容包括:采样层位(深度),采样介质,样品加工方案,指示元素及指标,采样布局,采样网度和方法等。 4.2.2.3 技术试验的一般要求 a. 试验剖面应布置在主要的、有代表性的矿床和覆盖物地段。每条剖面的两端必须各有3—-5个点落在背景地段上。 b. 采样层位(深度)和加工方案试验,一般选择在揭露过矿体的探槽或浅井上(见附录A)。如果地表工程不理想或没有工程,可以用一般剖面方法,按不同深度采样。指示元素和测网试验一般与层位和粒度在同一剖面进行。剖面数量不得少于三条。 ·930·

土壤地球化学测量规范(附件)

附录A(规范性附录) 地球化学普查水系沉积物测量记录卡 图幅名称(或地区):采样日期:年月日 记录:采样:审核:第页 22

记录卡填写说明1 地球化学普查水系沉积物测量记录卡填写说明 A 主标识符:C2。规定:岩石为1;水系沉积物为2;土壤为4。 B 样品号:N7。图幅名拼音代码+采样大格编号+小格代码+小格样号,如:MP234B1。该样品号中:MP-茅坪幅代码;234-大格号;B-小格号;1,B小格第一个样号)。 C 原始样号:被重复采样的样品号 D 图幅代号:N10。1:50000地形图图幅号,如H49E007008 E 横坐标: N8。统一确定为高斯6度带,记录带号+横坐标精确到m。如20428303 F 纵坐标: N7。高斯6度带精确到m。如3395158 G海拔高程:N4。采样点高程坐标,以米为单位。从地形图等高线或通过GPS直接读取。 H 水系级别:C1。记录:1 、一级水系;2、二级水系;3、三级水系。 I 采样部位:C1。采样点位于水系的位置,用代码表示:1:河底;2:水线附近;3:河漫滩上;4:水塘入口处 J 样品组分:C3。记录3位数:分别代表样品中粗砂(第1位)、细砂(第2位)和淤泥及有机物(第3位)含量。此三项为样品的沉积物组分,以编码方式分级填写,分为:0:无;1:少量(<30%);2:中量(30~70%);3:大量(>70%),三者之和不能超过100%。K 样品颜色:C2。1、灰黑色;2、灰色;3、褐色;4、灰黄色;5、红色;6、砖红色;7、灰绿色。 L 地质时代:C4。记录所控汇水域内地质时代。记录地质时代符号。沉积地层按出露情况适当并层;侵入岩记录主要侵入期。 M 岩石类型:C4。填写该点所控制汇水面积内占优势的基岩类型,参见“区域地球化学勘查规范”附录B表B2。 N 矿化蚀变:C1。记录矿化蚀变程度。0、无;1、弱;2、中等;3、强烈。 O 地貌类型:C1。1、平原-准平原;2、低山-丘陵;3、山地-峡谷;4、高山-深谷;5、高原;6、高寒山地;7、盆地;8、沼泽洼地;9、岩溶石山。 P 植被:C1。0,无;1,稀疏,浅薄,覆盖度<1/3;2,中等,覆盖度在1/3~2/3间;3,茂密,浓厚,覆盖度>2/3。 Q 岩溶类型:C1。指在岩溶区采样位置的岩溶类型(非岩溶区不填)。编码为:1:峰丛峰林洼地;2:峰丛峰林谷地;3:岩溶平原;4:岩溶穹窿盆地;5:岩溶石山及丘陵。 R 污染:C1。指采样点上游汇水域存在的污染源:0,无;1,矿山采冶;2,工业生产;3,居民生活。 S GPS文件号:N6。指采样点某GPS坐标数据转存入计算机内的批次文件。要求以GPS 手持机编号后四位数+录入的第n批数(n为两位数)。每批坐标存点宜在500个以内。 T GPS ID号:N3。GPS手持机对采样点自动定点形成的顺序号码。该号码与采样号一一对应,不可更改。如采样点上重复自动定点,宜自行保存不得删除;或采样点被遗忘自动定点,亦不得手动添加补充,均待转录计算机后再据记录资料做删除或添加补充处理。U 标记位置:记录书写采样点标记的具体位置。标记须清楚明显。

