文档库 最新最全的文档下载
当前位置:文档库 › 近代物理实验

近代物理实验

近代物理实验
近代物理实验

实验三微波基本参数的测量

实验目的

1.了解微波传输线的传输特性;

2.熟悉波导测量线的使用;

3.学会驻波、衰减、波长、波导波长等基本参数的测量。

实验原理

由于微波的工作频率很高(300MHz-300GHz),用普通导线已无法克服传输微波时引起的辐射与趋附效应,所以微波有其专用的传输线,常见的微波传输线有同轴线、波导、微带线;其中尤以波导传输线最为常见它是矩形或圆形的金属管,管的两端装有法兰盘,以便于互相连接。波导具有传输功率大,衰减小的优点。微波在波导中以电磁波的形式向前传输。

一、矩形波导的电磁波

微波能量的传输是应用波导,它是无内导体的空心金属管。通常其横截面形状为圆形和矩形。金属管实质上起屏蔽作用。强迫微波在波导内沿轴向前进,向负载传输电磁能量。由电磁场的基本特性可知,电力线与磁力线永远交链,并且在导体表面上磁力线总是与导体表面平行,而电力线必与导体表面垂直。因此,在无限长波导内满足条件的可能传输微波只有两种形式:一类电磁场波型是沿传播方向(Z方向)无电场分量,即E Z = 0,电场只存在波导的横截面上,称横电波,也称为TE波;另一类则是沿传播方向无磁场分量,即E Z = 0,磁力线在截面上闭合,称横磁波,也称TM波。TE波或TM波在波导中的形成(称为激励)和微波的激励方法及频率都有关系。我们以实际应用上最重要的矩形波导内的TE波为例说明之。

今在矩形波导的宽边中央开一小孔并插进一电偶极子(或探针),它通常是微波振荡器向波导传递能量的同轴线内导体的延续部分。显然探针相当于一个小天线,它能向四周辐射电磁波,由于波导管壁对微波的反射作用,在波导内便形成杂乱的波形,若其中存在这样的一个平面波,它从某一方向入射到波导的窄壁,并在两窄壁上往复反射,形“之”字形沿Z轴前进,如果波导的尺寸和入射方向恰当,正好使入射波和反射波的合成波在金属表面处形成电场的波节,而在波导的宽边中央形成电场驻波的波腹,正好满足电磁场的边界条件,这样的合成波就是TE波,它可在这个波导中激励和传输。由于在波导宽边上电场强度只有一个最大值,而在窄边上电场强度无极大值,表明电场强度沿波导窄边无变化。写作TE10,第一个脚注表示沿波导宽边电场的最大值个数,第二个脚注表示沿波导窄边的最大值个数。已知的波导可能传输多种具有不同电磁场分布的波形(常称为模式),其中场结构最简单的模式就是TE10波(称最低度模式)。每种模式有一个最低的允许频率称之为临界频率,对应的最大波长称为截止波长。当振荡频率低于临界频率时,其电磁场在波导中将随着离开激励偶极子的距离沿传播方向成指数地迅速衰减。该模式就不能在这给定的波导中激励和传输了。图1表示TE10波电场分布图,图2、

图3则表示TE 10波磁场及其在波导中电场结构总图。其中λg 是微波能量沿波导轴向传播的波长,称为波导波长。要注意λg 不同于单一电磁波在自由空间传播的波长λ,因为λg

实质上表示合成电波(TE 10)在波导内传输时的两相邻波峰或波谷之间的距离。理论上可导出

2

)2(1a

g λ-λ=

λ (1)

可以看出波导波长总大于λ,并且微波在宽边为a 的波导中传播,其截止波长为2a 。随着时间的变化,TE 10波的电磁场分布图以一定的速度沿波导轴移动,能量呈行波状态传输出去。描述此电磁波的电场和磁场传播的表达式为: )

(0z t j e

E E β-ω= (2)

)(0z t j e H H β-ω= (3) 式中E 0、H 0分别是所传播的微波电场强度和磁场强度的模,ω是微波振荡的角频率,z 是传播距离,β称位相

系数,是行波的位相沿传输距离变化快慢的物理量,有:

g

λπ=β2 (4)

