文档库 最新最全的文档下载
当前位置:文档库 › 近代物理实验习题答案

近代物理实验习题答案

近代物理实验习题答案
近代物理实验习题答案

近代物理实验》练习题参考答案一、填空

1、

核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。

2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为:

%峰位置的脉冲幅度宽度最大计数值一半处的全

1000V V R 。能量分辨率值越小,分辨能

力越强。

3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。

4、对于不同的原子,原子核的质量

不同而使得里德伯常量值发生变化。

5、汞的谱线的塞曼分裂是

反常塞曼效应。6、由于氢与氘的

能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。

7、在塞曼效应实验中,观察纵向效应时放置

1/4波片的目的是将圆偏振光变为线偏振光

。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。

9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底

片上,利用

线性插值法来进行测量。

10、在强磁场中,光谱的分裂是由于能级的分裂引起的。

11、原子光谱是线状光谱。

12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。

13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和

②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包

括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于

③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左

1/3-1/2__处。

14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。

15、必须把光源放在足够强磁场中,才能产生塞曼分裂。

二、简答题

1.如何区分盖革-弥勒计数管的正负极?

答:盖革-弥勒计数管的结构通常有两个电极,其中和外部阴极筒相连的

电极是阴极(负极),和中间阳极丝相连的是阳极(正极)。

2、在单道闪烁谱仪实验中,为什么要先粗测谱型?

答:这是因为单道有一定的分析范围,在本实验中所使用的单道,其分析

范围为0-10V。在实验中我们先通过示波器观察,将核信号输出的脉冲

高度调至8伏左右,由于示波器只是定性观察的仪器,并不能精确保证光

电峰的位置也在8伏左右,因而为保证所有的信号脉冲都能够落在单道的

分析范围以内,防止只测到半个光电峰的情况出现,需要用线性率标或者

定标器粗测谱型。

3、氢原子光谱含有几个独立的光谱线系,它们的名称是什么?其中哪个

线系位于可见区?

答:氢原子光谱含有5个独立的光谱线系,它们分别是:赖曼系、巴尔末系、帕邢系、布拉开系、普丰特系。其中,巴尔末系位于可见光区。

4、在光存储实验中为什么选择波长为532nm的半导体激光作为写入光?答:根据偶氮染料的吸收光谱曲线可知,它的光谱吸收范围为350nm-350nm,半导体激光的波长为532nm,在偶氮染料的吸收光谱吸收范围内,所以我们选择其作为写入光。

5、光致双折射实验中的偏振片P1和偏振片P2各有什么作用?

答:在光致双折射实验中,偏振片P1是起偏器,它的作用是产生线偏振光;

偏振片P2是检偏器,这是用来检验入射光是否是线偏振光。

6、何为真空系统?

答:真空系统是由真空获得设备(真空泵)、真空测量设备(真空计)、被抽容器和真空管道及真空法门等组成。真空系统的简单与复杂,是根据

需要设计的。

7、何为光致双折射效应?

答:当光照射到具有光折变特性的材料表面时,原本各向同性的光学材料却

产具有了各高异性的光学性质,这种现象称为光致双折射效应。

8、在测量未知源射线的能量时为什么要对谱仪进行刻度?如何刻度?

答:用谱仪测量未知源射线的能量属于相对测量方法。

根据谱仪测量原理可知,谱仪测量的实际上是射线与探测物质相

互作用后所产生的次级电子能量的分布情况。在相同的放大条件下,每个脉冲幅度都对应射线损失的能量,在一定能量范围内,谱仪输出的脉冲幅度与次级电子能量之间呈现一定的线性关系。为确定

该线性关系,需对谱仪进行能量刻度。

刻度方法是首先利用一组已知能量的放射源,在相同的放大条件下,测出它们的射线在谱中相应的光电峰位置,然后做出射线能量对脉冲幅度的能量刻度曲线,这样每个脉冲幅度就对应不同的

能量。实验中通常选用137Cs()和60Co(MeV,MeV)来进行刻度。

9、解释什么是同位素效应?

答:同一元素的不同同位素由于原子核质量不同而使它们的光谱随着原子

核质量的增大向波数增大的方向出现一个位移,这种现象称为同位素效

应。

10、什么是放射性计数的统计性?

答:由于放射性衰变存在统计涨落,当我们做重复的放射性测量时,即使

保持完全相同的实验条件,每次测量的结果也不会相同,而是围绕其平均

值m上下涨落,有时甚至有很大的差别,这种线性称之为放射性计数的统计性。

11、光致双折射效应是如何产生的?