地球半径巧测量

地球半径巧测量 两千多年前,哲学家们找到了测量地球半径的方法,只需量一下影子的长度就可以计算出地球的半径。不知读者朋友们能否在一间邻海的房子里只借助一只表和一把皮尺测量地球半径呢? 假如你正在海边度假,住在一家临海旅馆四层的一个房间里,房间视野很开阔。有一个人悬赏说,明天天亮以前,谁要能想出一个相当准确的方法来测量地球半径,将获得一笔奖金,条件是除了借助一只表和一把皮尺外,不能使用特别的仪器。你能做到吗? 先别急着往下看,也不要看图,你先仔细想一想。你就想像你在旅馆里,房间的位置如上所述,免得你走弯路。 答案 你可以测一下房间的窗台离地面有多高,当然也可以问旅馆老板:我们假设为10米。黄昏时分,你趴在旅馆前的海滩上,请你的朋友坐在你房间里把下巴倚在窗台上。为了不使问题过于复杂化,我们可以这样设想,趴着时你的眼睛处在地平面上。当太阳的上边或者说最后一个亮点消失在海平面上时,你按下秒表开始记时。此时,从你朋友那里看,太阳还有一点仍处在海平面上,当太阳消失的一瞬间,让你的朋友喊声“停!”,你就让秒表停下。你可能会觉得奇怪,不过这中间确实要经过24秒多(准确的结果应该是24.366秒)。 现在,你需要一点三角函数知识来推导出地球半径。如图1所示。对于趴在海滩上的人来说,太阳的上边没入海平面时,太阳发出的光线与地球相切于他趴着的地方,如图上线段AB所示。处于高处的人看到太阳落山时的最后一缕光线,与地球相切的那条线是线段CE。设高处的观察者所在的高度为h,地球的半径为R。三角形ODE是直角三角形。根据余弦定理,直边OD=R与斜边OE=R+h的关系式为R=(R+h)cosθ,其中cosθ是θ角的余弦。另外,我们知道,地球转过这个θ角需要24.366秒(如果不出偏差);因为转一周要用24小时,这样可以得出:θ/360=24.366/(24×3600),结果θ=0.101525º。用一个小计算器可以算出θ的余弦等于0.99999843;代入上面的三角公式,其中h=10米,这样得出R≈6370公里,正好是地球半径。不用三角函数知识,也可以计算出同样的结果,只不过需要比较复杂的几何推理。 站直了和趴下 当然,事情不可能像描述得那么理想,会有各种误差。比如,你的眼睛不可能恰好处在地面上,而且你找的人头脑反应快慢的问题等等,这样得到的数据可能会有5%左右的偏差。如果你的房间在11层,或者最好你的朋友在海边一个巨大的峭壁上,而你在峭壁的底部,通过手机接收他发出的停止指令,这样偏差就会小些。在意大利的拉齐奥(Lazio)就有一个好去处:在海边有一座高600米的山,从高处到水平面大约有3分钟的延迟,偏差几乎为零。如果没有人帮忙,你可以自己试一下,沿着台阶跑上去,但愿时间来得及。你还可以通过测量你趴在地上和站直身体时看到太阳落山的时间间隔进行计算。既然上面用到的几何关系式表明间隔与两个观察点的高度差成正比,那么如果你站直身体时眼睛的高度为1.70米,时间间隔就应该是10秒,不同的是高度差太小,时间太短而已(图2)。令人感到意外的是,虽然古人知道地球是圆的,而且早在公元前,毕达哥拉斯和亚里士多德就明确地指出了这一点,但据我们所知,古人从来没有用过这么简单的方法来估算地球的半径。这其中的原因也许是那个时代人们很难准确地测量时间。 井中的太阳 公元前3世纪,他看到太阳光直射入一口井里,并计算骆驼的脚程,最终埃拉托斯特尼测量出地球半径 历史上第一个做此种尝试的是希腊天文学家埃拉托斯特尼(Eratosthenes,公元前280~前190年),他的试验比较复杂。埃拉托斯特尼认为,在赛伊尼(Syene),即位于今天的亚历山大以南的阿斯旺(Assuan),在夏至日的正午,太阳差不多经过天顶:他知道窄窄的井底被照亮。而在亚历山大,情况就不一样了,影