二、微波传输中有关的物理量

1.特性波阻抗z 0:波导作为高频传输线的一种,可以对比的用“波阻抗”来描述其特征。定义z 0是行波通过波导中z 处时的电场与磁场之比:

a b

图1 TE 波电场结构图

10横截面

纵截面

顶视图

a

b

图2 TE 波磁场结构图

10Hx

Hz

图3 TE 波电磁场结构总图

10

)(0)(00H E e H e E H E z z t j z t j =

==β-ωβ-ω (5) z 0的量纲与阻抗的量纲相同。可以设想波导管横向电场为等效电压,横向磁场为等效电流,亦即把电场作为电压来看,磁场作为电流来看。这样电磁波在波导中的传播以及反射、驻波等都可用电压、电流,阻抗的概念去分析。

2.反射系数ρ:波导终端接入负载后,由于负载性质的不同,电磁波将在终端产生不同的反射。定义反射波与入射波的比为反射系数,用ρ来表示。如果入射波电压和电流分别表示为:

??

?

??==++

?+β-ω++?+β-ω++)

(0)(0z t j z t j e I I e V V (6) 反射波电压和电流分别表示为:

??

?

??-==--

?+β+ω--?+β+ω--)

(0)(0z t j z t j e I I e V V (7) 则:

?

+-+-ρ===ρj e I

I V V 0 (8)

其中+-

=ρ0

00V V 为反射系数的模,

z β+??=?2表示z 处的反射波与入射波

的相角差。(8)式表示波导轴上各处的反射

系教是不同的。我们所感兴趣的是终端负载处的情况。如果终端为金属板(即短路),

必然产生全反射,在终端处反射电压波与入射电压波振幅相同,并且位相相反,形成电压波节,则此时反射系数ρ = -1。

3.电压驻波比S :由于微波入射到负载上会产生反射,所以波导中轴上每一点的电压 (或电流)都是入射波与反射波合成的结果,因此形成电压驻波,沿波导轴向测量时会出现电压值有大、小的变化。

z

z

z z

v v

v v

λg _12

终端负载短路金属板

终端敞口全匹配负载阻抗Z 图4 不同负载时的电压驻波图形

由于负载性质不同,反射系数则不同,因而出现的电压驻波图形也就不同。图4表示不同负载时的电压驻波图形。图中两极小值之间的距离即为半波导波长。 对已知负载:

-+-+-=+=0

min 00max V

V V V V V

定义电压驻波上的极大值对极小值的比为电压驻波比S 。则:

00

0000000min max 1111ρ-ρ+=

-+=

-+==+

-+

--

+

-

+V V V V V V V V V V S (9)

由(9)式可得:

1

1

0+-=

ρS S (10) (10)式告诉我们。只要微波在波导内建立了驻波,便可通过容易测量的电压极大值与极小值来计算反射系数的模。 三、微波源

本实验所用微波源是以体效应二极管为振荡器件,下面对体效应二极管做一简单介绍。

体效应二极管,一个均匀参杂的n 型GaAs 单晶样品的两端,分别制作一个欧姆接触,就形成了一个体效应二极管(实际上它是一个无p-n 结的二极管),逐步升高加在二极管两端的电压,当平均电场达到3×103 V/cm 以上时,此半导体会产生电流振荡,振荡频率在微波频段,其频率决定于此样品的长度,既取决于电子的渡越时间。将此体效应二极管(也叫耿Gun 二极管)置于微波电路中,既可得到微波输出,体效应二极管结构简单,使用方便,对电源要求不高,也有一定的频率调谐范围。微波源的输出功率一般在几十毫瓦量级。效率也较低,一般在10%以下。 实验内容

实验装置如图5:

1.观察不同负载对微波传输的影响。

接通速调管电源,选定U R 及U 0,使在波导上输出一定功率的微波。在波导终端处分别装接短路金属板、全匹配负载及膜片负载,以及在终端敞口状态下,观察微波在波导内形成全驻波、行波和部分驻波的情形,参看图4,并利用测量线测定不同负载时的电

