文档库 最新最全的文档下载
当前位置:文档库 › 汽轮机轴系监测系统

汽轮机轴系监测系统

汽轮机轴系监测系统
汽轮机轴系监测系统

汽轮机轴系监测系统概述

汽轮机轴系监测系统作为热工保护内容的一部分,是实现汽轮机组运行自

动化的机组运行自动化的基础,是保证汽轮机组安全经济运行的必备装置。汽

轮机轴系监视保护项目主要包括:汽轮机振动的监测、转子轴向位移监测、转

速监测、缸胀及胀差监测、偏心监测等。由于各个汽轮机机组的形式、结构以

及组成不尽相同,因而不同形式的汽轮机所配置的监视和保护装置,其项目和

要求也不尽相同。

汽轮机轴系监测(TSI)系统基本参数

(一)、动态运行(振动)参数

1.振幅

振幅是表示机组振动严重程度的一个重要指标,它可以用位移、速度或加

速度表示。根据振幅的监测,可以判断“机器是否平稳运转”。

以前对机组振动的检测,只能测得机壳振幅,虽然机壳振幅能表明某些机

械故障,但由于机械结构、安装、运行条件以及机壳的位置等,转轴与机壳之

间存在着阻抗,所以机壳的振动并不能直接反映转轴的振动情况,因为机壳振

动不足以作为机械保护的合适参数,但是机壳振动通常作为定期监测的参数,

能及早发现叶片共振等高频振动的故障现象。由于接近式传感器能够直接测量

转轴的振动状态,所以能够提供机组振动保护的重要参数,把接近式电涡流传

感器永久的安装在轴承架上,便能随时观测到转轴相对于轴承座的振幅。振动

幅值一般以峰—峰密耳位移值或峰—峰微米位移值表示。一台运行正常的机组的振幅值都是稳定在一个允许的限定值。一般来说,振幅值的任何变化都表明

机械状态有了改变。机组的振幅无论增加或减少,操作和维修人员均应对机组

作进一步调查分析。

2.频率

汽轮发电机组等旋转机械的振动频率(每分钟周期数),一般用机械转速的

倍数来表示,因为机械振动频率多以机械转速的整数倍和分数倍形式出现的。

这是表示振动频率的一种简单的方法,只把振动频率表示为转速的一倍、二倍

或1/2倍等,而不用把振动频率分别表示为每分钟周期数或赫兹。

在汽缸测量中,振幅和频率是可供测量和分析的惟一主要参数,所以频率

分析在汽缸振幅测量中是很重要的。而且某些故障现象确实与一定的频率有关。但是,并不能说频率与故障有一一对应关系,也就是说,一种特定频率的振动

往往与一种以上的故障有关。频率是分析旋转机械的一种重要资料,但必须综

合分析所有的数据,才能对机器作出正确的诊断。

表示频率的常用办法为:

l倍转速频率:振动频率与机器转速相同。

2倍转速频率:振动频率二倍于机器转速。

1/2倍转速频率:振动频率为机器转速的一半。

0.43倍转速频率:振动频率为机器转速的43%。

要注意区分两种不同的振动,即同步振动和非同步振动。同步振动的频率

是机器转速的整数倍或整分数倍,例如1倍频转速,2倍频转速,1/2倍频转速,1/3倍频转速等。在这些例子中,振动频率与机械转速是“锁定”关系。非同

步振动则发生在非“锁定”频率。

3.相位角(相角)

相位角测量是描述转子在某一瞬间所在位置的一种方法。一个好的相位角

测量系统能够确定对应于每个变换器的转子的高点的位置,这个高点的位置是

相对于机组上某固定点而言的,通过确定旋转体上高点的位置,就能确定转子

的平衡状态及残余不平衡量的位置。或者说,由于高点的改变而导致的转子的

平衡状态的改变会显示为相位角的改变。精确的相位角测量在转子的平衡中及

分析某些机器故障是非常重要的。整个机组上的各变换器所对应的转子的相位

角测量,为机组运行状态及时地提供了重要信息,有助于分析问题。

测量转子相位角的准确和可靠的方法是键相位法。以键相位(轴上的固定标志)作为参考基准时,相位角被定义为从键相位脉冲到振动的第一正向峰值之问的角度数。振动信号经过变换器输出所显示的第一正向峰值相当于转子的“高点”。为了能精确地读出相位角值,需要把变换器输出的振动信号,经滤波后

变成与转速成一倍频关系的信号,然后仪器才能准确地测量和显示相位的角值。

(二)、静态参数(位置测量)