土壤地球化学测量标准

uz中华人民共和国地质矿产行业标准nZ/T 0145一 94 土壤地球化学测量规范 1995一01一27发布 1995一12一01实施 中华人民共和国地质矿产部发布 中华人民共和国地质矿产行业标准 1 主题内容与适用范围 1.1 本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则. 1.2 本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 UB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺 1:50 000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤Nii量),是以土壤为采样对象所进行的地球化学勘查工作。 3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区. 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法.其主要技术要求,按化探

区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测觉应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,一般应收集和分析以下资料 : a. 测区的地理和交通、生活情况以及测地资料; b. 测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c. 测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d. 测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型植被特征,人工污染情况等 有关资料; e. 表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a. 检查核对所搜集资料的可靠程度; b. 确定试验地点和测区的有效范围; c. 实地考察工区的交通、生活及工作条件。

子午线 经线 地球周长

国际标准时间日。经度值自本初开始,分别向东、

西计量,各自0°-180°或各自0-12时。本初以东为东经,以西为西经,全球经度测量均以本初与赤道的交点E点作为经度原点。1957年后,格林尼治天文台迁移台址,国际上改用若干个长期稳定性好的天文台来保持经度原点,由这些天文台原来的经度采用值反求各自的经度原点。再由这些经度原点的平均值和E点的差值来决定和保持作为全球经度原点的有点。 世界上最早准确计算出子午线长度的人:希腊学者埃拉托斯特尼。 实测依据 约公元前240年,他根据亚历山大港与syene(现在埃及的阿斯旺)之间不同的正午时分的太阳高线及三角学计算出地球的直径。当然,他的这种计算是基於太阳足够远而将其光线看成平行光的假设为根据的。 埃拉托斯特尼的测量方法 他知道在夏至日正午时分从北回归线上看,太阳正好在天顶的位置;阿斯旺其实是在回归线稍北。他还测量出在他的家乡亚历山大港,这个时候太阳应该在天顶以南7°。这个角度是7/360 个整园。假设亚历山大港在阿斯旺的正北-实际上亚历山大港在阿斯旺偏西一个经度-他推断出亚历山大港到阿斯旺的距离一定是整个地球圆周的7/360 。从商队那里可以知道两个城市间的实际距离大概是5000stadia. 他最终确立了700 stadia为一度。他算出来的数值为252000斯塔蒂亚(stadia)。斯塔蒂亚乃是古希腊的长度单位,其长度各地不一。如按雅典的长度算,1斯塔蒂亚等于185米,则地球周长为46620公里,多了16.3%,若按埃及的长度算,1斯塔蒂亚等于157.5米,则地球周长为39690公里,其误差小于2%。对他用的是哪种量度制,专家们至今尚有争议。

人类如何测量地球半径

人类如何测量地球半径 This model paper was revised by the Standardization Office on December 10, 2020

人类是如何测量地球半径的 地球半径是指从地球中心到其表面(平均海平面)的距离。地球不是一个规则的物体。首先,它不是正球体,而是椭球体,准确地说是一个两极稍扁,赤道略鼓的扁球体;其次,地球的南极、北极也不对称,就海平面来说,北极稍凸,南极略凹;第三,地球的外部地形起伏多变(这对测量地球半径是没有影响的)。平均大约3959英里千米) 公元前三世纪时希腊天文学家厄拉多塞内斯(Eratosthenes,公元前276—194)首次测出了地球的半径。他发现夏至这一天,当太阳直射到赛伊城(今埃及阿斯旺城)的水井S时,在亚历山大城的一点A的天顶与太阳的夹角为°(天顶就是铅垂线向上无限延长与天空“天球”相交的一点)。他认为这两地在同一条子午线上,从而这两地间的弧所对的圆心角SOA就是°(如图一)。又知商队旅行时测得A、S间的距离约为5000古希腊里,他按照弧长与圆心角的关系,算出了地球的半径约为40000古希腊里。一般认为1古希腊里约为米,那么他测得地球的半径约为6340公里。 近代测量地球的半径,还用弧度测量的方法,只是在求相 距很远的两地间的距离时,采用了布设三角网的方法。比如 求M、N两地的距离时,可以像图2那样布设三角点,用经纬 仪测量出△AMB,△ABC,△BCD,△CDE,△EDN的各个内角的 度数,再量出M点附近的那条基线MA的长,最后即可算出MN的长度了。 而在现代,测量地球半径的方法越来越多,方法也很简单了,有时用一秒表和尺子就可以成功。 比如:你站在海边,太阳光穿过地平线到达你的眼睛,此时你的位置是在A点,高出地球的那段距离就是你的身高;趴到地上后,由于高度变低,所以你看不到太阳了,当地球