压驻波图形。注意在调试过程中,适当调节可变衰减器,以保证在实验过程中检波电流始终不超过电表量程。

2.波导波长的测定。

在波导终端装接短路金属板,由测量线可测定全驻波图形,显然两极小值或两极大值之间距离即为半波导波长λg / 2。但由于在极大值或极小值时读数误差较大,所以通常测λg 用等斜率法。具体方法就是在驻波图形上选一个斜率较大的电流示数值I (设I max =100μA ,则I 可选60μA 左右),移动探针,测出同相位的I 值所对应的位置L 1,L 2,…,L n +1,如图6所示,则

n

L L

n

i i

i g ∑=+-=

λ1

1

2

(11)

由(11)式即可求出λg 值。 3.微波频率的测定。

利用谐振腔波长计可直接测定微波频率。当波长计未调谐时,终端指示器(微安计)

图5 实验装置方框图

z

I

0.6I I max

max L L L L 1

2

3

4

图6 等钭率法测定波导波长

L

L L

图7 波导线上各点的电场分布 E

E M

有正常指示,当波长计调到谐振时,终端指示便显示一个尖锐的凹陷(微安计指示数减小),记下此时波长计刻度值,查找校正曲线,便可得到被测微波频率。

另外,利用公式(9)以及f = C / λ,将测得的λg 代入也可算出频率f 。在三公分微波系统中,2a = 45。72mm 。用两种方法测定频率。

4.驻波比和反射系数模的测定

晶体检波电流与微波电压之间并非简单的线性关系。而晶体二极管两端的电压正比于探针所在位置的电场强度,为了测定驻波比,必须测出晶体的检波特性曲线。

由终端短路时驻波图形可看出,在波导线上各点的电场分布为正弦形式,见图7,以节点为原点则可表示为: πλ?=2sin

g

m L

E E 其中0L L L -=? 因此微波的相对强度可由下式计算:

πλ?=2sin g

m L E E (12) 只要测出L 处的电压,作U ~

m

E E

图,即可得到晶体检波特性曲线。 在波导终端接待测负载,此时在波导上建立一定的驻波图形,用选频放大器测出U max 及U min 的数值,利用晶体检波特性曲线查出相应的微波相对强度,代入式(9)中即可算出电压驻波比S (因E 与V 成正比)。将S 代入式(10)中即可求出反射系数模ρ0。 思考题

1.波导测量线在波导宽边的中央开了一条很长的窄槽,此槽对波导内的电磁波有何影响?如果改在波导其它部位(包括窄边)开槽,将会引起什么结果?

2.设计一种测量介质衰减的测试电路。 3.试分析两种频率测量结果的误差。

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

大学物理实验报告范例

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量 【实验题目】长度和质量的测量

【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1 -(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺分度值的差值为:n x x n n x =-- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对 齐的刻线数k 和卡尺的分度值x/n 读取:n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ;对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退mm ,而微分筒每转一格时,测微螺杆前进或后退50=。可见该螺旋测微器的分度值为mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m =?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?= 。 【实验内容与步骤】(实验内容及主要操作步骤) 1. 米尺测XX 面积:分别测量长和宽各一次。 2. 游标卡尺测圆环体积:(1)记下游标卡尺的分度值和零点误差。(2)用游标卡尺测量圆环