答:当有光照射到偶氮染料样品上时,染料分子吸收光能由反式分子变为

顺式分子,由于顺式分子不稳定,它很快释放能量变为反式分子,在泵浦

光的持续照射下,出现反-顺-反的异构化循环过程,可以使介质产生从玻璃态到液晶态的转变,使介质出现光的各向异性,即双折射效应;另外,

如果泵浦光是线偏振光,受线偏振光电场矢量的调制,分子被重新取向,

形成取向有序性,产生了光致各向异性,即光致双折射效应。

12、何为光折变效应?

答:由于分子的光致异构周期性排列而导致介质的折射率出现周期性的变化,这种现象叫光折变效应

13、发生塞曼分裂时,谱线跃迁时M的选择定则是什么?

答:选择定则是:M=M2-M1=0,1(当J=0时M=0的跃迁是禁戒的)。

14、单道闪烁谱仪主要由哪几部分组成?射线图谱测的是什么粒子的能量?

答:单道闪烁谱仪的组成如下图所示:

跟随器

倍线性放大器单道分析器定标器

线性率表高压电源

由探头、线性放大器、单道、定标器、线性率表、示波器、低压电

源和高压电源组成。

根据单道闪烁谱仪的探测原理,谱仪测量得到的图谱实际上是射线与NaI晶体相互作用产生的次级电子能量的分布谱。因而其实

质测量的是次级电子的能量。

核磁共振实验中使用的振荡器有什么特点?核磁共振法测磁场的原理和

方法是什么?

16、何为光致异构现象?

答:偶氮分子具有反式和顺式两种分子结构,反式分子能量最低,结构稳定,当有光照射到样品上时,它吸收光能由反式结构分子变为顺式结构分子,顺式结构能量较高,结构不稳定,它很快又释放能量变为反式结构,这种现象叫做光致异构现象

17、如何判定标准具两个内表面是严格平行?

答:当用单色光照明标准具时,从它的透射方向可以观察到一组同心干涉圆环,如果让观察的眼睛上下左右移动,而看到的花纹大小不随眼睛的移动而变化,说明标准具两个内表面是严格平行的。

18、读出光和写入光各有什么作用?

答:写入光是把信息存储到介质中,而读出光是把存储在介质中的信息读取出来。

20、取向相位光栅是如何形成的?

答:两束写入光在样品表面发生干涉,产生明暗相间的干涉条纹,使照射到样品表面上的光强出现周期性变化,偶氮分子吸收光能由反式结构变为

顺式分子后,分子受到线偏振光的电场矢量的作用,使其方向沿着电场方向重新排列,由于光强是周期性变化的,所以沿电场方向排列的分子数目也是周期性变化的,从而导致样品的折射率出现周期性变化,形成取向相位光栅。

21、泵浦光和探测光各有什么作用?

答:在光致双折射实验中,泵浦光的作用是使介质吸收光能后光学性质由各向同性变为各向异性,探测光的作用是检测介质的光学性质是否变为各向异性。

22、在G-M 实验中,如果要求测量过程中的测量精度小于

1%,如何确定测量所需要的时间?

答:如果测量要求测量精度小于1%,则根据N N N N N

1可知,

N 应该大于等于10000,此时可以先选择一个测量时间,比如

10秒,测量一个数据,计算出单位时间的计数,然后用

10000除以得到的计数率,即可以得到测量所需的时间。

23、什么是塞曼效应?

答:光放在足够强的磁场中,原子光谱中的每条谱线都将分裂为数条偏振化的谱线,分裂的条数随能级类别不同而不同,这种光谱线的分裂现象称为塞曼效应。

通常把一条谱线分裂为三条且裂距正好等于一个洛伦兹单位的现象称为正常塞曼效应,而把分裂的谱线多于三条且裂距大于或小于一个洛伦兹单位的现象称为反常塞曼效应。

三、核磁共振条件是什么?如何调节才能出现较理想的核磁共振信号?

答:核磁共振条件是:0.B。

调节:1、加大调制场。2、调节边振调节使振荡器处于边缘振荡状态。

3、通过扫场(或扫频)调出核磁共振信号。

4、调节样品在磁场中的位置。

四、微波在波导管中传输时有哪几种工作状态?其反射系数和驻波比分别

为多少?

答:核磁共振条件是:0.B。

调节:1、加大调制场。2、调节边振调节使振荡器处于边缘振荡状态。

3、通过扫场(或扫频)调出核磁共振信号。

4、调节样品在磁场中的位置。

五、如何鉴别塞曼效应实验中的圆偏振光的左旋和右旋?

答:让入射光先依次通过F-P标准具、四分之一波片、偏振片,然后转动偏振片的透振方向,如果在Ⅰ-Ⅲ象限发现有消光现象,说明入射光是左旋圆偏振光,如果发现在Ⅱ-Ⅳ有消光现象,说明入射光是右旋圆偏振光。六、真空蒸发镀膜的质量与哪些因素有关?