1 5万土壤地球化学测量规范

中华人民共和国地质矿产行业标准 土壤地球化学测量规范 DZ/T 0145-94 1 主题内容与适用范围 1.1本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则。 1.2本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 GB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺1:50000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤测量),是以上壤为采样对象所进行的地球化学勘查工作。3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区。 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法,其主要技术要求,按化探区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测量应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,—般应收集和分析以下资料: a.测区的地理和交通、生活情况以及测地资料; b.测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c.测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d.测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型,植被特征,人工污染情况等有关资料; e.表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a.检查核对所搜集资料的可靠程度; b.确定试验地点和测区的有效范围; c.实地考察工区的交通、生活及工作条件。 4.2.2 设计前的技术试验 4.2.2.1 有前人工作过的测区或邻区,设计时其主要技术指标和方案可参照前人的工作成果。如果认为资料不足,可补作部分技术试验。

地球半径巧测量

地球半径巧测量 (2006年06月02日10:53:02) 来源:《牛顿科学世界》 两千多年前,哲学家们找到了测量地球半径的方法,只需量一下影子的长度就可以计算出地球的半径。不知读者朋友们能否在一间邻海的房子里只借助一只表和一把皮尺测量地球半径呢? 假如你正在海边度假,住在一家临海旅馆四层的一个房间里,房间视野很开阔。有一个人悬赏说,明天天亮以前,谁要能想出一个相当准确的方法来测量地球半径,将获得一笔奖金,条件是除了借助一只表和一把皮尺外,不能使用特别的仪器。你能做到吗? 先别急着往下看,也不要看图,你先仔细想一想。你就想像你在旅馆里,房间的位置如上所述,免得你走弯路。 答案 你可以测一下房间的窗台离地面有多高,当然也可以问旅馆老板:我们假设为10米。黄昏时分,你趴在旅馆前的海滩上,请你的朋友坐在你房间里把下巴倚在窗台上。为了不使问题过于复杂化,我们可以这样设想,趴着时你的眼睛处在地平面上。当太阳的上边或者说最后一个亮点消失在海平面上时,你按下秒表开始记时。此时,从你朋友那里看,太阳还有一点仍处在海平面上,当太阳消失的一瞬间,

让你的朋友喊声“停!”,你就让秒表停下。你可能会觉得奇怪,不过这中间确实要经过24秒多(准确的结果应该是24.366秒)。 现在,你需要一点三角函数知识来推导出地球半径。如图1所示。对于趴在海滩上的人来说,太阳的上边没入海平面时,太阳发出的光线与地球相切于他趴着的地方,如图上线段AB所示。处于高处的人看到太阳落山时的最后一缕光线,与地球相切的那条线是线段CE。设高处的观察者所在的高度为h,地球的半径为R。三角形ODE是直角三角形。根据余弦定理,直边OD=R与斜边OE=R+h的关系式为R=(R+h)cosθ,其中cosθ是θ角的余弦。另外,我们知道,地球转过这个θ角需要24.366秒(如果不出偏差);因为转一周要用24小时,这样可以得出:θ/360=24.366/(24×3600),结果θ=0.101525º。用一个小计算器可以算出θ的余弦等于0.99999843;代入上面的三角公式,其中h=10米,这样得出R≈6370公里,正好是地球半径。不用三角函数知识,也可以计算出同样的结果,只不过需要比较复杂的几何推理。 站直了和趴下 当然,事情不可能像描述得那么理想,会有各种误差。比如,你的眼睛不可能恰好处在地面上,而且你找的人头脑反应快慢的问题等等,这样得到的数据可能会有5%左右的偏差。如果你的房间在11层,或者最好你的朋友在海边一个巨大的峭壁上,而你在峭壁的底部,通过手机接收他发出的停止指令,这样偏差就会小些。在意大利的拉