《近代物理实验》教学大纲

《近代物理实验》教学大纲 一、课程名称与编号 课程名称:近代物理实验编号:023315 二、学时与学分 本课程学时:84 本课程学分:5学分 三、授课对象 物理学专业学生,第六、七个学期做 四、先修课程 力学、热学、电磁学、光学、原子物理学、高等数学 五、课程的性质和目的 科学实验是理论的源泉,是自然科学的根本,也是工程技术的基础。物理学是一门实验科学,所有物理定律的形成和发展都是建立在客观自然现象的观察和研究的基础上的,并以实验结果为检验理论正确与否的唯一标准,重要的物理实验常常是新兴科学技术的生长点。 《近代物理实验》是继《普通物理实验》和《无线电电子实验》后的一门重要实验基础课程,本课程所涉及的物理基础知识面较广,并具有较强的综合性和技术性。 本课程的主要目的是:通过近代物理实验,丰富和活跃学生的物理思想,培养学生敏锐的观察能力,分析、归纳和综合能力,掌握新技术的能力,创新意识和综合素质。引导学生了解物理实验在物理概念的产生、形成和发展中的作用,学习近代物理中的一些常用方法、技术、仪器等知识,使他们具备良好的实验素养,严谨的科学作风,求实的科学精神,并具备一定的独立工作能力和科学研究能力。 六、主要内容、基本要求及学时分配 讲授部分 1、绪论(2学时) 理解近代物理实验课的特点,了解课程的内容、任务和学习方法。了解一些实验的史料,加深对近代物理实验的了解。 2、实验的误差分析与数据处理(4学时) 在普通物理验实训练的基础上,继续巩固和加强有关实验误差和数据处理的训练。如泊松分布、曲线的拟合等,可通过讲授或落实到一些实验题目中进行。 3、理解近代物理实验仪器的工作原理、使用常识(2学时) 掌握实验中的注意事项,包括人身安全及防护、通用仪器的正常使用。理解使用特殊仪

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

南京大学校内资料——毛概重点例题。

南京大学政治系内部整理资料 《毛泽东思想和中国特色社会主义理论体系概论》 复习资料大全(共48页) 简答题、论述题、辨析题和材料题 1、怎样正确理解马克思主义中国化的科学内涵? 马克思主义中国化,就是将马克思主义的基本原理更进一步地同中国实践、中国历史、中国文化结合起来,使马克思主义在中国实现具体化。 马克思主义的基本原理同中国具体实际相结合的过程,一方面是在实践中学习和运用理论,用理论指导实践的过程;另一方面又是在总结实践经验的基础上深化对理论的认识并丰富和发展理论的过程。 第一,马克思主义中国化就是运用马克思主义解决中国革命、建设和改革的实际问题。第二,马克思主义中国化就是把中国革命、建设和改革的实践经验和历史经验提升为理论。第三,马克思主义中国化就是把马克思主义植根于中古的优秀文化之中。 2.怎样正确把握毛泽东思想、邓小平理论和"三个代表"重要思想各自的科学体系和主要内容(1)毛泽东思想的科学体系和主要内容。 1、新民主主义革命理论。2.社会主义革命和社会主义建设理论。3.革命军队建设和军事战略的理论。4.政策和策略的理论。5.思想政治工作和文化工作的理论。6.党的建设理论。7.还有关于国际战略和外交工作思想方法和工作方法的理论。三个基本方面:实事求是,群众路线,独立自主。 (2)邓小平理论的科学体系和主要内容。 1.社会主义本质理论。 2.社会主义初级阶段理论。 3.社会主义改革开放理论。 4.社会主义市场经济理论。 5.社会主义现代化发展战略、社会主义民主政治建设、社会主义精神文明建设、统一战线、军队和国防建设、社会主义国家外交战略、国家完全统一、党的建设等。 (3)"三个代表"重要思想的科学体系和主要内容。 1.始终代表中国先进生产力的发展要求。 2.始终代表中国先进文化的前进方向。 3.始终代表中国最广大人民的根本利益。“三个代表”是统一的整体,相互联系、相互促进。发展先进生产力是发展先进文化的基础,是实现最广大人民利益前提;发展先进文化是重要思想保证;发展先进生产力和先进文化,都是为了实现最广大人民的根本利益。 3、科学发展观主要内容和指导意义。 科学发展观,第一要义是发展,核心是以人为本,基本要求是全面协调可持续,根本方法是统筹兼顾。 科学发展观的第一要义是发展,其核心是以人为本。深刻理解以人为本,才能全面把握科学发展观的精神实质和科学内涵,切实做到以科学发展观统领经济社会发展全局,把科学发展观落到实处。第一,以人为本就是以最广大人民的根本利益为本。第二,以人为本体现了立党为公、执政为民的本质要求。第三,坚持发展为了人民、发展依靠人民、发展成果由人民共享。第四,把促进经济社会发展与促进人的全面发展统一起来。 科学发展观的基本要求是全面协调可持续发展。第一,科学发展观强调全面发展。全面发展,就是要以经济建设为中心,全面推进经济、政治、文化和社会建设,实现经济发展和社会全面进步。第二,科学发展观要求协调发展。协调发展,就是要努力做到"五个统筹",即统筹城乡发展、统筹区域发展、统筹经济社会发展、统筹人与自然和谐发展、统筹国内发展和对外开放,推进生产力和生产关系、经济基础和上层建筑相协调,推进经济、政治、文化和社会建设的各个环节、各个方面相协调。第三,科学发展观主张持续发展。可持续发展,就是要促进人与自然的和谐,实现经济发展和人口、资源、环境相协调,坚持走生产发展、生活富裕、生态良好的文明发展道路,保证一代接一代地永续发展。 科学发展观是推进社会主义现代化建设必须长期坚持的重要指导思想。1.科学发展观是同马克思列宁主义、毛泽东思想、邓小平理论和“三个代表”重要思想既一脉相承又与时俱进的科学理论。2.科学发展观是马克思主义关于发展的世界观和方法论的集中体现。3.科学发展观是我国经济社会发展的重要指导方针和发展中国特色社会主义必须坚持和贯彻的重大战略思想。 4.、如何科学理解中国特色社会主义理论体系?为什么说在当代中国坚持中国特色社会主义理论体系就是真正坚持马克思主义? 中国共产党在领导中国革命、建设和改革的长期实践中,实现了马克思主义同中国实际相结合的两次历史性飞跃,产生了两大理论成果。第一次飞跃的理论成果是毛泽东思想,是被实践证明了的关于中国革命和建设的正确的理论原则和经验总结。第二次飞跃的理论成果是中国特色社会主义理论体系,包括邓小平理论、“三个代表”重要思想以及科学发展观等重大战略思想,是马克思主义中国化最新成果。 在毛泽东思想指引下,中国共产党领导全国各族人民,取得了新民主主义革命的胜利,建立了人民民主专政的中华人民共和国;顺利地进行了社会主义改造,确立了社会主义基本制度;发展了社会主义的经济、