答:真空蒸发镀膜的质量与系统中真空度、被镀物的清洁程度、蒸发物的纯度、蒸发器的纯度、蒸发速度有关。

七、试画出光存储实验的光路图,并简要说明各仪器或元件的作用。

答:光存储光路图如下图所示,YAG激光器是产生写入光的;氦-氖激光器是产生读出光的;M1、M2、M3、M4、M5反射镜,它们是为了改变光的传播方向;Bs是分光镜,它可以把一束光分成两束光;H是样品;CCD 是光电探测器,它可以把光信号转变为电信号传给计算机,由计算机进行

数据处理。

八、塞曼效应的偏振定则是什么?答:偏振定则

观察方向垂直于磁场方

平行于磁场方

M=0 线偏振、π线无光

M=+1 线偏振、σ线右旋圆偏振、σ

线

M=-1 线偏振、σ线左旋圆偏振、σ

线

九、真空镀膜实验中如何提高薄膜质量?

答:实验中要保证真空度10-2帕以上,被镀物清洗干净,蒸发物清洗干净、选择纯度高的蒸发物蒸发器,镀膜时速度越快越好。

十、画图说明光致双折射实验的测量原理。

答:光致双折射实验的测量光路如图所示。把样品放在两个透振方向互相

垂直的偏振片之间,实验使时半导体激光器发出的波长为532nm的绿光(泵浦光)与氦-氖激光器发出的波长为633nm的红光(探测光)照射到样品的同一点上,当关闭泵浦光时,样品是各向同性的,P1产生的线偏振光被P2栏掉,系统没有光通过P2;当打开泵浦光时,样品变为各向异性的,产生双折射效应,P1产生的线偏振光通过样品后,不再是原来的线偏振光,它在P2的透振方向上有振动分量,则有光通过P2.

十一、核磁共振实验中使用的振荡器用什么特点?核磁共振法测磁场的原

理和方法是什么?

答:核磁共振实验中使用的振荡器处于边缘振荡状态。

核磁共振法测磁场的原理和方法是:可选用一个已知旋磁比的样品,利用扫场或扫频,找出核磁共振信号,并且将信号调到等间距,此时满足核磁共振条件:

0.B 。则可根据测出的共振频率和样品的旋磁比计算出磁场。

十二、真空蒸发镀膜的质量与哪些因素有关?

答:与系统中真空度、被镀物的清洁程度、蒸发物的纯度、蒸发器的纯度、蒸发速度有关。

十三、什么是波导波长?如何由波导波长求自由空间波长?如何测量波导波长?

答:微波在波导管中传输时的波长为波导波长。2)(1

/c g g ,其中a c 2,称为波导截止波长,为自由空间波长。

先将测量线终端接短路片,移动探针位置,两个相邻波节之间的距离即为波导波长。

十四、简述光栅摄谱仪的工作原理。

答:光栅摄谱仪主要由三透镜照明系统、入射狭缝、平面反射镜、凹面反射镜、衍射光栅等组成。三透镜照明系统的作用是使入射狭缝得到均匀照明,并消除彗差及渐晕现象;通过入射狭缝的光由反射镜反射到处于摄谱仪端面的凹面反射镜上,经该反射镜准直变为平行光,并反射到衍射光栅上,经光栅衍射得到入射光的光谱,该光谱经凹面反射镜成像在照像底片上。

十五、使用电离真空计注意些什么?

答:因电离真空计是热阴极发射电子器件,必须在被测真空系统内真空度

达到1×10-1帕时才能使用,低于1×10-1帕,由于气体分子多,会使电离真空计阴极氧化或烧断。

十七、实现核磁共振的两种方法是什么?说明调制磁场在核磁共振实验中

的作用。

答:实现核磁共振的两种方法是扫场和扫频

调制线圈的作用,就是用来产生一个弱的低频交变磁场m B迭加到稳恒磁场0B上去,这样有利于寻找和观察核磁共振吸收信号。其作用原理如下:从原理公式0

B可以看出,每一个磁场值只能对应一个射频频率发

生共振吸收。而要在十几兆赫的频率范围内找到这个频率是很困难的,为

了便于观察共振吸收信号,通常在稳恒磁场方向上迭加上一个弱的低频交

变磁场m B,那么此时样品所在处的实际磁场为m B

B0,由于调制磁场的幅值不大,磁场的方向仍保持不变,只是磁场的幅值随调制磁场周期性地变化,核磁矩的拉莫尔旋进角频率0也相应地在一定范围内发生周期性的变化,这时只要将射频场的角频率调节到0的变化范围之内,同时调制场的峰——峰值大于共振场范围,便能用示波器观察到共振吸收信号。因为

只有与相应的共振吸收磁场范围0B被(m B

B0)扫过的期间才能发生核磁共振,可观察到共振吸收信号,其他时刻不满足共振条件,没有共振吸

收信号。磁场变化曲线在一周期内与0B在两处相交,所以在一周期内能观察到两个共振吸收信号。

四、说明测量频率的微波电路的组成,如何用吸收式直读频率计测量微波

频率?(10分)

答:测量频率的微波电路由等效电源、频率计、检波器和微安表组成。

旋转频率计并观察微安表示数,当微安表示数突然变小时,读出频率及此

时的读数即可。

十八、说明测量频率的微波电路的组成,如何用吸收式直读频率计测量微

波频率?

