文档库 最新最全的文档下载
当前位置:文档库 › 鱼眼镜头图像变形校正算法研究

鱼眼镜头图像变形校正算法研究

鱼眼镜头图像变形校正算法研究
鱼眼镜头图像变形校正算法研究

鱼眼图像畸变校正算法

鱼眼图像畸变校正算法 司 磊 朱学玲 (安徽新华学院 信息工程学院 安徽 合肥 230088) 摘 要: 根据鱼眼镜头成像的特点,选择合适的图像畸变校正算法,标定鱼眼图像的中心和半径,用标定得到的参数进行校正,推出校正模型,方法简单,易于实现,并对鱼眼图的畸变矫正问题提出意见与看法。 关键词: 鱼眼图像;畸变矫正;图像预处理;图像增强 中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2012)1110166-02 鱼眼图像的畸变矫正是以某种独特的变换方式将一副鱼眼 2 有关鱼眼图片的粗略校正 图像转换为理想图像的操作,这种操作在全方位视觉导航中具1)求取鱼眼图像行和列的比值 有重要的作用,是系统自动识别、跟踪和定位目标所必须的基将投射生成标准圆变换为鱼眼图片并求取图片中心点的方础操作。 法与普通相机照相原理不同,对于提取出来的鱼眼图片的轮1 畸变图像的校正原理 廓,我们先假定一个阈值,比如设一个灰度值30,用软件勾勒描绘出校正鱼眼图片大概的轮廓,然后先求出该轮廓的中心点根据畸变图像特点标定坐标图,求取标定点像素的理想值坐标,根据轮廓的图形和鱼眼图像的中心点的坐标,可计算出和实际值,同时生成坐标映射表,再把坐标映射表用于畸变图畸变图像的圆半径,从而求取鱼眼图像的中心点坐标和鱼眼图像的校正程序后,即可得到无畸变图像,具体处理过程如下: 像的粗略轮廓的图像的半径相对比,以便于将鱼眼图像的大概1)标定坐标 轮廓重新调整处理,变的更为精确和直观。假定畸变校正的鱼镜头中心的畸变可以忽略为零,以镜头为中心,离镜头越眼图片的半径中的行坐标曲线和列坐标曲线不相等,则我们需远的地方畸变越大。以镜头为中心标定坐标图,对图像进行坐要将畸变校正的鱼眼图像中的园的半径的曲线与下面的公式相标的标定,按正方形均匀排列圆点,如图1所示。 乘,然后就可以变换为普通的标准圆的图像。下面公式中(u,v)是畸变校正的鱼眼图片的中心点,β为畸变校正的鱼眼图像行和列的比值。 图1 2)图像预处理 先通过图像的、突出边缘细节;然后再用二值化处理增强调节对比度的图像,但部分样板点和背景的对比的差值较大,所以是设定一个阈值对整幅图像进行二值化,最后再对二值化后的图像再次进行中值滤波的方法处理,再次使用中值滤波方法可以有效的去除畸变图像中的部分椒盐噪声的影响。二值化的主要作用是可以提高畸变校正图像的质量,预处理图像可以为点阵样板圆点中心的确定提供重要的作用。 3)圆点中心的确定 由于图像畸变的影响,经过图像预处理后的畸变校正图像仍然是不规则的实心圆,然而样板中的确定的圆点却是规则排列的,所以可以在畸变校正的样板图像上把各个圆点的重心近似的2)鱼眼图片的粗略扭曲校正 替换为圆点中心,找出一个圆点的重心作为理想畸变校正样板图在得到中心点的坐标和校正形状之后,把扭曲的鱼眼图像像上与之对应的点,并找出该点处于二维平面坐标之中与之距离通过投射降低图像的扭曲程度变为正常的四方形的图像。 之和最大的圆点,从各个圆点的坐标之中找出与之距离之和最大在图2中,假设在没有扭曲的背景图像中,存在两个具有的圆点坐标,该点坐标即为畸变图像中与之相对应的点的坐标。相同x坐标的点,即k点和h点,并且在背景图像中随着圆上曲线再找出理想的点阵样板图像和该畸变校正图像中各圆点中心的位的经纬度的变大,扭曲程度也就越大,但是三维球面的整体从置,计算出点与点之间的垂直距离,即可得到点阵样板图像中各左到右的各个面的角度的差值全部都是相等的,而且在x轴方向点之间的偏移量,从而可以描绘和构建畸变校正图像上的各个点上与二维畸变校正图像相对应的线段dx的均匀分割经度或是纬之间偏移量的曲面。最后经过图像预处理过程的样板圆点中心的度也是相等的。因此在二维图像的X轴方向上任意点坐标经度或 确定,可计算出其它圆点中心的坐标位置。 图2