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

近代物理实验期末考试试题及答题要点

近代物理实验期末考试试题及答题要点 1.(实验名称:核衰变的统计规律) (1)测量G-M 计数管的坪曲线目的是什么? (2)某学生用G-M 计数管探测到某一放射源放射的粒子,每次测量的时间为30秒,共测量100次,测量数据如下表所示;用χ2检验方法判断测量结果是否服从泊松分布(2 19.49αχ-=)。已知泊松分布的 概率函数式为: ()P n =! n m m e n - 。 【答题要点】 (1) 检验G-M 管是否正常和确定工作电压。 (2) m=2.51,选用皮尔逊统计量作X 2检验,考虑到计算X 2值时每个区间的频数不能太少,于是把5i k >以上的数据合为一个区间,其余数据均可单独作为一个区间。因,100i i E NP N ==则 2.511 2.51(0)1008.1!0! m k m E k N e e k --===?= 1 2.512 2.51(1)10020.41! E k e -==?= 同理可得3(2)25.5E k ==;4(3)21.3E k ==;5(4)13.4E k ==;6(5)11.3E k >=可求得: 2 6 21() 2.12i i i i N E E χ=-==∑ 选定显著水平 a=0.05,查X 2分布表得2 19.49αχ-=。由于22 1αχχ-<,故可判断观测结果与泊松分 布无显著差异。 2.(实验名称:高真空的获得与测量) (1)真空的基本特点:1) 2) 3) 。 (2)衡量真空泵的两个重要指标是: 和 。 (3)某一真空系统当用机械泵抽到1.2×10-1Pa 后打开扩散泵,几分钟后真空度开始下降,直到几十Pa , 后又开始上升直到小于1×10-2Pa 。请解释这一现象。 【答题要点】 (1)真空空间气体分子密度极小,仅为大气压下分子密度的万亿分之一;气体分子或带电粒子的平均自由程极长;气体分子与固体表面碰撞的频率极低。 (2)极限压强; 抽气速率 (3)首先是油受热体积膨胀致使压强增大,真空度下降;当油蒸气遇到冷却水冷凝后,压强变小,真空