1.轴向位移

轴向位移是推力环对推力轴承的相对位置测量值,轴向位移是汽轮机组最

重要的监测参数之一。监测轴向位移的主要目的是要避免转子与定子之间产生

轴向摩擦。轴向推力轴承的故障可能产生灾难性的后果。因此,要千方百计防

止这种机械故障发生。

要注意仔细选择传感器的安装位置,确保转轴的热膨胀和推力轴承组件的

弹性对仪表读数的影响减至最低限度。由于推力轴承组件的偏差和转轴热膨胀,以至在正常运行条件下,转轴的轴向位移比冷态时的正常浮动还宽。转子与定

子之间有足够的轴向间隙,因此,可采用宽设定点。即使推力环剧烈地摩擦推

力轴承的巴氏合金衬套,也不至引起转子与定子的摩擦。汽轮机在正常运行条

件下,轴向位移也会随机械负荷而改变,因此,轴向位移在允许在一定范围内

变化的。

2.相对膨胀(差胀)

对于大型汽轮机机组,要求启动时汽缸和转子必须以同样的比率受热膨胀。如果转子与汽缸受热膨胀的比率不同,就可能产生轴向摩擦而使机器受到损害。为了测量胀差,要把接近式电涡流传感器安装在机器工作面相反的一侧,在该

处可以观测到汽缸和转子之间的相对膨胀。

3.汽缸绝对膨胀

对大型机组,除了测量胀差以外,还要进行汽缸相对于地基膨胀的测量,

这种汽缸的膨胀称为绝对膨胀。其测量通常由安装在汽缸外部、以地基为参考

基准的线性差动变压器进行的。测得了汽缸膨胀和差胀,就可以确定转子和汽

缸膨胀率的快慢。如果汽缸膨胀不正常,就可以判断汽缸的“滑销”不畅或卡住。

汽轮机监视仪表TSI与保护系统ETS调试方案

汽轮机监视仪表T S I与保 护系统E T S调试方案 The following text is amended on 12 November 2020.

XXXXXXXXXX公司热能中心节能降耗 技改工程 汽轮机监视系统及汽轮机保护系统调试方案编写: 审查: 审批: XXXXX技术服务有限公司 2011年9月

目录

1设备系统概述 1.1系统简介: 汽轮机监视仪表系统(TSI)由无锡市厚德自动化仪表公司供货。TSI装置采用 HZD8500D监控保护系统,8500D 旋转机械保护系统系统机箱左下方四个槽位依次为系统电源2 个和8 位继电器模块2 个,其它槽位可安装功能模块,16 位继电器模块建议靠右放。系统采用双路冗余式电源,通讯控制模块采用32 位嵌入式处理器、7 英寸触摸显示屏,其运行速度快、工作可靠,采用图形用户界面,操作简单、友好方便。 ETS即汽轮机危急遮断系统,它接受来自TSI系统或汽轮发电机组其它系统来的报警或停机信号,进行逻辑处理,输出报警信号或汽轮机遮断信号。为了使用方便运行可靠,采用DEH一体化进行逻辑处理。该装置能与DEH系统融为一体,满足电厂自动化需求。 1.2系统功能简介: 汽机TSI主要监视参数有:轴向位移、偏心、键相、轴振、缸胀等。机组TSI输出的跳闸信号送入ETS中,报警信号和模拟量信号送入DCS、DEH(505控制器)。 ETS系统的相关设备主要包括保护柜,信号采样元件等。ETS逻辑还具有首出记忆功能,汽机保护紧急跳闸功能。 2编制依据 a)《防止电力生产事故的二十五项重点要求》国能安全[2014]161号。 b)《电力建设施工技术规范第4部分:热工仪表及控制装置》DL —2012 c)《电力建设施工质量验收及评价规程第4部分:热工仪表及控制装置》DL/T —2009。 d)《火力发电建设工程机组调试质量验收及评价规程》DL/T 5295—2013。 e)《火力发电建设工程启动试运及验收规程》DL/T 5437—2009。 f)《火力发电厂分散控制系统验收测试规程》DL/T 659—2006。 g)《火力发电厂热工自动化系统检修运行维护规程》DL/T 774—2015。 h)《火力发电厂汽轮机监视和保护系统验收测试规程》DL/T 1012—2006。 i)设计单位提供的有关I/O清册、汽轮机生产厂家提供TSI、ETS设计说明书、机柜接线图等技术资料。 3调试目的及范围 3.1调试范围