答:微波电路由等效电源、频率计、检波器和微安表组成。

旋转频率计并观察微安表示数,当微安表示数突然变小时,读出频率及此

时的读数即可。

十九、光谱从外部特征上有几种分类?

答:可分为:线状光谱、带状光谱、连续光谱。

二十、真空蒸发度膜为什么需要10-2帕以上真空度?

答:真空度在10-2帕以上时,真空中气体分子平均自由程大于50cm,大于蒸发物和被镀物之间距离的2-3倍,蒸发出的分子和原子,才能无阻

挡地镀在被镀物上。

二十一、热电偶真空计是利用什么原理测量真空的?

答:热电偶真空计是利用气体分子导热性质,通过测量热电偶热电动势大小,来测量真空系统压强高低的。

二十二、简述光栅生长过程,说明可擦除光存储的物理机制。

答:两束写入光在样品表面发生干涉,产生明暗相间的干涉条纹,使照射

到样品表面上的光强出现周期性变化,偶氮分子吸收光能由反式结构变为

顺式分子,分子受到线偏振光的电场矢量的作用,由于光强是周期性变化的,所以沿电场方向排列的顺式分子和反式分子数目也是周期性变化的,

从而导致样品的折射率出现周期性变化,形成相位光栅。如果将要存储的

信息加载到写入光上,则该信息就可以存储到介质中,此时若有光照射到

该光栅上,就会发生衍射,通过衍射光将所存的信息读取出来。

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

大学物理实验报告范例

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量 【实验题目】长度和质量的测量

【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1 -(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺分度值的差值为:n x x n n x =-- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对 齐的刻线数k 和卡尺的分度值x/n 读取:n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ;对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退mm ,而微分筒每转一格时,测微螺杆前进或后退50=。可见该螺旋测微器的分度值为mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m =?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?= 。 【实验内容与步骤】(实验内容及主要操作步骤) 1. 米尺测XX 面积:分别测量长和宽各一次。 2. 游标卡尺测圆环体积:(1)记下游标卡尺的分度值和零点误差。(2)用游标卡尺测量圆环

近代物理实验期末考试试题及答题要点

近代物理实验期末考试试题及答题要点 1.(实验名称:核衰变的统计规律) (1)测量G-M 计数管的坪曲线目的是什么? (2)某学生用G-M 计数管探测到某一放射源放射的粒子,每次测量的时间为30秒,共测量100次,测量数据如下表所示;用χ2检验方法判断测量结果是否服从泊松分布(2 19.49αχ-=)。已知泊松分布的 概率函数式为: ()P n =! n m m e n - 。 【答题要点】 (1) 检验G-M 管是否正常和确定工作电压。 (2) m=2.51,选用皮尔逊统计量作X 2检验,考虑到计算X 2值时每个区间的频数不能太少,于是把5i k >以上的数据合为一个区间,其余数据均可单独作为一个区间。因,100i i E NP N ==则 2.511 2.51(0)1008.1!0! m k m E k N e e k --===?= 1 2.512 2.51(1)10020.41! E k e -==?= 同理可得3(2)25.5E k ==;4(3)21.3E k ==;5(4)13.4E k ==;6(5)11.3E k >=可求得: 2 6 21() 2.12i i i i N E E χ=-==∑ 选定显著水平 a=0.05,查X 2分布表得2 19.49αχ-=。由于22 1αχχ-<,故可判断观测结果与泊松分 布无显著差异。 2.(实验名称:高真空的获得与测量) (1)真空的基本特点:1) 2) 3) 。 (2)衡量真空泵的两个重要指标是: 和 。 (3)某一真空系统当用机械泵抽到1.2×10-1Pa 后打开扩散泵,几分钟后真空度开始下降,直到几十Pa , 后又开始上升直到小于1×10-2Pa 。请解释这一现象。 【答题要点】 (1)真空空间气体分子密度极小,仅为大气压下分子密度的万亿分之一;气体分子或带电粒子的平均自由程极长;气体分子与固体表面碰撞的频率极低。 (2)极限压强; 抽气速率 (3)首先是油受热体积膨胀致使压强增大,真空度下降;当油蒸气遇到冷却水冷凝后,压强变小,真空

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

近代物理实验习题答案

《 近代物理实验》练习题参考答案一、填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全 1000V V R 。能量分辨率值越小,分辨能 力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反常塞曼效应。6、由于氢与氘的 能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置 1/4波片的目的是将圆偏振光变为线偏振光 。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底 片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和 ②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包 括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于 ③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左 1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极?