地球化学岩石测量规程

岩石地球化学测量规程 1.引言 根据ZT/DKY-S-2003的要求,为更好的执行ZT/DKY7.5-1C—2003,结合地质矿产行业相关标准的规定,制定本要求。 2.目的和范围 2.1 目的 本要求的目的是规范地球化学勘查岩石测量野外工作的技术要求,保证岩石测量的质量,使其完全满足地质勘查工作需要。 2.2 范围 适用于地质矿产勘查项目中地球化学岩石测量工作及其它专项地球化学勘查项目的岩石测量工作。 3.职责 3.1 本要求的责任部门是生产技术部和各勘查室及项目组。 3.2 生产技术部负责各地质勘查项目中地球化学岩石测量工作进行中和工作结束后对工作质量的检查验收。 3.3 各勘查室根据工作进程负责安排地球化学岩石测量工作,并对工作进行定期的检查和指导。 3.4 项目组成员具体负责地球化学岩石测量工作的实施。 4.管理内容与要求 4.1适用范围 4.1.1为系统地了解不同地层和岩浆岩中元素的含量(或近似丰度),为区域化探异常解释和评价提供资料,同时,也为基础地质研究提供地球化学资料。 4.1.2为在异常查证和矿产普查中,应用岩石地球化学测量,解决矿源层、赋矿层、矿体剥蚀程度、寻找隐伏矿床等提供资料。 4.1.3在区域化探中不适宜采用水系沉积物、土壤、岩屑等方法的地区利用岩石地球

的测量进行区域化探扫面。 4.2采样密度 仅在利用岩石地球化学测量进行区域化探扫面时,其采样密度要求为: 1:20万化探扫面:1个点/1-2km2 1:5万化探扫面:4-12个点/ km2 用作其他目的的岩石测量不作密度要求。 4.3采样布局 4.3.1用作区域化探扫面的岩石测量布局原则同水系沉积物测量。 4.3.2为了解不同地层、岩浆岩中元素丰度值的岩石测量按不同地质构造单元(或沉积相)来布置。对不同时代的沉积岩、变质岩和岩浆岩进行系统采样。 地层以系(或组)为统计单元,每个采样单元应有30件以上样品;岩浆岩以期或主要岩类为采样单元,每个主要岩类至少有7-10件样品,变质岩区以变质建造或分布面积大的主要岩类为采样单元,每个主要岩类样品数一般不少于5件。 4.4采样方法 4.4.1区域化探扫面的岩石测量采样方法和要求: a)沉积岩(含火山岩)样品的采集。主要选取各地质时代研究程度高、代表性好、岩性出露齐全的区域地质调查标准剖面进行,在标准剖面不能满足要求时,可布 置部分辅助剖面或点采少量样品;岩浆岩样品的采集。主要选取各岩类(不同时 代)面积较大的和有代表性的岩体取样,采样剖面应穿过岩体的不同岩性单元; 变质岩样品的采集,应依变质岩的不同类型区别对待,深变质体的采样可参照岩 浆岩类的取样方法,采样要着重考虑变质建造、岩类及其面形分布特征。浅变质 体的采样,可参照沉积岩的采样方法进行。 b)采集岩石样品时,每个样品在采样点周围10-20米范围内,多处采集(3处以上)同一岩性的新鲜岩石碎块(直径应小于30mm)组合成一个样品,重量300克以 上。按岩石测量记录卡的格式记录有关内容,并应附有采样点的地形地质示意图。