近代物理实验报告

近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料班级: 学号: 学生姓名: 实验教师: 2010-2011学年第1学期

实验1真空获得与真空测量 实验时间: 地点: 指导学生: 【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。 【关键词】镀膜机;机械泵;扩散泵;真空获得和测量 一、实验目的 1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法; 1.2、熟悉实验设备和仪器的使用。 二、实验仪器 JCP-350C 型热蒸发/磁控溅射真空镀膜机。 三、真空简介 3.1真空 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。其实真空应理解为气体较稀薄的空 间。在指定的空间内,低于一个大气压力的气体状态统称为真空。 3.2真空的等级 真空状态下气体稀薄程度称为真空度,通常用压力值表示。1958年,第一界国际技术 会议曾建议采用“托”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa)。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa ● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 35103331~100131???? ● 低真空 Pa 13103331~103331-???? ● 高真空 Pa 61 103331~103331--???? ● 超高真空 Pa 106103331~103331--???? ● 极高真空 Pa 10103331-??< 3.3获得真空的意义 获得真空不仅在科研、教学、工业以及人类生活中应用起到很大的作用,而且给人类的 整个社会文明的进步、财富创造以及科技创新都具有重大的意义。 3.4真空技术的应用 随着真空获得技术的发展,真空科学的应用领域很广,目前已经渗透到车辆、土木工程 呢、机械、包装、环境保护、医药及医疗机械、石油、化工、食品、光学、电气、电子、原

中国近现代史习题总结

下面是今年南大中国近现代史的部分考题 中国近代史 一. 名词解释:(5分*10个) 古德诺公车上书租界“进北攻南” “重点进攻” 胡适国民参政会《中国之命运》二二八起义国粹派 二. 论述题:(20分*5个) 1. 列强干涉中国近代政治的主要方式。 2. 1927-1937南京国民政府对日政策的脉络及其影响。 3. 抗战到解放时期中国土地政策的演变及其影响。 4. 1854-1861太平军与湘军争夺天京上游的主要阶段及战局特征。 5. 以戊戌变法和辛亥革命为例,分析改革与革命对中国现代化的影响。世界近代史(记不太全了) 考试科目:中国近代史 科目代码:451 一,名词解释(48) 买办、《资政新篇》、《马关条约》、时务学堂、袁世凯、整理国故、第三党、凇沪会战 二,材料解析题(18) 说明:1,标点2,根据材料分析洋务运动产生的原因3,结合所学知识和所列材料分析其历史局限性 材料1,窃思敌国外患正动心忍性之资居安思危乃制治保邦之要……古人抚驭四夷之法未款之先当有以杜其窥伺既款之后当有以绝其觊觎英法诸国自换约以来相安无事……惟念夷情叵测反复靡常利器精兵百倍中国其所以逞其贪纵者不过恃有长技耳长技为何一在战舰之精也一在机器之利也然彼有其战具我非不可以购求彼有其机巧我非不可以学习 《同治三年陈廷经奏》 材料2,洋人所图我者利也势也非真欲夺我土地也自周秦以后驭外之法征战者后必不继羁縻者事必久长今之各国又岂有异惟练兵制器相去太远正须苦做下学功夫做到那处说到那处吾师弟在位一日不得不于此致力一日耳 李鸿章《复曾相》 材料3,至谓鄙人喜闻谈洋务之言以致冒险负谤处今日喜谈洋务乃圣之时人人怕谈厌谈事至非张皇即卤莽鲜不误国公等可不喜谈鄙人若亦不谈天下赖何术以支持耶中国日若弱外人日骄此岂一人一事之咎过此以往能自强者尽可自立若不强则事不可知 李鸿章《复刘仲良中丞》 三,问答题(84) 1,试论晚清十年资产阶级民族民主运动的发生、发展对中国社会的影响 2,结合史实对1946年召开的政治协商会议做一述评 3,简析新中国成立后中国共产党对知识分子政策的变化 考试科目:中国近代史 科目代码:482 一,名词解释(5分一个) 洋行、天朝田亩制度、轮船招商局、三国干涉还辽、东南互保、中国通商银行 二,标点下列材料并进行评析(35) 惟念发捻炽于北发炽于南饷竭兵疲夷人乘我虚弱而为其所制如不胜其忿而与之为仇则有旦