近代物理实验报告

近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料班级: 学号: 学生姓名: 实验教师: 2010-2011学年第1学期

实验1真空获得与真空测量 实验时间: 地点: 指导学生: 【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。 【关键词】镀膜机;机械泵;扩散泵;真空获得和测量 一、实验目的 1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法; 1.2、熟悉实验设备和仪器的使用。 二、实验仪器 JCP-350C 型热蒸发/磁控溅射真空镀膜机。 三、真空简介 3.1真空 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。其实真空应理解为气体较稀薄的空 间。在指定的空间内,低于一个大气压力的气体状态统称为真空。 3.2真空的等级 真空状态下气体稀薄程度称为真空度,通常用压力值表示。1958年,第一界国际技术 会议曾建议采用“托”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa)。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa ● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 35103331~100131???? ● 低真空 Pa 13103331~103331-???? ● 高真空 Pa 61 103331~103331--???? ● 超高真空 Pa 106103331~103331--???? ● 极高真空 Pa 10103331-??< 3.3获得真空的意义 获得真空不仅在科研、教学、工业以及人类生活中应用起到很大的作用,而且给人类的 整个社会文明的进步、财富创造以及科技创新都具有重大的意义。 3.4真空技术的应用 随着真空获得技术的发展,真空科学的应用领域很广,目前已经渗透到车辆、土木工程 呢、机械、包装、环境保护、医药及医疗机械、石油、化工、食品、光学、电气、电子、原

近代物理实验试题复习进程

近代物理实验试题

近物实验面试考题 试题 真空镀膜 1.真空镀膜原理; 2.加热烘烤基片对膜的质量有什么影响? 3.基片性能、蒸发速度、蒸发时的真空度以及蒸发源与基片之间的距离等因素对膜的质量有什么影响? 4.轰击的物理作用? 5.真空镀膜的实验操作过程 霍尔效应 1.什么是霍尔效应; 2.若导体中同时有两种极性的载流子参与导电,其综合霍耳系数比单一载流子导电的霍耳系数是增大还是减小,为什么? 3.如何分离霍尔效应与其它效应? 4.霍耳系数误差因子0.69的说明? 5.实际测量与理论相差的原因? 红外分光测量 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收铺?为什么? 2.以亚甲基为例说明分子的基本振动形式。 3.何谓基团频率?它有什么重要性及用途? 4.红外光谱定性分析的基本依据是什么?简述红外定性分析的过程。

5.影响基团频率的因素有哪些? 6.何谓“指纹区”?它有什么特点和用途? 7.已知HCl在红外光谱中吸收频率为2993cm-1,试求出H-Cl键的键力常数。 红外光谱的用途? 一.真空的获得与测量 低真空获得过程中,用火花枪激发玻璃系统,呈现出紫色、分红色说明什么?1.低真空获得过程中,加热或激发被抽容器,压强升高说明什么? 2.激发或加热“热偶规”,压强减小说明什么问题? 3.低真空测量过程中压强起伏说明什么? 4.扩散泵油间歇沸腾的物理原因是什么? 5.前级泵能否将扩散泵油蒸汽抽走?为什么? 6.如何观察扩散泵油蒸汽流的喷发射程? 7.简述气体分子在高真空下的扩散过程。 8.突然停电或者结束机械泵的工作时,必须要做什么? 10.操作高真空的测量。 二. 汽液两相制冷机 1.F12冷凝器中发生的物理过程? 2.F12蒸发器中发生的物理过程? 3.环境温度对制冷机的影响? 4.制冷剂用量对制冷效果的影响? 5.工质的命名与定义? 6.在什么情况下,压缩机吸气管会结霜?