浙教版七年级科学上册第3章 人类的家园地球测试题

第3章人类的家园——地球 一、选择题(每小题2分,共46分) 1.读图3-Z-1,人类认识地球形状的先后过程是() 图3-Z-1 A.②→③→①B.①→③→② C.①→②→③D.③→②→① 2.在课堂上科技社的社员们在对地球的相关知识展开了激烈的讨论。其中正确的是() ①小黄认为:中国古人对天地的认识是“天圆地方”的观点。 ②小洪认为:远离海岸的帆船船身比桅杆先消失,能够证明海平面并不是平面。 ③小吴认为:月食时月轮缺损的部分为圆弧形,能够证明地球是圆的。 ④小张认为:日食时日轮的缺损部分为圆弧形,能够证明地球是圆的。 ⑤小徐认为:全球由七大板块组成,所以有科学家把它戏称为“七巧板”。 ⑥小方认为:全球的这些板块漂浮在海洋上,并相互不断地发生着碰撞和张裂。 ⑦小芮认为:地球的内部结构与煮熟的鸡蛋非常相似,也分为三层。 A.①②③④⑤⑥⑦B.①②③④⑤ C.①②③④D.①②③⑦ 3.在中学生科普知识交流会上,小强这样描述了地球的形状和大小,你认为有误的是() A.地球是一个两极稍扁、赤道略鼓的不规则球体 B.地球表面积约5.1亿平方千米 C.地球赤道周长约4万千米 D.哥伦布环球航行首次证明地球是一个球体 4.地球仪是地球的模型,观察地球仪你会发现() A.地球仪可以用来证明地球是球体

B.地球仪形状赤道略鼓、两极略扁 C.地球仪绕转的轴在地球里面也有 D.地球仪可用来了解地球表面的地理状况 5.学完了经纬线和经纬度,你对它们很熟悉了吧!请你听一听它们的自我介绍,你能辨别出谁在撒谎吗() 图3-Z-2 6.图3-Z-3中甲地的经纬度位置为() 图3-Z-3 A.西经20°,北纬20° B.东经20°,北纬20° C.西经20°,南纬20° D.东经20°,南纬20° 7.图3-Z-4中,对甲、乙、丙三地相对位置的描述,正确的是() 图3-Z-4 A.甲在乙的西北方 B.乙在甲的正南方 C.丙在甲的正南方 D.丙在乙的西南方 8.下列四幅图幅大小相同的地图中,比例尺最大的是() A.亚洲政区图B.中国政区图 C.浙江省政区图D.杭州市政区图 9.下列各组岩石中,按成因分析属同一类型的是() A.石英砂岩、大理岩、板岩B.花岗岩、玄武岩、大理岩 C.石英砂岩、石灰岩、页岩D.片麻岩、花岗岩、大理岩 10.如图3-Z-5所示岩石结构可能找到古生物化石的是()

地球大小和形状

地球的形状和大小 教学目的: 1、了解古代人们对地球形状的看法。 2、知道地球是一个巨大的球体。 3、知道地球的最大圆周长4万千米。 4、通过人们对地球的认识过程,培养学生热爱科学,勇于探索真理的精神。 教学重点: 地球的形状。 教具准备: 人造卫星上拍摄的地球照片、制作课文中有关插图的投影片及本课有关的资料。 教学课时: 1课时。 教学过程: 一、导入新课: 我们人类生活在哪里呢?(略)

我们共同生活在地球上,有的人生活在平原,有的人生活在海边,有的人生活在山区……每个人对自己周围的生活环境都很熟悉,可是,你知道整个地球是个什么样子吗?它到底有多大呢?这节课我们来学习第1课,地球的形状和大小。 二、讲授新课: 1、学习课文第一部分:地球的形状。 (1)让学生读课文内容。 (2)出示家乡大地的图片。 让学生说说我们所看到的家乡大地的主要特征。 师:由于我们活动的范围很小,只能看到周围很小的一片地方,这并不是地球的全貌。那么地球到底是什么样的,关于地球的形状,在很早以前人们就开始探索了。 (3)古代人们对大地的错误认识。 ①古代人们对大地的形状是如何认识的呢? ②出示书中插图 师简述:我国古代流传着“方圆地方”的说法,有一本名叫《周髀》的书上写道,“天圆如张盖,地方如棋局。”意思是说,天是圆形的,像一把张开的伞,地是方形的,像一个棋盘。还有一本叫《淮南子》的书上写道:“天道曰圆,地道曰方。”意思也是说“天圆地方”。 ③古代人们为什么会产生“天圆地方”这种错误的认识呢? ④引用资料讲述古代巴比伦人、古印度人、古埃及人各对大地的错误认识。