汽轮机轴系监测系统

汽轮机轴系监测系统概述 汽轮机轴系监测系统作为热工保护内容的一部分,是实现汽轮机组运行自 动化的机组运行自动化的基础,是保证汽轮机组安全经济运行的必备装置。汽 轮机轴系监视保护项目主要包括:汽轮机振动的监测、转子轴向位移监测、转 速监测、缸胀及胀差监测、偏心监测等。由于各个汽轮机机组的形式、结构以 及组成不尽相同,因而不同形式的汽轮机所配置的监视和保护装置,其项目和 要求也不尽相同。 汽轮机轴系监测(TSI)系统基本参数 (一)、动态运行(振动)参数 1.振幅 振幅是表示机组振动严重程度的一个重要指标,它可以用位移、速度或加 速度表示。根据振幅的监测,可以判断“机器是否平稳运转”。 以前对机组振动的检测,只能测得机壳振幅,虽然机壳振幅能表明某些机 械故障,但由于机械结构、安装、运行条件以及机壳的位置等,转轴与机壳之 间存在着阻抗,所以机壳的振动并不能直接反映转轴的振动情况,因为机壳振 动不足以作为机械保护的合适参数,但是机壳振动通常作为定期监测的参数, 能及早发现叶片共振等高频振动的故障现象。由于接近式传感器能够直接测量 转轴的振动状态,所以能够提供机组振动保护的重要参数,把接近式电涡流传 感器永久的安装在轴承架上,便能随时观测到转轴相对于轴承座的振幅。振动 幅值一般以峰—峰密耳位移值或峰—峰微米位移值表示。一台运行正常的机组的振幅值都是稳定在一个允许的限定值。一般来说,振幅值的任何变化都表明 机械状态有了改变。机组的振幅无论增加或减少,操作和维修人员均应对机组 作进一步调查分析。 2.频率 汽轮发电机组等旋转机械的振动频率(每分钟周期数),一般用机械转速的 倍数来表示,因为机械振动频率多以机械转速的整数倍和分数倍形式出现的。 这是表示振动频率的一种简单的方法,只把振动频率表示为转速的一倍、二倍 或1/2倍等,而不用把振动频率分别表示为每分钟周期数或赫兹。 在汽缸测量中,振幅和频率是可供测量和分析的惟一主要参数,所以频率 分析在汽缸振幅测量中是很重要的。而且某些故障现象确实与一定的频率有关。但是,并不能说频率与故障有一一对应关系,也就是说,一种特定频率的振动

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

汽轮机监视仪表(TSI)与保护系统(ETS)调试方案

XXXXXXXXXX公司热能中心节能降耗 技改工程 汽轮机监视系统及汽轮机保护系统调试案编写: 审查: 审批: XXXXX技术服务有限公司

2011年9月 目录 1 设备系统概述 (1) 2 编制依据 (1) 3 调试目的及围 (2) 4 调试前具备的条件 (3) 5 调试法及步骤 (5) 6调试的控制要点及安全注意事项 (8) 7 调试质量验收标准 (8) 8 调试组织与分工 (8) 9调试仪器............................................................................. 错误!未定义书签。10附录.................................................................................. 错误!未定义书签。

1设备系统概述 1.1系统简介: 汽轮机监视仪表系统(TSI)由市厚德自动化仪表公司供货。TSI装置采用HZD8500D监控保护系统,8500D 旋转机械保护系统系统机箱左下四个槽位依次为系统电源2 个和8 位继电器模块2 个,其它槽位可安装功能模块,16 位继电器模块建议靠右放。系统采用双路冗余式电源,通讯控制模块采用32 位嵌入式处理器、7 英寸触摸显示屏,其运行速度快、工作可靠,采用图形用户界面,操作简单、友好便。 ETS即汽轮机危急遮断系统,它接受来自TSI系统或汽轮发电机组其它系统来的报警或停机信号,进行逻辑处理,输出报警信号或汽轮机遮断信号。为了使用便运行可靠,采用DEH 一体化进行逻辑处理。该装置能与DEH系统融为一体,满足电厂自动化需求。 1.2系统功能简介: 汽机TSI主要监视参数有:轴向位移、偏心、键相、轴振、缸胀等。机组TSI输出的跳闸信号送入ETS中,报警信号和模拟量信号送入DCS、DEH(505控制器)。 ETS系统的相关设备主要包括保护柜,信号采样元件等。ETS逻辑还具有首出记忆功能,汽机保护紧急跳闸功能。 2编制依据 a) 《防止电力生产事故的二十五项重点要求》国能安全[2014]161号。 b) 《电力建设施工技术规第4部分:热工仪表及控制装置》DL 5190.4—2012 c) 《电力建设施工质量验收及评价规程第4部分:热工仪表及控制装置》DL/T 5210.4—2009。 d) 《火力发电建设工程机组调试质量验收及评价规程》DL/T 5295—2013。 e) 《火力发电建设工程启动试运及验收规程》DL/T 5437—2009。 f) 《火力发电厂分散控制系统验收测试规程》DL/T 659—2006。 g) 《火力发电厂热工自动化系统检修运行维护规程》DL/T 774—2015。 h) 《火力发电厂汽轮机监视和保护系统验收测试规程》DL/T 1012—2006。 i) 设计单位提供的有关I/O清册、汽轮机生产厂家提供TSI、ETS设计说明书、机柜接线图等技术资料。