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

近代物理镀膜机实验报告

物理学本科专业近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料 班级:*** 学号:*** 学生姓名:*** 实验教师:*** 2014-2015学年第1学期

实验1真空获得与真空测量 地点:福煤实验楼D 栋405 【摘要】本文介绍了真空技术的有关知识,阐述了低真空和高真空的获得与测量方法。 【关键词】机械泵;扩散泵;真空技术;低真空;高真空;获得与测量 1.实验目的 (1)了解真空技术的基本知识。 (2)掌握真空获得和测量的方法。 (3)熟悉有关设备和仪器的使用方法。 2. 实验原理 2.1真空知识 2.1.1真空的概念及真空的区域划分 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。所谓真空,指的是压强比一个标准大气压更低的稀薄气体状态的空间。气体稀薄的程度称为真空度,通常用气体压强的大小来表示。气体越稀薄,气体压强越小,真空度越高;反之,则真空度越低。 1958年,第一界国际技术会议曾建议采用“托”(Torr )作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa )。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 3 5103331~100131???? ● 低真空 Pa 1 3 103331~103331-???? ● 高真空 Pa 61103331~103331--???? ● 超高真空 Pa 106 103331~10 3331--???? ● 极高真空 Pa 10 103331-??< 2.1.2真空技术的发展及应用 十九世纪初,利用低真空产生压力差的原理发明了真空提升、真空输送、吸尘、过滤、成形等技术。1879年爱迪生发明白炽灯,抽出灯泡中化学成份活泼的气体(氧、水蒸汽等),防止灯丝在高温下氧化.同年,克鲁克斯发明阴极射线管,第一次利用真空下气体分子平均自由程增大的物理特性.后来,在电子管、电视管、加速器、电子显微镜、镀膜、蒸馏等方面也都应用了这一特性.1893年发明杜瓦瓶,这是真空绝热的首次应用. 真空技术在二十世纪得到迅速发展,并有广泛的应用。二十世纪初,在真空获得和测量的设备方面取得进展,如旋转式机械泵,皮氏真空计,扩散泵,热阴极电离真空计的发明,为工业上应用高真空技术创造了条件.接着,油扩散泵,冷阴极电离真空计的出现使高真空

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

兰州大学近物实验考题

近物实验面试考题 试题(朋兴平;三个实验 17题) 真空镀膜 1.真空镀膜原理; 2.加热烘烤基片对膜的质量有什么影响? 3.基片性能、蒸发速度、蒸发时的真空度以及蒸发源与基片之间的距离等因素对膜的质量有什么影响? 4.轰击的物理作用? 5.真空镀膜的实验操作过程 霍尔效应 1.什么是霍尔效应; 2.若导体中同时有两种极性的载流子参与导电,其综合霍耳系数比单一载流子导电的霍耳系数是增大还是减小,为什么? 3.如何分离霍尔效应与其它效应? 4.霍耳系数误差因子0.69的说明? 5.实际测量与理论相差的原因? 红外分光测量 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收铺?为什么? 2.以亚甲基为例说明分子的基本振动形式。 3.何谓基团频率?它有什么重要性及用途? 4.红外光谱定性分析的基本依据是什么?简述红外定性分析的过程。

5.影响基团频率的因素有哪些? 6.何谓“指纹区”?它有什么特点和用途? 7.已知HCl在红外光谱中吸收频率为2993cm-1,试求出H-Cl键的键力常数。 红外光谱的用途? 一. 真空的获得与测量(宋长安二个实验19个题)06.6 1.低真空获得过程中,用火花枪激发玻璃系统,呈现出紫色、分红色说明什么?2.低真空获得过程中,加热或激发被抽容器,压强升高说明什么? 3.激发或加热“热偶规”,压强减小说明什么问题? 4.低真空测量过程中压强起伏说明什么? 5.扩散泵油间歇沸腾的物理原因是什么? 6.前级泵能否将扩散泵油蒸汽抽走?为什么? 7.如何观察扩散泵油蒸汽流的喷发射程? 8.简述气体分子在高真空下的扩散过程。 9.突然停电或者结束机械泵的工作时,必须要做什么? 10.操作高真空的测量。 二. 汽液两相制冷机 1.F12冷凝器中发生的物理过程? 2.F12蒸发器中发生的物理过程? 3.环境温度对制冷机的影响? 4.制冷剂用量对制冷效果的影响? 5.工质的命名与定义? 6.在什么情况下,压缩机吸气管会结霜?

近代物理实验报告

近代物理实验报告

2019/8/9 18:29:00近代物理实验报告2 实验名称:铁磁共振 指导教师:鲍德松 专业:物理 班级:求是物理班1401 姓名:朱劲翔 学号:3140105747 实验日期:2016.10.19

实验目的: 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间 τ。 实验原理: 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕 着外磁场方向作进动。当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B ρ 和微波磁 场1B ρ的作用后,磁矩的进动情况将发生重要的变化。一方面,恒磁场0B ρ 使铁磁场物质 被磁化到饱和状态,当磁矩M ρ 原来平衡方向与0B ρ有夹角θ时,0B ρ使磁矩绕它的方向作进动,频率为h B g B H μν=;另一方面,微波磁场1B ρ强迫进动的磁矩M ρ随着1B ρ的作用