(4)人们对“天圆地方”学说产生怀疑: ①人们什么时候开始对“天圆地方”的说法产生怀疑的? 师:我国发明的指南针,对人类文明及地球的认识作出了重大贡献。 ②教师引用资料讲述:公元前300多年前,著名的古希腊哲学家亚里斯多德发现月食是由于地球挡住的射向月亮的阳光而造成的,他根据地球投在月亮上的阴影形状,推断大地是个球体。我国东汉时的著名天文学家张衡,也根据月食时地球的阴影形状,设想大地是个圆球。尽管人们早就推测大地是一个球体,但是真正用实践来证实这个假说,还是经过了漫长的岁月。 ③谁首次用实践证实大地是个很大的球体? ④教师采用讲故事的方式进行讲述:麦哲伦的环球航行。 (5)讨论: ①为什么船队一直向前行驶,最后还能回到出发地方? ②如果大地是方形的,船队在航行时会出现什么情况? (6)人们仍在不断地了解地球: ①出示“在人造地球卫星上拍摄的地球照片”,通过这个照片说明了什么 ②通过地球的照片,我们还看到了什么? ③你还能举出一些能够证明大地是球体的例子吗? 师:现在我们已经知道地球是个巨大的球体,那么它究竟有多大呢? 2、学习课文第二部分:地球的大小

人类如何测量地球半径

人类是如何测量地球半径的 地球半径是指从地球中心到其表面(平均海平面)的距离。地球不是一个规则的物体。首先,它不是正球体,而是椭球体,准确地说是一个两极稍扁,赤道略鼓的扁球体;其次,地球的南极、北极也不对称,就海平面来说,北极稍凸,南极略凹;第三,地球的外部地形起伏多变(这对测量地球半径是没有影响的)。平均大约3959英里(6371.393千米) 公元前三世纪时希腊天文学家厄拉多塞内斯(Eratosthenes,公元前276—194)首次测出了地球的半径。他发现夏至这一天,当太阳直射到赛伊城(今埃及阿斯旺城)的水井S 时,在亚历山大城的一点A的天顶与太阳的夹角为7.2°(天顶就是铅垂线向上无限延长与天空“天球”相交的一点)。他认为这两地在同一条子午线上,从而这两地间的弧所对的圆心角SOA就是7.2°(如图一)。又知商队旅行时测得A、S间的距离约为5000古希腊里,他按照弧长与圆心角的关系,算出了地球的半径约为40000古希腊里。一般认为1古希腊里约为158.5米,那么他测得地球的半径约为6340公里。 近代测量地球的半径,还用弧度测量的方法,只是在求相距 很远的两地间的距离时,采用了布设三角网的方法。比如求M、 N两地的距离时,可以像图2那样布设三角点,用经纬仪测量 出△AMB,△ABC,△BCD,△CDE,△EDN的各个内角的度数, 再量出M点附近的那条基线MA的长,最后即可算出MN的长度了。 而在现代,测量地球半径的方法越来越多,方法也很简单了,有时用一秒表和尺子就可以成功。 比如:你站在海边,太阳光穿过地平线到达你的眼睛,此时你的位置是在A点,高出地球的那段距离就是你的身高;趴到地上后,由于高度变低,所以你看不到太阳了,当地球