近代物理实验试题复习进程

近代物理实验试题

近物实验面试考题 试题 真空镀膜 1.真空镀膜原理; 2.加热烘烤基片对膜的质量有什么影响? 3.基片性能、蒸发速度、蒸发时的真空度以及蒸发源与基片之间的距离等因素对膜的质量有什么影响? 4.轰击的物理作用? 5.真空镀膜的实验操作过程 霍尔效应 1.什么是霍尔效应; 2.若导体中同时有两种极性的载流子参与导电,其综合霍耳系数比单一载流子导电的霍耳系数是增大还是减小,为什么? 3.如何分离霍尔效应与其它效应? 4.霍耳系数误差因子0.69的说明? 5.实际测量与理论相差的原因? 红外分光测量 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收铺?为什么? 2.以亚甲基为例说明分子的基本振动形式。 3.何谓基团频率?它有什么重要性及用途? 4.红外光谱定性分析的基本依据是什么?简述红外定性分析的过程。

5.影响基团频率的因素有哪些? 6.何谓“指纹区”?它有什么特点和用途? 7.已知HCl在红外光谱中吸收频率为2993cm-1,试求出H-Cl键的键力常数。 红外光谱的用途? 一.真空的获得与测量 低真空获得过程中,用火花枪激发玻璃系统,呈现出紫色、分红色说明什么?1.低真空获得过程中,加热或激发被抽容器,压强升高说明什么? 2.激发或加热“热偶规”,压强减小说明什么问题? 3.低真空测量过程中压强起伏说明什么? 4.扩散泵油间歇沸腾的物理原因是什么? 5.前级泵能否将扩散泵油蒸汽抽走?为什么? 6.如何观察扩散泵油蒸汽流的喷发射程? 7.简述气体分子在高真空下的扩散过程。 8.突然停电或者结束机械泵的工作时,必须要做什么? 10.操作高真空的测量。 二. 汽液两相制冷机 1.F12冷凝器中发生的物理过程? 2.F12蒸发器中发生的物理过程? 3.环境温度对制冷机的影响? 4.制冷剂用量对制冷效果的影响? 5.工质的命名与定义? 6.在什么情况下,压缩机吸气管会结霜?

2016年南京大学硕士研究生入学考试《中国近现代史基础》真题及标准答案

2016年南京大学硕士研究生入学考试 《中国近现代史基础》真题 (总分:100.00,做题时间:180分钟) 一、名词解释(总题数:7,分数:35.00) 1.五口通商(分数:5.00) _________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 正确答案:( 根据中英《南京条约》规定英国强迫中国在沿海开放的5处通商口岸,包括广州、厦门、上海、宁波、福州。根据1842年中、英《南京条约》签订辟为通商口岸。后又制定《中英五口通商章程》进一步规定通商相关事宜。在英国之后美国、法国等也订立条约取得同样的权利,即《望厦条约》和《黄埔条约》。 ) 2.二次革命(分数:5.00) _________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 正确答案:( 1913年孙中山发动的反对袁世凯独裁统治的战争。又称讨袁之役、赣宁之役、癸丑之役。1913年初,宋教仁准备组织内阁。袁世凯为阻止国民党执政,派人暗杀了宋教仁。不久,宋案真相大白,孙中山动员起兵讨袁。袁世凯与五国银行团达成善后借款准备发动内战,消灭南方革命力量。李烈钧于江西湖口成立讨袁军,拉开了二次革命的序幕,江苏等地也相继独立,加入讨袁行列。结果讨袁军战败,二次革命宣告失败。 ) 3.学衡派(分数:5.00) _________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 正确答案:( 1922年出现的反对新文化运动的文化保守主义学派。因1922年在东南大学创办《学衡》月刊而得名。其主要成员有东南大学教师吴宓、梅光迪及胡先骑等人,他们都曾有过赴欧美留学的经历,故以"学贯中西,博古通今"相标榜,自称其刊物以"昌明国粹,融化新知"为宗旨。20世纪30年代初随着《学衡》杂志的停刊,该派最终解体。 ) 4.《时务报》(分数: 5.00) _________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