而改变进动状态,M ρ 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B ρ作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时,且微波 频率ν=H ν时,耦合到M ρ的能量刚好与M ρ 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B ρ(即0H ρ )和微波磁场1B ρ(即h ρ)的作用下,其进动方程可写为: dt M d ρ = -γ(M ρ×H ρ)+ T ρ (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B ρ(即H ρ)为恒磁场0B ρ(即0H ρ)和微波 磁场1B ρ(即h ρ)合成的总磁场,T ρ 为阻尼力矩,此系统从微波磁场1B ρ中所吸收的全部 能量,恰好补充铁磁样品通过某机制所损耗的能量。阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。 图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡

近代物理实验步骤、内容(2)

弗兰克-赫兹实验 一、实验内容 测量氩原子的第一激发电位,分析误差及其原因。 二、实验步骤 参阅实验课件 三、注意事项: 1、实验过程不允许离开仪器; 2、板极电压不允许超过85V 。 四、思考题 1、在夫兰克-赫兹实验中,为什么I A -U G2K 曲线的波峰和波谷有一定的宽度? 2、为什么I A -U G2K 曲线有的波谷电流不等于零,并且随着U G2K 的增大而升高? 3、试分析,当夫兰克—赫兹管的灯丝电压变化时,I A -U G2K 曲线应有何变化?为什么? 4、夫兰克—赫兹实验中,为什么说我们测到的是汞原子从10S 跃迁到31P 的第一激发电位,而不是10S 跃迁到30P 或32P 的第一激发电位。 5、测量氩原子的第一激发电位时,如果G 2-A 两极间没有反向拒斥电场,I A -U G2K 曲线会是什么样的一条曲线?这条曲线能求出激发电位吗? 6、I A -U G2K 曲线中,第一个波谷对应U G2K 不是汞原子的第一激发电位,为什么? 7、实验测出的氩原子I A -U G2K 曲线中,为什么峰-峰间距随U G2K 的增大而略有变大?

全息照相 一、实验内容 拍摄菲涅尔变换全息图 二、实验步骤 1、设计光路系统,光路系统应 满足下列条件: 1)、用透镜将物光束扩展到一定 程度以保证被摄物体能均匀照亮,参 考光也应扩展使感光板得到均匀光照。 2)、参考光应强于物光,在感光板的地方两光束的强度比约为4:1-10:1。 3)、物光与参考光束的夹角为30°-50°之间,两光束的光程大致相等(光程差小于1cm)。 (光学元件调整好后,关上照明灯,有条件的用照度计测量参考光与物光的强度(略),并调整符合要求。) 2、根据光强调好曝光器的曝光时间,(参考值:1-2秒),关上快门,在暗室下装上底片,底片的乳胶面向入射光(用手摸干片一角,有粘手感的一面为乳胶面),走到曝光器后静置2分钟后按曝光按钮曝光。取下曝光后的干片用黑纸包好放到纸盒中,再用黑布包好,拿到暗房显、定影。 3、显影及定影:先显影后定影,显影过程中应不断轻微摇动干片,显影完后放到清水中稍为洗一下,然后放入定影液中,并轻轻摇动干片,定影结束后取出再用清水洗2分钟。 显影时间:40 -100秒,由曝光时间、显影液浓度和温度决定。 定影时间:3-5分钟。 4、物像再现 1)、将全息片的乳胶面向着参考光,并尽可能使光照方向与原来参考光束的方向一致,从照片背面迎着参考光观察。 2)、试改变观察角度,看看物像有什么变化。 3)、移去扩束镜,使激光只照在全息片的一小部分,看看能否观察到整个物像。

大学实验报告

浙江大学实验报告 课程名称:嵌入式原理实验类型:计算机实验 实验项目名称:实验四熟悉交叉编译环境和开发工具 学生姓名:何斯琼、姚冠红专业:计算机学号:3043027075、3043027076 同组学生姓名:指导老师:陈文智 实验地点:东四五楼嵌入式实验室实验日期:2007 年 3 月 5 日 实验目的和要求(必填) 目的:熟悉交叉编译环境和开发工具 实验内容和原理(必填) 对交叉编译工具进行熟悉和运用。 主要仪器设备 PC机 操作方法与实验步骤 进入/home/student/XSBase/XSBase255_Linux_B/Toolchain; 解压缩hybus-arm-linux-R1.1.tar.gz; 将解压缩得到的文件夹复制到/usr/local/下; 进入/root, 执行ls –a, 可见隐藏文件.bash_profile; 用vim编辑器编辑此文件:将$PA TH=/bin: /usr/local/hybus-arm-linux-R1.1/bin; 再执行命令source .bash_profile已更新此文件; 此时arm-linux-gcc命令(即交叉编译指令)已经可以执行; 以下为我们进行此实验时的全部过程: [student@localhost student]$ su Password: [root@localhost student]# ls XSBase [root@localhost student]# cd XSBase/ [root@localhost XSBase]# ls XSBase255_Linux_B [root@localhost XSBase]# cd XSBase255_Linux_B/ [root@localhost XSBase255_Linux_B]# ls app Datasheet Filesystem Image Kernel Source Toolchain BootLoader Documents GDB Jflash-XSBase255 RPM Tiny-X [root@localhost XSBase255_Linux_B]# cd Toolchain [root@localhost Toolchain]# ls hybus-arm-linux-R1.1 hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# tar -zxf hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# ls hybus-arm-linux-R1.1 hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# pwd /home/student/XSBase/XSBase255_Linux_B/Toolchain ......cp -a /usr/local/hybus-arm-llinux-R1.1