数码相机设计中图像几何畸变校正的实现

—191— 数码相机设计中图像几何畸变校正的实现 万 峰,杜明辉 (华南理工大学电信学院,广州 510641) 摘 要:由于光学镜头的生产工艺等原因,数码相机拍摄图像常常会出现非线性的几何畸变。针对这一常见问题,采用基于MSE 拟合、双线性插值的方法对拍摄图像进行校正。实验结果表明,该方法能够在保证无颜色失真的条件下获得较为理想的校正结果。 关键词:几何畸变;MSE ;双线性插值 Correction of Lens Distortion in Digital Camera Design WAN Feng, DU Minghui (Department of Communication and Electronic Engineering, South China University of Technology, Guangzhou 510641) 【Abstract 】 Nonlinear geometry distortion is an general problem in digital camera design because of arts and crafts of optical lens. This paper gives a solution which is based on MSE and bilinear interpolation. Experiments show that this method is efficient and accurate. 【Key words 】Geometry distortion; MSE; Bilinear interpolation 计 算 机 工 程Computer Engineering 第31卷 第17期 Vol.31 № 17 2005年9月 September 2005 ·工程应用技术与实现·文章编号:1000—3428(2005)17—0191—02 文献标识码:A 中图分类号:TP391.4 为了真实再现拍摄者观察到的景像,图像几何畸变的校正一直以来都是数码相机开发中重要的研究题目。 导致拍摄图像出现几何畸变最常见的原因是光学镜头的变形。要进行校正首先应给出描述畸变的数学模型。可以从光学成像原理及镜头物理特性的角度给出这一模型[4],也可以从拍摄图像本身对畸变进行描述。对后者而言,通常通过在空域里寻找畸变前后像素的空间映射关系进行校正。近期则出现了在频域中进行几何校正的研究。 本文采用在空域里确定畸变前后像素空间映射关系的方法进行几何校正。它包括两个独立的算法:空间变换和灰度级插值。空间变换描述输入输出图像中对应像素的映射关系,灰度级插值则确定输出像素的灰度值。通过检测控制点坐标进行MSE 拟合的方法实现空间变换,灰度级插值则采用双线性插值的方法,整个过程采用向后映射法完成。为了使这一方法能够满足实际需要,要进一步考察了算法的运行时间。 1 图像几何校正的算法 假设未畸变图像的像素位置坐标为),(y x ,畸变图像中对应像素位置坐标为),(y x ′′。则其空间映射关系可以采用下面的多项式来近似: ∑∑∑∑=?==?==′=′N i i N j j i ij N i i N j j i ij y x b y y x a x 00 00 (1) 其中N 为多项式的阶数,ij a 和ij b 分别是多项式的系数。 N i ,,2,1,0L =;i N j ?=,,2,1,0L ;N j i ≤+。 在一定程度上,多项式的阶数越高,校正效果就越好,但相应的运算量也会显著增加。另一方面,图像畸变得越严重,校正所需要的多项式阶数也会越高。 1.1 MSE 拟合 式(1)中的多项式系数可以通过MSE 拟合的方法得到。 MSE 拟合的基本思想是,对于一个集合),(i i y x ,寻找函数f (x ) 使拟合的均方误差ε达到最小。对于式(1)中的x 坐标,则 ∑∑∑∑∑∑==?===?=?′= ?′=L l N i N j j l i l ij l y L l N i N j j l i l ij l x y x b y L y x a x L 12010 1201 0)(1)(1εε (2) 应达到最小。其中L 为控制点个数。式(2)的上式两边对ij a 求导并置等式值为零,下式两边对ij b 求导并置等式值为0,可得方程 ∑∑∑∑∑∑∑∑===?====?=′=??? ?? ???′=??? ?????L l t l s l l t l s l L l N i i N j j l i l ij L l t l s l l t l s l L l N i i N j j l i l ij y x y y x y x b y x x y x y x a 11001100 (3) N s ,,2,1,0L =;s N t ?=,,2,1,0L ;N t s ≤+。对于N 阶多项式,其系数个数为)2)(1(++=N N M 。即式(3)应 有M 个,从而可以组成两个线性方程组。将这两个方程组写成矩阵形式为 a b K X K Y == (4) 其中a 、b 、X 和Y 为M 维向量。K 为M 阶方阵,其行标由 s 和t 的排列组成,记为u ;列标由i 和j 的排列组成,记为v 。则 ∑=++=L l t j l s i l uv y x k 1 (5) 在图像中选择合适的控制点,将控制点的位置坐标代入上面的矩阵,可求解出所有的系数,从而得到空间映射的函 作者简介:万 峰(1976—),男,博士生,主研方向为数字图像与图像处理;杜明辉,教授、博导 收稿日期:2004-06-04 E-mail :f.wan@https://www.wendangku.net/doc/069434512.html,