轴系扭振

电信号扰动下的轴系扭振 摘要 本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。 关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动 1.引言 转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。 当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法 (TMM)解决频域内的动态问题。TMM使用了一种匹配过程,即从系统一侧的边界条 1

汽轮机轴系振动故障研究汇总

汽轮机轴系振动故障研究 汽轮机轴系振动故障研究汽轮发电机组是电厂中的重要设备,而汽轮发电机组的振动严重威胁着汽轮发电机组的安全运行。机组运行中,轴系振动最常见的后果是导致机组无法升速到工作转速,个别情况下,轴系振动大会造成汽轮发电机组设备损害事故,如动静摩擦等引起大轴弯曲,支持轴承的乌金破碎或严重磨损,甚至转子断裂。例如2001年广东省就有3台大型机组发生高压转子永久弯曲事故。1988年,某电厂600MW引进机组发生高压缸叶片断裂重大事故,直接损失2400万元,此外近几年运行中叶片断裂事故也逐渐增多,如果不即时发现并确切诊断,则很可能造成大面积叶片断裂,而引发大轴弯曲或飞车事故,此类事故不胜枚举,不仅间接直接经济损失巨大,而且更严重的是影响机组的寿命,威胁生命安全。本人根据自己现场工作经验,列出常见的振动原因,及其如何在运行和检修中防范。 第一章机组振动故障诊断 第一节质量不平衡 转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。随着制造厂加工,装配精度以及电厂检修质量的提高,这类故障的发生率正在逐渐减少,过去国内大型汽轮机厂中只有个别厂家可以对大型汽轮机转子进行高速动平衡,现在几乎全部厂家都可以做。至于发电机转子的高速平衡,各电机厂早已能够进行。现场检修过程中的转子平衡方法也在不断改进。低速动平衡有些电厂已经抛弃了老式的动平衡机,取而代之是使用先进的移动式动平衡机。即便如此质量不平衡目前仍是现场振动的主要故障。 一.转子质量不平衡的一般特征 (1)量值上,工频振幅的绝对值通常在30um以上,相对于通频振幅的比例大于80% (2)工频振幅为主的状况应该是稳定的这包括 1) 各次启机 2) 升降速过程 3) 不同的工况,如负荷,真空,油温,氢压,励磁电流

汽轮机找中心经验

转子中心测量时已经是对汽轮机转子的扬度调整好后进行,通常以汽轮机转子为基准来找发电机转子的中心,这时主要考虑的是圆周值和端面值,圆周值当然是越小越好,我们做的时候一般控制在0.02mm以下,同时还要考虑汽轮机和发电机运行时各转子向上位移的膨胀量,来修正发电机转子是抬高还是要降低,端面值的要求也就可以决定是要求上开口还是要求下开口,我们做一般是保证左右开口为零,上下开口保证在2丝以内,这样在过临界时基本很少有振动增加。同时制造厂的相关资料也可以为我们的测量做出一些参考。 对轮中心做成上张口还是下张口要根据机组的具体形式而定。比如:三支点两转子找中心,一般都做成下张口,具体数值有厂家提供,这是从轴承负荷分配决定的。凝汽机组找中心一般做成上张口,是由于再找中心时凝汽器内有没有充水以及真空形成后后汽缸会下沉等因素决定的。总之,对轮找中心要根据具体情况具体分析,没有固定数值要求,要结合安装使用说明书和机组具体运行状态去做,才能打到满意效果。 在安装中找中心一般是在冷态下,与各机组的情况有关,不能一概而论,小机组转子是双支点轴承支撑,考虑运行中前轴承箱受热膨胀比后轴承箱多一般考虑上开口,此外,冷凝器的连接方式也有关系,有的是弹性连接没有太大的影响,有的是刚性连接,在找中时应灌水。而大机组采用双转子三轴承支撑,为了轴承负荷分配,一般制造厂家均有下开口的要求。关健在于热态运行中轴系要成为一条连续的光滑曲线,不能死搬教条,要根据不同情况进行调整。 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法: 1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬

汽轮机监视仪表TSI与保护系统ETS调试方案word精品

. XXXXXXXXXX公司热能中心节能降耗 技改工程 汽轮机监视系统及汽轮机保护系统调试方案编写: 审查: 审批: XXXXX技术服务有限公司 2011年9月

. 目录 1 设备系统概 述 (1) 2 编制依 据 (1) 3 调试目的及范 围 (1) 4 调试前具备的条 件 (3) 5 调试方法及步 骤 (5) 6调试的控制要点及安全注意事 项 (8) 7 调试质量验收标 准 (8) 8 调试组织与分 工 (8) 9调试仪器 ....................................... 错误!未

定义书签。 10附录 .......................................... 错误!未定义书签。 . . 1设备系统概述 1.1系统简介: 汽轮机监视仪表系统(TSI)由无锡市厚德自动化仪表公司供货。TSI装置采用HZD8500D监控保护系统,8500D 旋转机械保护系统系统机箱左下方四个槽位依次为系统电源2 个和8 位继电器模块2 个,其它槽位可安装功能模块,16 位继电器模块建议靠右放。系统采用双路冗余式电源,通讯控制模块采用32 位嵌入式处理器、7 英寸触摸显示屏,其运行速度快、工作可靠,采用图形用户界面,操作简单、友好方便。ETS即汽轮机危急遮断系统,它接受来自TSI系统或汽轮发电机组其它系统来的报警或停机信号,进行逻辑处理,输出报警信号或汽轮机遮断信号。为了使用方便运行可靠,采用DEH一体化进行逻辑处理。该装置能与DEH系统融为一体,满足电厂自动化需求。 1.2系统功能简介: 汽机TSI主要监视参数有:轴向位移、偏心、键相、轴振、缸胀等。机组TSI 输出的跳闸信号送入ETS中,报警信号和模拟量信号送入DCS、DEH(505控制器)。ETS系统的相关设备主要包括保护柜,信号采样元件等。ETS逻辑还具有首出记忆功能,汽机保护紧急跳闸功能。 2编制依据 a) 《防止电力生产事故的二十五项重点要求》国能安全[2014]161号。 b) 《电力建设施工技术规范第4部分:热工仪表及控制装置》DL 5190.4—2012 c) 《电力建设施工质量验收及评价规程第4部分:热工仪表及控制装置》DL/T 5210.4—2009。 d) 《火力发电建设工程机组调试质量验收及评价规程》DL/T 5295—2013。 e) 《火力发电建设工程启动试运及验收规程》DL/T 5437—2009。 f) 《火力发电厂分散控制系统验收测试规程》DL/T 659—2006。 g) 《火力发电厂热工自动化系统检修运行维护规程》DL/T 774—2015。 h) 《火力发电厂汽轮机监视和保护系统验收测试规程》DL/T 1012—2006。 i) 设计单位提供的有关I/O清册、汽轮机生产厂家提供TSI、ETS设计说明书、