近代物理实验教程的实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054001 近代物理实验教程的实验报告Experimental report of modern physics experiment course

工作报告| Work Report 实验报告近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算), 第2页

近代物理镀膜机实验报告

物理学本科专业近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料 班级:*** 学号:*** 学生姓名:*** 实验教师:*** 2014-2015学年第1学期

实验1真空获得与真空测量 地点:福煤实验楼D 栋405 【摘要】本文介绍了真空技术的有关知识,阐述了低真空和高真空的获得与测量方法。 【关键词】机械泵;扩散泵;真空技术;低真空;高真空;获得与测量 1.实验目的 (1)了解真空技术的基本知识。 (2)掌握真空获得和测量的方法。 (3)熟悉有关设备和仪器的使用方法。 2. 实验原理 2.1真空知识 2.1.1真空的概念及真空的区域划分 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。所谓真空,指的是压强比一个标准大气压更低的稀薄气体状态的空间。气体稀薄的程度称为真空度,通常用气体压强的大小来表示。气体越稀薄,气体压强越小,真空度越高;反之,则真空度越低。 1958年,第一界国际技术会议曾建议采用“托”(Torr )作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa )。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 3 5103331~100131???? ● 低真空 Pa 1 3 103331~103331-???? ● 高真空 Pa 61103331~103331--???? ● 超高真空 Pa 106 103331~10 3331--???? ● 极高真空 Pa 10 103331-??< 2.1.2真空技术的发展及应用 十九世纪初,利用低真空产生压力差的原理发明了真空提升、真空输送、吸尘、过滤、成形等技术。1879年爱迪生发明白炽灯,抽出灯泡中化学成份活泼的气体(氧、水蒸汽等),防止灯丝在高温下氧化.同年,克鲁克斯发明阴极射线管,第一次利用真空下气体分子平均自由程增大的物理特性.后来,在电子管、电视管、加速器、电子显微镜、镀膜、蒸馏等方面也都应用了这一特性.1893年发明杜瓦瓶,这是真空绝热的首次应用. 真空技术在二十世纪得到迅速发展,并有广泛的应用。二十世纪初,在真空获得和测量的设备方面取得进展,如旋转式机械泵,皮氏真空计,扩散泵,热阴极电离真空计的发明,为工业上应用高真空技术创造了条件.接着,油扩散泵,冷阴极电离真空计的出现使高真空

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

近代物理实验报告

近代物理实验报告

2019/8/9 18:29:00近代物理实验报告2 实验名称:铁磁共振 指导教师:鲍德松 专业:物理 班级:求是物理班1401 姓名:朱劲翔 学号:3140105747 实验日期:2016.10.19

实验目的: 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间 τ。 实验原理: 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕 着外磁场方向作进动。当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B ρ 和微波磁 场1B ρ的作用后,磁矩的进动情况将发生重要的变化。一方面,恒磁场0B ρ 使铁磁场物质 被磁化到饱和状态,当磁矩M ρ 原来平衡方向与0B ρ有夹角θ时,0B ρ使磁矩绕它的方向作进动,频率为h B g B H μν=;另一方面,微波磁场1B ρ强迫进动的磁矩M ρ随着1B ρ的作用

而改变进动状态,M ρ 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B ρ作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时,且微波 频率ν=H ν时,耦合到M ρ的能量刚好与M ρ 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B ρ(即0H ρ )和微波磁场1B ρ(即h ρ)的作用下,其进动方程可写为: dt M d ρ = -γ(M ρ×H ρ)+ T ρ (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B ρ(即H ρ)为恒磁场0B ρ(即0H ρ)和微波 磁场1B ρ(即h ρ)合成的总磁场,T ρ 为阻尼力矩,此系统从微波磁场1B ρ中所吸收的全部 能量,恰好补充铁磁样品通过某机制所损耗的能量。阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。 图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡

相关文档
相关文档 最新文档