图像畸变校正

数字音视频处理大作业(一) 题目:图像畸变校正 班级:021212 学号:02121128 姓名:文威威

目录 第一章图像畸变概述.................................. - 1 - 第一节图像畸变的概念........................... - 1 - 第二节图像畸变形成原因......................... - 1 - 第二章通过算法去除图像畸变.......................... - 2 - 第一节引言..................................... - 2 - 第二节基于网格图像的图像畸变修正............... - 2 - 第三节基于现场定标的图像畸变校正............... - 3 - 第四节基于畸变等效曲面的图像畸变校正 ........... - 3 -

第一章图像畸变概述 第一节图像畸变的概念 图像畸变是指成像过程中所产生的图像像元的几何位置相对于参照系统(地面实际位置或地形图)发生的挤压、伸展、偏移和扭曲等变形,使图像的几何位置、尺寸、形状、方位等发生改变。 第二节图像畸变形成原因 造成图像畸变的原因包括:传感器性能误差,如摄像机的焦距变动、像主点偏移、镜头光学畸变、多光谱扫描仪扫描速度的非线性、扫描线首尾点成像的时间差引起的扫描线偏斜、采样和记录速度不均匀等;成像时的透视误差,如遥感成像系统投影方式主要有中心投影(摄像机)、斜距投影(侧视雷达)、全景投影(多光谱扫描)和多中心投影(胶带摄影机)等。除框幅式中心投影外,其它的投影方式都产生不同类型的畸变;飞行器姿态变化引起图像平移、旋转、扭曲和缩放;地球自转对扫描图像的影响;地形和地物高度变化,引起像点位移和比例尺改变;地球曲率的影响;大气折射,改变了光的传播方向、路径和雷达波的传播时间。