人类对地球形状的认识过程

人类对地球形状的认识大致经历了这样一个过程: 古时候的人,由于活动的范围很小,只看到自己生活地区的一小块地方,因此单凭直觉,就产生了种种有关"天圆地方"的说法.例如,我国早在两千多年前的周代,就有"天圆如张盖,地方如棋局(棋盘)"的盖天说.古代埃及人认识,天像一块穹窿形的天花板,地像一个方盒.俄罗斯人则认为,大地像一块盾牌,由三条巨鲸用背驮着,漂游在茫茫的海洋里.印度人也有类似的传说,不过他们认为驮着这块大地的,不是巨鲸,而是站在海龟背上的三头大象.大象动一动,便引起地震地球的形状与大小 着生产技术的发展,人类活动范围的扩大和各种知识的积累,人们逐渐认识到,大地在大范围内不可能是平坦的,而应该是弯曲呈弧形的.因为在海边看离岸的船,先是船身隐没,然后才是桅帆.在陆地上旅行的人,如果向北走去,一些星星就会在南方的地平线上消失,另外一些星星却在北方的地平线上出现.如果向南走去,情况就相反.这些现象,只有大地是弧形的才好解释. 古希腊著名的科学家,哲学家亚里士多德才第一次对大地是球形作出了论证.他观察天象,从月食时地球在月球上的投影等现象中,推断大地的形状为球形.当时,一些持反对意见的人便提出:如果大地真是圆球状的,为什么住在地球另一端的人,没有掉向下面的空中呢那时候,由于人们还不懂得有地心引力,要回答这个问题是很难的. 15,16世纪的地理大发现,特别是1519-1521年,麦哲伦率领的一支船队,环绕地球航行一周成功,这为大地是球形提供了有力的证据.明朝末年,西方传教士利玛窦,汤若望等来到我国,介绍了天文,地理,数学等科学知识,我国才出现"地球"这个译名 随着测量技术的不断进步,特别是人造地球卫星的利用,现在测得的地球赤道半径为6378千米,极半径为6356千米,两者相差为21千米,赤道周长4万千米. 如果我们把这个庞大的地球,缩小制成一个直径1米的地球仪,赤道半径只比极半径长1毫米多,这点微小差别,在地球仪上是表示不出来的,所以我们使用的地球仪都还是正圆形的. 简单说: 天圆地方 天圆如张盖,地方如棋局 大地不是平的 麦哲伦环球航行,地球是圆的 人造地球卫星照片,地球是球体 古时候人们认为天圆地方 后来人们又认为大地弯曲呈弧形 公元前500年前后毕达哥拉斯设想大地是球形 约100年后亚里士多德通过月食推断大地是球形 我国东汉年间张衡提出“地如鸡中黄” 15—16世纪麦哲伦通过环球航行证实大地是球形 17世纪牛顿推断地球为扁球体

1∶1万土壤地球化学测量工作技术要求

1/1万土壤地球化学测量工作的工作方法、技术要求及精度要求 1: 1万土壤地球化学测量工作方法及技术要求 工作区高差大,地形切割强烈,水系较发育,植被茂密,局部地区第四系覆盖较厚。适用1:1万土壤测量方法,但是在已成型的矿区或采矿区周边及人员居住密集区,尽量避开污染源。本次工作设计采样点位17786个,另外采取重分析样534件,占总工作量的3%检查样**个,占总工作量的**%。 1、野外采样技术要求 (1)、工作部署 采样密度:依据《地球化学普查规范》DZ/T0011—91、《土壤地球化学测量规范》DZ/T0145—1994标准及测区实际情况,确定采样线距200m点距20m 在村落、第四系覆盖区域适当抽稀测点密度,在岩体、构造发育地区适当加密采样点。 1 : 10000 土壤测量工作测网密度 700g,确保过40目筛网的样品原始重量达到150g。如遇有岩石露头,倒石堆、河床堆积 2 、采样布局原则 采样布局要均匀性、合理性、控制性、代表性兼顾的原则。剖面要尽量垂直于综合异常 长轴方向或地层、地质构造线走向方向;采用200X 20m线点距布设。 3 、采样点布置及编号 在每张1 : 1万地形图上,划出测线,沿测线每个采样点根据其所处的位置按上述顺序进行编号。在以上布点基础上,布置3%重分析样,样品编号规则不变,野外采集时取双样,全部样品送检编号重编,不得重复。 4 、样品采集 ①采样介质:依据规范划定景观区标准,测区属于水系发育的中山区。土壤应米集粘土、细砂等物质。 ②土壤的采样部位选择:一般采取距地表0.2 —0.5m的B层土壤或B+ C层土壤。为提高样品的代表性,样品采取以采样点为中心、在5m范围内采集3—5 个子样混合组合成一个样品作为该点样品,避免单点采样。样品重量一般不低于

相关文档
相关文档 最新文档