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

汽轮机监视仪表设备的安装与调试方法研究

汽轮机监视仪表设备的安装与调试方法研究 发表时间:2019-05-20T11:00:23.250Z 来源:《电力设备》2018年第34期作者:代超[导读] 摘要:在现代化工生产过程中,汽轮机监控仪表的使用较为普遍,但在监控仪表的安装调试过程中,但是总是存在一些问题。 (天津蓝巢电力检修有限公司天津市 300380)摘要:在现代化工生产过程中,汽轮机监控仪表的使用较为普遍,但在监控仪表的安装调试过程中,但是总是存在一些问题。因此,本文就汽轮机监视仪表设备的安装与调试方法进行了研究。 关键词:汽轮机;监视仪表设备;安装;调试方法前言 汽轮机监视仪表,简称TSI(turbine supervisor instrument),是一种连续测量汽轮机转速、振动、膨胀、位移等机械参数,并将测量结果送入控制系统、保护系统等用于控制变量及运行人员监视的自动化系统。TSI系统的可靠性对机组安全运行有着举足轻重的影响,TSI系统工作异常会导致汽轮机保护误动或者拒动,有可能导致严重的安全事故。因此,TSI系统的安装调试就显得尤其重要。 1汽轮机监控仪表校验安装方法 1.1传感器安装 为了能够对汽轮机运行状态行检测,在汽轮机监控仪表的传感器中,传感器主要包括转速传感器、轴振传感器、轴位移传感器、胀差传感器等功能型传感器。转速传感器主要目的在于对汽轮机的运转速度进行采集,由于传感器生产厂家的不同,传感器的安装位置也各不相同,其中零转速、超速、DEH转速等根据需要一般会安装在前箱齿轮盘支架之上,转速探头则需要控制与齿端的距离,从而保证转速探头对汽轮机转速的读取。轴振传感器是利用力学原理,对汽轮机纵方向和横方向上的振动进行合成,从而获得汽轮机的轴心轨迹。在进行轴振传感器安装时,通常会将传感器的探头安装在轴承外壳上,保证探头与轴承形成一体,从而准确探测轴振情况。此外,由于轴的垂直方向和水平方向的振动规律没有一定的联系,因此两个方向都需要安装传感器探头,并保证互相垂直,同时控制安装间隙的电压。轴位移传感器负责测量轴承和气缸之间的轴向位移变化。在汽轮机运行过程中,为了能够避免汽轮机内部转动部件和静止部件由于摩擦碰撞造成损坏,需要使二者在运行时始终保持间隙。在进行传感器安装之前,工作人员需要将大轴推至零位,并保证安装过程中大轴始终保持静止,避免发生错误轴向警报。胀差传感器主要负责汽轮机转子和气缸之间存在的相对热增长,避免因差值超过标准值发生摩擦损坏机体。在进行传感器安装时,工作人员应当保证胀差可以实现双锥头测量,从而将两个探头相互衔接,并减掉其中一个前置器,调整线性,完成安装。在进行双锥面测量时,工作人员需要调节传感器旋钮,使托板旋死在机尾,再对机尾探头和机头探头进行电压装。 1.2安装间隙控制 安装间隙的控制是汽轮机监控仪表安装过程中传感器功能实现的重要步骤,在轴向位移传感器和胀差传感器等重视参数的传感器安装过程中,安装间隙的控制尤为重要。一般情况下,传感器在出厂时,厂家会根据传感器特点给出具体的安装间隙,从而为汽轮机安装人员提供数据支持,但是在实际安装中,工作人员需要根据汽轮机的工作原理进行间隙的确定。以轴承传感器的安装为例,轴承传感器的测量一般分为X方向与Y方向上的振动,因此传感器对应的测量宽度应该为传感器直径的三倍左右,并且保证传感器在一定的空间范围内不应存有其他金属物体,防止出现误差。在安装过程中,安装间隙的电压一般依靠特性曲线的特形中点位来确定,灵敏度为7.8V的探头,安装间隙电压需要为-9.75V,对于传感器来说,传感线形电压范围应当大于测量范围,因此安装间隙允许存在较大偏差,在该灵敏度的传感器中,安装电压维持在9.75±0.2V即可。 1.3量值传递 在监控仪表的安装过程中,为了保证系统监测数据的准确性,需要对影响系统量值的环境因素进行判断。首先,汽轮机处于相对高温的环境之下,监控仪表的延伸电缆、前置器则会在高温影响之下发生接线、探头的松动,造成接触不良,造成信号波动异常;其次,在电缆使用超出既定寿命或接地不规范,电缆陈旧、损坏会导致干扰信号传入,影响监控信号的准确性;最后,汽轮机如果处于较强的磁场当中,那么在受到磁场的影响之下探头会出现信号获取失灵的情况,影响监控仪表的使用。因此在安装过程中,安装人员需要对汽轮机的特点和使用环境进行判断,并在检修、维护的过程中,不定期地进行分析。 2具体调试要点(1)依据收集到的TSI机柜接线端子图、探头就地转接柜端子图,IO清册检查TSI系统涉及的所有接线,确保与相应图纸一致。在查线过程中也要对图纸进行深入的审查,确保图纸设计符合现场工程实际。对于发现的问题及时联系厂家、施工单位、设计院等相关单位整改处理。 (2)对所有探头及对应前置器的校验报告进行检查,需要关注检测报告的出具单位是否具备相应的检测资质,探头有无漏检,探头检测内容和款项及精度结果是否满足工程使用要求等。 (3)配合厂家完成TSI机柜的受电及复原。主要记录TSI机柜的接地电阻,输入电源、电源熔丝等级、电源冗余切换试验结果等信息。送电前应再次检查确认TSI系统机柜的输入信号线及内部接线有无短路现象,确保设备及人身安全。 (4)TSI系统组态逻辑的检查。TSI机柜受电复原后,可以通过调试电脑连接TSI系统对内部组态逻辑进行检查。主要根据TSI探头校验报告、TSI保护定值、TSI控制逻辑说明等资料对各探头的量程、灵敏度、探头类型、报警值、跳机值、延迟时间、转速信号是否独立表决等设置信息进行逐一检查确认,确保TSI组态与设计相符,能够满足系统安全可靠运行。 (5)探头安装情况的检查。逐个检查探头与前置器是否配套,是否安装在正确的支架和位置。探头固定时的间隙和前置器电压必须符合厂家的技术要求。某机组的TSI系统为Bently3500,以此为例作简单介绍。转速探头型号为3300XL-8mmProximitor,安装间隙要求为1.0mm,允许安装误差±0.1mm。轴向位移探头型号为3300XL-11mmProximitor,轴振探头型号为3300XL-8mmProximitor,键相探头型号为Proximitor,安装要求均为前置器返回电压-10V,允许误差为±0.1V。瓦振探头型号为92002-wireSeismoprobe,安装时只要紧贴汽轮机轴瓦表面,固定牢靠即可。 (6)条件允许的情况下可以,可以用便携式探头校验仪在就地对探头进行回路精度校验,同时验证轴向位移、轴振、瓦振、转速、偏心等探头的报警和跳机值,看TSI的继电器能否正常动作,输出跳机信号。必要时可以在TSI控制器组态内根据回路校验结果做相应的修正以提高测量精度。