鱼眼图像国内外的研究

鱼眼图像国内外地研究 国外地研究主要偏重于建模与应用方面. 在对国外地资料收集地基础上,可以从两种方式来总结鱼眼图像校正算法. 第一种从鱼眼镜头成像地两种投影模型球面投影模型和抛物面投影模型来分析: () 球面投影模型是一种简单有效地方法,把鱼眼镜头成像面看成一个球面.但这种方法需要预先知道鱼眼图像地光学中心和变换球面地半径.因此现有地方法只适用于具有圆形区域地鱼眼图像. () 抛物面成像模型比较复杂,把鱼眼镜头成像面看成一个抛物面.在恢复场景深度时可以得到更加精确地效果.但用该模型计算时过于复杂.一般用于利用鱼眼照片恢复深度信息技术. 第二种分别从和空间进行鱼眼图像变形校正展开: () 鱼眼图像变形校正,该方法不涉及到空间点信息,直接确定变形图像与待校正图像上对应点坐标变换,然后进行像素灰度插值.该类方法包括有球面坐标定位,多项式坐标变换及其改进,射影不变性以及通过极半径映射来校正鱼眼畸变. () 鱼眼图像变形校正,包括投影转换和鱼眼镜头标定两种方法.投影转换算法是将鱼眼图像转换成透视投影地图像,具体上是把鱼眼图像上每个像平面点(,,)投影构成地平面点(’,’).根据图像像素点和对应光线向量间关系,来实现校正.原理是对任何投影(立体,球面,全景,透视等),对于图像上每一个像素点,从照相机地位置上,都有一个对应地向量光线. 鱼眼镜头标定算法是一类精确恢复地方法,在建立鱼眼镜头变形模型地基础上,考虑到鱼眼镜头成像地各种畸变类型,如常见地径向变形、离心变形、薄棱镜变形等,建立精确地鱼眼镜头城像模型,然后通过实验和目标函数来求解出鱼眼镜头内、外部参数,从而达到精确恢复鱼眼图像变形. 国外地应用方面,以球面传感器在交通监管,智能导航中地应用为例.为了实现智能导航,我们需要周边环境地信息比较敏感. 我们需要观察地面状况,地面上地物体,车辆地交通标志,以及沿路地景观.这些事实意味着一个全方位视场地球面图像传感器对于智能导航是有益地.为了获得全面地视场形像,因为用一个正常照相机视野(视场)有限,如果我们

6-图像畸变校正

实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1. 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M 个,每列像素为N 个,则图像大小为M ?N 个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色0 列坐标(j) 行坐标(i) 矩阵元素 f (i ,j) 0 纵坐标(y) 横坐标(x) 像素f(x,y) 图 1.1 矩阵坐标系与直角坐标系

鱼眼畸变矫正软件系统

fisheye畸变矫正软件系统 -西安冉科信息技术有限公司 技术目标: 鱼眼镜头的突出特点是一次性摄入 185°视角内所有的信息,无盲区,无须考虑图像拼合和嵌接等问题。但鱼眼图像具有非常严重的畸变,如果要利用这些具有严重变形图像的信息,就需将这些变形图像校正为人们所习惯的透视投影图像。本系统可以实现展开任意方向轴上的“展开窗口”,对图像中敏感信息的抓取具有积极效果。它的展开效果消除了其它恢复方法边缘“拉扯”的现象,在边缘也可以得到接近现实世界的效果。最终的实验结果表明,此算法具有流程简单、速度快、效果好、实用性强等特点,可以达到处理鱼眼镜头视频图像的实时校正要求。 技术内容: 1、确定鱼眼图像的圆心 2、建立鱼眼图像的符合等距投影原理的球面成像模型 3、建立透视投影平面坐标系与展开后的图像坐标系,并求出这两个坐标系之间的关系 4、建立恢复后图像坐标系与相机坐标系的关系 5、求出恢复后图像坐标系与鱼眼图像坐标系之间的关系

一、确定鱼眼图像圆心O与半径R 读取到视频帧,通过图像处理的方法,对图像进行分割,找到鱼眼图像区域的最小外接矩形,进一步对视频帧进行分割。根据分割出的鱼眼图像,确定鱼眼圆心。 二、建立鱼眼图像的符合等距投影原理的球面成像模型 1 以鱼眼图像的圆心O为原点建立鱼眼图像坐标系。 2 建立相机坐标系。 3 以O为中心,以鱼眼图像的半径R为半径做半球, 建立球面成像模型。 三、建立透视投影平面坐标系与展开后的图像坐标系,并求 出这两个坐标系之间的关系 1、确定展开的方位角、仰角、视角。

2、确定展开图像的大小。 3、根据展开图像大小和透视平面大小确定投影关系。 四、建立恢复后图像坐标系与相机坐标系的关系 1、建立透视投影平面坐标系与相机坐标系的关系 2、求出恢复后图像中点对应的在相机坐标系中的坐 标。 五、求出恢复后图像坐标系与鱼眼图像坐标系之间的关系 1、根据等距投影原理求出相机坐标系中的点在鱼眼图 像中的成像点的坐标。 2、根据所得到的映射关系即可得到恢复后图像任意一 点对应的鱼眼图像点的坐标。 技术方法和路线: UBANTU下结合opencv和ffmpeg对鱼眼视频进行解码和处理,视频帧的是通过ffmpeg解码获得,获得数据后,进行灰度处理,统计直方图,通过寻找最佳阈值,找到鱼眼区域。然后通过改变参数对任意区域进行校正,最后通过四分屏显示校正的结果。 开发语言:C 与 C++ 开发环境:UBANTU14.04 LTS(32bit),并配置opencv 与 ffmpeg 程序编程:使用gedit编辑、修改c/c++文件,用g++把编辑好的源文件编译成可执行程序,编译时需要链接opencv和线程库(因为使用了多线程),获得的可执行程序就可以对鱼眼畸变视频进行校正了。