2017年六安市中考物理实验操作考试试题及实验报告

2017年六安市中考物理实验操作考试试题及实验报告2017年六安市中考物理实验操作考试试题及实验报告 叶集区平岗中学揭茂功 实验A 探究天平的使用 说明:1、考生除发现仪器有损坏或缺少向监考老师提出外,不得问 其它问题; 2、考试时间:15分钟。 3、满分15分 4、考生只需要填写第“四”题表格中的数据,不需要回答第“一”、“二”题中的问题。 一、提出问题: 如何使用天平测物块的质量, 二、猜想与假设: 使用天平测量物体的质量时,物体应放在天平的左侧托盘还是右侧托盘中, 三、制定计划与设计实验 1、设计实验方案,制定实验步骤; 2、从桌面上选取实验器材。四、进行实验与收集证据 1、安装调试好天平。 2、思考本实验的注意事项。 3、按正确方法、步骤进行实验。 4、将测量的数据记录在下表中: 被测物体质量M/克 物块 五、实验完毕整理好器材。 2017年六安市中考物理实验操作考试考核要点及评分标准准考证号姓名学校 实验A 探究天平的使用

评分得 操作考核内容满分点分 1 正确安放天平、调节横梁平衡 3 物体放在天平左边托盘、砝码放在右边托 2 3 盘上 3 能用镊子取砝码和移动游码 3 4 读数正确 2 5 数据记录正确 2 6 整理器材、保持整洁。 2 合计 15 实验合计得分监考教师签名 2017年六安市中考物理实验操作考试试题及实验报告 (考试时间15分钟) 准考证号姓名学校 实验B 探究电流表的使用 说明:1、考生除发现仪器有损坏或缺少向监考老师提出外,不得问其它问题2、考试时间:15分钟。3、满分15分4、考生只需要填写第“四”题表格中的数据,不需要回答第“一”、“二”题中的问题。一、提出问题: 如何用电流表测量小灯泡的电流, 二、猜想与假设: 用电流表测量小灯泡电流时,与小灯泡串联还是并联, 三、制定计划与设计实验 1、设计设计电路如右图所示。 2、从桌面上选取实验器材。四、进行实验与收集证据 1、思考本实验的注意事项。

变温霍尔效应近代物理实验报告_

变温霍尔效应 摘要:本实验采用范德堡测试方法,利用由控温仪、恒温器、电磁铁、恒流电源、电输运性质测试仪和装在恒温器内指上的锑化铟,碲镉汞单晶样品等组成的VTHM —1型变温霍尔效应仪首先测量室温条件下的电流和磁场不同方向的霍尔电压,又通过控温的方式测量了碲镉汞单晶样品的霍尔系数,得到并分析了实验与理论对比的T R H /1ln -曲线. 关键词:霍尔效应 半导体 载流子 霍尔系数 一:引言 对通电的导体或半导体施加一与电流方向垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,这个现象于1879年为物理学家霍尔所发现,故称为霍尔效应。在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,至今仍然是半导体材料研制工作中必不可少的一种常备测试手法。在本实验中,采用范德堡测试方法,测量样品霍尔系数随温度的变化。 二:实验原理 2.1 半导体内的载流子 半导体内载流子的产生有两种不同的机制:本征激发和杂质电离 2.1.1本征激发 在一定温度下半导体产生自由电子和空穴,半导体内的两种载流子:自由电子和空穴的产生过程叫做本征激发,与导带和价带有效能级密度,导带底和价带顶的能量温度等有关,确切地说与禁带宽度和温度以及波尔兹曼常数有关。 2.1.2杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性质,主要由浅杂质决定。从能带角度来看,就是价带中的电子激发到禁带中的杂质能级上,使硼原子电离成硼离子,而在价带中留下空穴,参与导电,这种过程称为杂质电离。由受主杂质电离提供空穴导电的半导体叫做P 型半导体,由施主杂质电离提供电子导电的半导体叫做N 型半导体。 2.2 载流子的电导率 p n pq nq μμσ+= 2-2-1

相关文档