防止汽轮机组轴系断裂事故措施实用版

YF-ED-J4418 可按资料类型定义编号 防止汽轮机组轴系断裂事故措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

防止汽轮机组轴系断裂事故措施 实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1、加强机组停机时的保养工作,防止各类 腐蚀的产生。 (1)停机时确保机组和外界蒸汽和疏水系 统可靠隔离。 (2)停机时间较长时,要排净各加热器、 冷却器及凝汽器的汽侧及水侧的积水。 (3)停机时间较长,机组汽缸温度冷却到 接近室温且空气湿度较大时,应对汽轮机通流 部分采用防腐措施。 2、加强对汽水品质的监督,确保汽水品质

应符合要求。 3、严格规范运行操作,杜绝超速和运行不当的发生,防止轴系断裂。 (1)严格按运行规程要求的启停方式和启停曲线执行,减少和降低由于机组启停方法不当产生的过大热应力。 (2)机组运行的主、辅设备的保护装置必须正确投入,在机组启动和停机过程中振动保护必须投入运行。 (3)在机组正常运行过程中,必须有完善的保证振动保护正确动作的措施,确保不发生误动,机组正常运行时轴瓦振动、轴振动应达到有关标准的优良范围,即轴瓦振动≤ 0.025mm,轴振≤0.075mm,并注意监视变化趋势。

船舶轴系扭振计算步骤2006

船舶轴系扭振计算 1 已知条件 轴系原始资料 2 当量系统 2.1惯量计算(或给定) 2.2 刚度计算(或给定) 2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表) 当量系统参数

3 固有频率计算(自由振动计算并画出振型图) Holzer表 4 共振转速计算 5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算

步骤2:计算第1惯性圆盘的平衡振幅 步骤3:计算各部件的动力放大系数

步骤4:求总的放大系数 d r s p e Q Q Q Q Q Q 111111++++= 步骤5:计算第1质量的振幅 A =Q ×A 1st 步骤6:轴段共振应力计算 101,A k k ?=+ττ 步骤7:共振力矩计算 步骤8:非共振计算 2 22 2 1111??? ? ??+??? ???????? ? ??-= c c st n n Q n n A A 步骤9:扭振许用应力计算(按CCS96规范) 步骤10:作出扭振应力或振幅-转速曲线 能量法计算步骤: 步骤1 相对振幅矢量和的计算(如为一般轴系,可省略) 步骤2 激励力矩计算M v (若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定) 步骤3:激励力矩功的计算 ∑=k T A M W απν1 步骤4:阻尼功的计算 各部件的阻尼功