基于圆心共线约束的鱼眼镜头径向畸变估计

第41卷第11期 光电工程V ol.41, No.11 2014年11月Opto-Electronic Engineering Nov, 2014 文章编号:1003-501X(2014)11-0036-08 基于圆心共线约束的鱼眼镜头径向畸变估计 朱云芳1,杜歆2 ( 1. 浙江工商大学计算机与信息工程学院,杭州 310018; 2. 浙江大学信息与电子工程学系,杭州 310027 ) 摘要:提出了基于圆心共线约束的鱼眼镜头径向畸变估计方法。拍摄单幅至少包含空间二组平行直线的标定图像。 在单参数除法径向畸变模型下,空间平行直线被映射为畸变图像上的一组圆弧。通过推导发现由同一组平行直线投影得到的圆弧会相交于二个公共交点,因而它们的圆心具有共线性质。在拟合圆弧参数时利用圆心共线性质,能够达到精确求解的目的。提出了基于圆心共线圆弧的单参数除法模型参数的求解方法,并进一步提出了圆心共线圆弧的非线性优化拟合方法。仿真和真实图像的实验结果都表明,相比传统方法,所提出的方法鲁棒性强,能有效提高标定的精度。 关键词:鱼眼镜头;除法模型;径向畸变;圆弧拟合;失真校正 中图分类号:TP391.7 文献标志码:A doi:10.3969/j.issn.1003-501X.2014.11.006 Estimating Radial Distortion for Fish-eye Lens Based on Collinear Constraint ZHU Yunfang1,DU Xin2 ( 1. College of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; 2. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China ) Abstract: A method of calibrating radial distortion for fish-eye lens based on collinear constraint is proposed. The method only needs a single image which contains at least two sets of parallel lines in 3D world. Under single parameter division model, these lines are imaged as circular arcs in the distorted image. These circular arcs imaged from the same set of parallel lines will intersect at two common points, and thus their centers are collinear. Under this constraint, the calculation of parameters of the single parameter division model is then proposed, which can be solved by using the Levenberg-Marquardt algorithm effectively. Experimental results of both synthetic and real images show that the proposed method is simple, robust and accurate. Key words: fisheye lens; division model; radial distortion; arc fitting; distortion correction 0 引 言 鱼眼镜头相机因其具有非常大的视野而在视频监控、机器人导航以及三维重建等领域得到广泛应用。然而,在视野扩大的同时,鱼眼镜头成像也带来了非常大的失真,表现在图像上是越靠近图像的外边缘,畸变的程度越大。这种畸变如果不加以有效的校正,将会给鱼眼镜头的应用带来很大的阻碍。 鱼眼镜头的失真有多种类型,其中径向畸变被认为是主要因素[1]。有众多的学者对鱼眼镜头的失真校正进行了研究,他们采用了不同的径向畸变数学模型。例如有多项式模型[2]、Field-of-view 模型[3]、除法模型[4]、Equi-distant模型[5]、Stereographic模型[6]、非参数化模型[7]等。在这些模型中,多项式模型运用较 收稿日期:2014-03-31; 收到修改稿日期:2014-05-07 基金项目:浙江省自然科学基金项目(LY12F01019);国家自然科学基金面上项目(61271339) 作者简介:朱云芳(1980-),女(汉族),湖北荆州人。副教授,博士,主要研究工作是计算机视觉、图像处理。E-mail: zhuyf@https://www.wendangku.net/doc/069434512.html,。 https://www.wendangku.net/doc/069434512.html,

数字图像管理组织-畸变校正

数字图像处理

图像畸变及校正 1 图像畸变介绍 从数字图像处理的观点来考察畸变校正, 实际上是一个图像恢复的过程, 是对一幅退化了的图像进行恢复。在图像处理中,图像质量的改善和校正技术,也就是图像复原,当初是在处理从人造卫星发送回来的劣质图像的过程中发展、完善的。目前,图像畸变校正的应用领域越来越广,几乎所有涉及应用扫描和成像的领域都需要畸变校正。图像在生成和传送的过程中,很可能会产生畸变,如:偏色、模糊、几何失真、几何倾斜等等。前几种失真主要是体现在显示器上,而后一种失真则多与图像集角度有关。不正确的显影,打印、扫描,抓拍受反射光线的影响等方式,都会使图像产生偏色现像。模糊、几何畸变主要是在仪器采集图片过程中产生,大多是因机器故障或操作不当影响导致,如在医学成像方面。而几何空间失真广泛存在于各种实际工程应用中,尤其是在遥感、遥测等领域。 2 畸变产生的原因 在图像的获取或显示过程中往往会产生各种失真(畸变):几何形状失真、灰度失真、颜色失真。引起图像失真的原因有:成像系统的象差、畸变、带宽有限、

拍摄姿态、扫描非线性、相对运动等;传感器件自身非均匀性导致响应不一致、传感器件工作状态、非均匀光照条件或点光源照明等;显示器件光电特性不一致;图像畸变的存在影响视觉效果,也是影响图像检测系统的形状检测和几何尺寸测量精度的重要因素之一。 3 图像畸变校正过程所用到的重要工具 灰度直方图是关于灰度级分布的函数,是对图象中灰度级分布的统计。灰度直方图是将数字图象中的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为想像素个数。直方图上的一个点的含义是,图像存在的等于某个灰度值的像素个数的多少。这样通过灰度直方图就可以对图像的某些整体效果进行描述。从数学上讲,图像的灰度直方图是图像各灰度值统计特征与图像灰度值出现的频率。从图形上来讲,它是一个一维曲线,表征了图像的最基本的统计特征。 作为表征图像特征的信息而在图像处理中起着重要的作用。由于直方图反映了图像的灰度分布状况,所以从对图像的观察与分析,到对图像处理结果的评价,灰度直方图都可以说是最简单、最有效的工具。 4 图像颜色畸变校正介绍 图像颜色畸变现象可以是由摄像器材导致,也可以是由于真实环境本身就偏色导致,还有的是由于图像放置过久氧化、老化导致。无论其产生的原因如何,其校正方法都是类似的。 如果用Matlab显示颜色畸变的图像RGB基色直方图,发现相对正常图像,颜色畸变的图像的直方图的三种基色的直方图中至少有一个直方图的像素明显集中集中在一处,或则集中在0处或则集中在255处,而另一部分有空缺,或则集