部件外阻尼功的计算: 步骤5:阻尼力矩功W c 的计算(为系统各部件总阻尼功之和) +++++=cr cs cp cd ce c W W W W W W 步骤6:求第1质量振幅A1 c T W W A = 1 步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表:

汽轮机找中心要点

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

(完整版)船舶动力装置轴系设计计算

轴系强度计算 在推进装置中,从主机(机组)的输出法兰到推进器之间以传动轴为主的整套设备称为轴系。轴系的基本任务是:连接主机(机组)与螺旋桨,将主机发出的功率传递给螺旋桨,同时又将螺旋桨所产生的推力通过推力轴承传给船体,以实现推进船舶的使命。 当机舱位置确定,主机布置好后,即可考虑轴系设计和布置。 4.1轴系的布置 4.1.1传动轴的组成和基本轴径 传动轴一般由螺旋桨轴(尾轴)、中间轴和推力轴,以及将它们相连接的联轴器所组成。本船因其推力轴承已放置在减速齿轮箱中,所以不设推力轴。 而且本船螺旋桨轴不分段制造,最后本船传动轴组成设计成1根中间轴和1根螺旋桨轴。 轴的基本直径d(mm)应不小于按下式计算的值(考虑到标准化的要求,各轴轴径一般取不小于计算值的整数) d 100C3 P eb(608)(4.1) “就 b 176.5 ,3~608~' 100C3 ( ---------- ) V 170.9 530 176.5 =191.88C mm C=1.0——中间轴的直轴部分, d 191.88 mm,取200 mm作为设计尺寸。 C=1.27――对于油润滑的且具有认可型油封装置的,或装有连续轴套(或轴 承之间包有适当保护层)的具有键的螺旋桨轴 d 191.88 1.27=243.69mm,设计时取250mm。 C=1.05――尾尖舱隔舱壁前的尾轴或螺旋桨轴的直径可按圆锥减小,但在联轴器法兰处的最小直径应不小于C=1.05计算所得的值。 d 191.88 1.05=201.47mm,即螺旋桨轴在联轴器法兰处的最小 直径应不小于201.47mm 。

4.1.2 轴系布置的要求 传动轴位于水线以下,工作条件比较恶劣,在其运转时,还将受到螺旋桨所产生的阻力矩和推力的作用,使传动轴产生扭转应力和压缩应力;轴系本身重量使其产生的弯曲应力;轴系的安装误差、船体变形、轴系振动以及螺旋桨的水动力等所产生的附加应力等。上述诸力和力矩,往往还是周期变化的,在某些时候表现更为突出,例如船舶在紧急停车、颠繁倒车或转弯,或是在大风大浪中受到剧烈纵摇或横摇时,使传动轴所受负荷更大,有时甚至使它产生发热或损坏。 为了保证传动轴工作可靠,且有较长的寿命,在设计时必须使其有足够的强度、刚度、有合理酌结构尺寸,并尽可能减少其长度和重量,还必须考虑怎样有利于制造和管理等问题。 4.1.3 轴系的布置 本船轴系布置从齿轮箱法兰开始,至螺旋桨为止,包括:轴承位置及间距的选择;各种辅助设备选择与位置的决定;滑油与冷却水管系的布置。具体内容如下。 1、轴线的长度、数量、位置和倾角 (1)长度的确定这是轴系设计首先遇到的环节。轴线长度是由两个端点来决定,一个端点为主机(或齿轮箱)输出法兰的中心;另一个端点为螺旋桨的中心,此二端点间的距离,即为轴线的基本长度。 本船轴系长度为11.47 m (传动轴的实际长度尚应考虑螺旋桨中心后用来装螺旋桨的尾轴伸出和螺纹部分)。 (2)轴线的倾角 一般的,船舶纵向倾角约在00~50之间。有些双轴系的船舶,容许轴线在水平投影上离开船舶的中线面向外或向内偏斜,偏斜角在00 ~ 30之间。 由于轴系倾斜给主机带不良的工作状态,降低螺旋桨有效推力,而且轴系重量也产生轴向分力,该力与推力方向相反,进一步降低了螺旋桨的有效推力,所以轴线最好设计成没有纵向倾角和横向偏斜角的形式。本船轴系设计成没有纵向倾角和横向偏斜角。 (3)轴线的数量和位置 本船是双轴系拖轮,轴线数目是2。 轴线位置和主机与螺旋桨的布置位置有关。螺旋桨的布置位置“2900kW近

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

相关文档
相关文档 最新文档