鱼眼图像畸变校正算法

据《硅谷》杂志2012年第21期刊文称,根据鱼眼镜头成像的特点,选择合适的图像畸变校正算法,标定鱼眼图像的中心和半径,用标定得到的参数进行校正,推出校正模型,方法简单,易于实现,并对鱼眼图的畸变矫正问题提出意见与看法。 关键词:鱼眼图像;畸变矫正;图像预处理;图像增强 鱼眼图像的畸变矫正是以某种独特的变换方式将一副鱼眼图像转换为理想图像的操作,这种操作在全方位视觉导航中具有重要的作用,是系统自动识别、跟踪和定位目标所必须的基础操作。 1畸变图像的校正原理 根据畸变图像特点标定坐标图,求取标定点像素的理想值和实际值,同时生成坐标映射表,再把坐标映射表用于畸变图像的校正程序后,即可得到无畸变图像,具体处理过程如下:1)标定坐标 镜头中心的畸变可以忽略为零,以镜头为中心,离镜头越远的地方畸变越大。以镜头为中心标定坐标图,对图像进行坐标的标定,按正方形均匀排列圆点,如图1所示。 2)图像预处理 先通过图像的、突出边缘细节;然后再用二值化处理增强调节对比度的图像,但部分样板点和背景的对比的差值较大,所以是设定一个阈值对整幅图像进行二值化,最后再对二值化后的图像再次进行中值滤波的方法处理,再次使用中值滤波方法可以有效的去除畸变图像中的部分椒盐噪声的影响。二值化的主要作用是可以提高畸变校正图像的质量,预处理图像可以为点阵样板圆点中心的确定提供重要的作用。 3)圆点中心的确定 由于图像畸变的影响,经过图像预处理后的畸变校正图像仍然是不规则的实心圆,然而样板中的确定的圆点却是规则排列的,所以可以在畸变校正的样板图像上把各个圆点的重心近似的替换为圆点中心,找出一个圆点的重心作为理想畸变校正样板图像上与之对应的点,并找出该点处于二维平面坐标之中与之距离之和最大的圆点,从各个圆点的坐标之中找出与之距离之和最大的圆点坐标,该点坐标即为畸变图像中与之相对应的点的坐标。再找出理想的点阵样板图像和该畸变校正图像中各圆点中心的位置,计算出点与点之间的垂直距离,即可得到点阵样板图像中各点之间的偏移量,从而可以描绘和构建畸变校正图像上的各个点之间偏移量的曲面。最后经过图像预处理过程的样板圆点中心的确定,可计算出其它圆点中心的坐标位置。 2有关鱼眼图片的粗略校正 1)求取鱼眼图像行和列的比值 将投射生成标准圆变换为鱼眼图片并求取图片中心点的方法与普通相机照相原理不同,对于提取出来的鱼眼图片的轮廓,我们先假定一个阈值,比如设一个灰度值30,用软件勾勒描绘出校正鱼眼图片大概的轮廓,然后先求出该轮廓的中心点坐标,根据轮廓的图形和鱼眼图像的中心点的坐标,可计算出畸变图像的圆半径,从而求取鱼眼图像的中心点坐标和鱼眼图像的粗略轮廓的图像的半径相对比,以便于将鱼眼图像的大概轮廓重新调整处理,变的更为精确和直观。假定畸变校正的鱼眼图片的半径中的行坐标曲线和列坐标曲线不相等,则我们需要将畸变校正的鱼眼图像中的园的半径的曲线与下面的公式相乘,然后就可以变换为普通的标准圆的图像。下面公式中(u,v)是畸变校正的鱼眼图片的中心点,β为畸变校正的鱼眼图像行和列的比值。 2)鱼眼图片的粗略扭曲校正 在得到中心点的坐标和校正形状之后,把扭曲的鱼眼图像通过投射降低图像的扭曲程度变为正常的四方形的图像。

图像畸变校正word版

实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1. 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M 个,每列像素为N 个,则图像大小为M ?N 个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色 列坐标(j) 行坐标(i) 矩阵元素 f (i ,j) 0 纵坐标(y) 横坐标(x) 像素f(x,y) 图 1.1 矩阵坐标系与直角坐标系

数字图像处理畸变校正

数字图像处理 图像畸变及校正 1 图像畸变介绍 从数字图像处理的观点来考察畸变校正, 实际上就是一个图像恢复的过程, 就是对一幅退化了的图像进行恢复。在图像处理中,图像质量的改善与校正技术,也就就是图像复原,当初就是在处理从人造卫星发送回来的劣质图像的过程中发展、完善的。目前,图像畸变校正的应用领域越来越广,几乎所有涉及应用扫描与成像的领域都需要畸变校正。图像在生成与传送的过程中,很可能会产生畸变,如:偏色、模糊、几何失真、几何倾斜等等。前几种失真主要就是体现在显示器上,而后一种失真则多与图像集角度有关。不正确的显影,打印、扫描,抓拍受反射光线的影响等方式,都会使图像产生偏色现像。模糊、几何畸变主要就是在仪器采集图片过程中产生,大多就是因机器故障或操作不当影响导致,如在医学成像方面。而几何空间失真广泛存在于各种实际工程应用中,尤其就是在遥感、遥测等领域。 2 畸变产生的原因 在图像的获取或显示过程中往往会产生各种失真(畸变):几何形状失真、灰度失真、颜色失真。引起图像失真的原因有:成像系统的象差、畸变、带宽有限、拍摄姿态、扫描非线性、相对运动等;传感器件自身非均匀性导致响应不一致、传感器件工作状态、非均匀光照条件或点光源照明等;显示器件光电特性不一致;图像畸变的存在影响视觉效果,也就是影响图像检测系统的形状检测与几何尺寸测量精度的重要因素之一。 3图像畸变校正过程所用到的重要工具 灰度直方图就是关于灰度级分布的函数,就是对图象中灰度级分布的统计。灰度直方图就是将数字图象中的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为想像素个数。直方图上的一个点的含义就是,图像存在的等于某个灰度值的像素个数的多少。这样通过灰度直方图就可以对图像的某些整体效果进行描述。从数学上讲,图像的灰度直方图就是图像各灰度值统计特征与图像灰度值出现的频率。从图形上来讲,它就是一个一维曲线,表征了图像的最基本的统计特征。 作为表征图像特征的信息而在图像处理中起着重要的作用。由于直方图反映了

平面几何测量中的图像畸变校正

第19卷 第1期2011年1月 光学精密工程 Optics and P recision Engineering V ol.19 N o.1 Jan.2011 收稿日期:2009-11-26;修订日期:2010-03-29. 基金项目:吉林省科技发展计划基金资助项目(N o.20070304) 文章编号 1004-924X(2011)01-0161-07 平面几何测量中的图像畸变校正 苏成志,王恩国,郝江涛,曹国华,徐洪吉 (长春理工大学机电工程学院,吉林长春130022) 摘要:针对图像畸变对平面图像几何线度精密测量精度的影响,提出一种直接利用标准网格板作为测量基准的畸变校正方法。根据待测物体与网格板处于相同物面时,其图像畸变与网格板图像畸变相同,待测点在网格板图像中相对网格的几何位置不变这一性质,提出直接使用发生畸变的网格板图像作为校正基准来代替通过建模将外部标准转换为摄像机内部基准的畸变校正思路。首先,确定待测点在网格板畸变图像中的初始位置;然后,根据平行线分线段成比例定理确定待测点在网格板畸变图像网格内的精确位置,对两者求和完成待测物体上任意两点的实际几何线度测量。实验证明,当校正网格板间距为1mm,精度为0.2L m 时,使用提出方法得到的畸变误差是现有校正方法的20%,校正精度可达4L m 。该方法省去了建模过程,其校正精度仅与网格板精度有关,具有更高的精度和适应性。关 键 词:平面图像测量;图像畸变;校正基准;建模校正 中图分类号:T P391.4 文献标识码:A doi:10.3788/O PE.20111901.0161 Distortion correction for images in planar metrology SU Cheng -zhi,WANG En -g uo ,H AO Jiang -tao,CA O Guo -hua,XU H ong -ji (College of M echanical and Electric E ng ineer ing ,Changchun Univer sity of Science and T echnology ,Chang chun 130022,China) Abstract:In consider ation of the effect of the distor tion error o f an im age on the accuracy of planar ge -o metr ical m easurement in the precise visual m etrolo gy,a metho d to correct the imag e disto rtio n by u -sing standard g rid bo ard dir ectly as measur em ent calibration is pro posed.As the position of an under -tested po int is unchanged relativ e to that of g rid board w hen an under -tested object and a grid board lay o n the sam e object plane,the g rid board is directly used as the co rrecting calibratio n of image dis -to rtio n instead of the w ay that converts the ex ternal standard into the intrinsic param eter o f a camera by modeling .Firstly,the pr im ar y po sition o f the under -tested po int in the imag e of grid board is deter -m ined;then,its fine distance is decided acco rding to the pr opo rtio n theorem of line segm ent divided by parallel line.Finally,planar geometrical m easurement is fulfilled by calculating the sum of both dis -tances.Ex perim ental results show that the distor tion er ror by the proposed m ethod has reduced to 20%that of the tr aditional m ethod and the co rrectoin accur acy of imag e has reached 4L m or higher,w hile the distance of intersection po int of the calibrated gr id bo ar d is 1m m and its accuracy is 0.2L m.The method is more applicable and has high accuracy,for it om its the mo deling and its accuracy o nly

相关文档
相关文档 最新文档