文档库 最新最全的文档下载
当前位置:文档库 › 充填体单轴压缩蠕变特性试验研究

充填体单轴压缩蠕变特性试验研究

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究 流变学作为力学的一个分支,主要研究材料在应力、应变、温度、辐射等条件下与时间因素有关的变形规律,所涉及的内容包括蠕变、应力松弛和弹性后效等。蠕变是影响岩体稳定性的一个重要因素。 软弱岩石在受到较低水平的应力作用时,就会产生明显的蠕变现象,如软岩巷道中的底鼓,即使是很坚硬的岩体,在高应力作用下同样会产生蠕变,从而影响到工程的功能和使用。因此,需要对岩石材料的蠕变行为进行深入研究,力求从本质上揭示其蠕变行为的特征。 本文通过实验研究和理论分析,得到了盐岩的基本力学参数,并研究了盐岩在不同应力条件下的力学特性和蠕变行为。以经典蠕变模型为基础,结合分数阶微积分理论,构建了一个新的蠕变模型,并利用盐岩、泥岩和煤岩的蠕变实验数据对其进行了验证。 (1)对盐岩材料进行了多组单轴和三轴压缩实验,并在每组实验中选取三个试样重复进行实验,以此来降低实验的随机性和试样个体的差异性。结果三个试样的测试结果比较接近,此批试样的个体差异性较小。 此外,常规压缩实验的结果还表明随着围压的增大,抗压强度和最大应变会随之增大。(2)在单轴蠕变实验中,选取了四个轴压水平来进行实验,分析了不同轴压对蠕变的影响。 当轴压水平越大时,加速蠕变阶段就会越早地出现,并且稳定蠕变应变率也会越大。与单轴蠕变相比,当材料受到一个较小的围压作用时,其蠕变行为也会发生巨大的变化,例如蠕变应变率大幅下降、蠕变时间大幅增长、加速蠕变阶段缺失等。

(3)通过分析不同应力条件下的蠕变应变率可以发现,稳定蠕变应变率与轴压大小呈线性关系,加速蠕变应变率与轴压大小也呈现出正相关性。此外,蠕变等时曲线表明随着时间的延长,轴压大小对蠕变的影响会越来越明显。 相反,围压会明显地降低蠕变应变率并抑制蠕变行为的发展。(4)结合分数阶微积分理论构建了一个新的非线性蠕变模型,并利用广义塑性力学理论和张量分析理论对新模型在三轴应力状态下的蠕变方程进行了推导。 以盐岩实验数据为基础,对蠕变模型的参数进行了辨识,并验证了模型的准确性。此外,利用泥岩和煤岩的蠕变实验数据对模型的适用性进行了验证,结果表明新模型可以应用于模拟多种岩石材料的蠕变全过程,具有较为广泛的适用性。

蠕变机理

镁质耐火材料高温蠕变特性的研究现状 张国栋1)游杰刚1)刘海啸1)罗旭东1)袁政禾2) 1)辽宁科技大学鞍山114044 2)鞍钢集团耐火材料公司鞍山114001 摘要:本文介绍了镁质材料高温蠕变特性的研究现状,并对镁质耐火材料的高温蠕变特性的理论进行了阐述,同时指出了将镁质蓄热材料用在高炉热风炉上的可行性。 关键词:镁质材料蠕变特性研究现状 1、引言 高炉生产的大型化发展,要求热风炉向着高风温和长寿命的方向发展,为了实现这一目标,除了热风炉本体的大型化与更合理的结构以外,作为热风炉中的关键材料之一——蓄热材料的发展将直接影响到热风炉的使用温度和使用寿命。而高炉热风炉对耐火材料的要求是:蓄热体各层材料的选择必须要在相应的使用温度下有很好的抗压,蠕变性能,抗碱金属蒸气与烟尘侵蚀性能,抗温度急变而不破坏的性能;蓄热体砖要有足够高的换热表面积以及有利于热交换的几何形状;蓄热体材质要尽可能高的导热系数以及材料体积比热容。 目前,我国采用以Al2O3-SiO2系材料的系列低蠕变砖,在热风炉的顶部和隔墙及蓄热室的上部采用优质硅砖,中部应用不同牌号的低蠕变高铝砖,下部采用低蠕变粘土砖。镁质材料与高铝质和硅质材料相比具有良好的蓄热性能和热导率以及很强的抗渣侵蚀性能;这些特点有利于热风炉的高炉的大风量高风温的操作和降低高炉焦比,提高高炉利用系数,增加生铁产量。但是,镁质材料的热震性能差、抗压蠕变性能不好,因此限制了这类材料在热风炉上的使用。所以,提高和改善镁质材料的这两方面性能是将镁质材料应用到热风炉上的关键。因此研究镁质材料的高温蠕变性能对扩大我国镁资源综合利用和炼铁产业有着重大的意义。 2、蠕变理论 高温蠕变理论是在对多种金属所作的完整的蠕变试验的基础上建立起来的。材料的高温蠕变是指材料在恒定的高温和一定的荷重作用下,产生的变形和时间的关系[1]。由于施加的载荷不同,耐火材料的高温蠕变可以分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变、高温扭转蠕变等。其中压缩蠕变和抗折蠕变

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

creep蠕变基础知识

蠕变模型 将flac3d 的蠕变分析option 进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 2.1 简介 Flac3d 可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型 model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe 蠕变模型结合M-C 模型产生cpow 蠕变模型(model cpow ) 7. 然后WIPP 蠕变模型结合D-P 模型产生Pwipp 蠕变模型(model pwipp ); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell 蠕变公式,第二个模型使用经典的burger 蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C 扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P 扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2.2蠕变模型描述 2.2.1只介绍经典粘弹型模型即maxwell 蠕变公式 牛顿粘性的经典概念是应变率正比于应力,对于粘性流变应力应变关系以近似于弹性变形的方式发展。粘弹型材料既有粘性又有弹性,maxwell 材料就是如此,在一维空间它可以表示为一根弹簧(弹性常数κ)连接一个粘壶(粘性常数η),它的力-位移增量关系可以写成: η κ μF F + = ? ? (2.1) 式中? μ是速度,F 是力,设力的初始值为 F ,增量值为F '经过一个t ?时间步,式(2.1)可以写成

三轴实验报告精编版

三轴试验报告 课程高等土力学 授课老师冷伍明等 指导老师彭老师 学生姓名刘玮 学号 114811134 专业隧道工程

目录 1.试验目的 (1) 2.仪器设备 (1) 3.试样制备步骤 (1) 4.试样的安装和固结 (2) 5.数据处理(邓肯—张模型8大参数的确定) (2) 6.注意事项 (9) 7.总结 (10)

1.试验目的 (1).三轴压缩试验室测定图的抗剪强度的一种方法,它通过用3~4个圆柱形试样,分别在不同的恒定周围压力下,施加轴向压力,进行剪切直至破坏;然后根据摩尔-强度理论,求得土的抗剪强度参数;同时还可求出邓肯-张模型的其它6个参数。 (2).本试验分为不固结不排水剪(UU);固结不排水剪(CU或CU)和固结排水剪(CD)等3种试验类型。本次试验采用的是固结排水剪(CD)。 2.仪器设备 本次实验采用全自动应变控制式三轴仪:有反压力控制系统,周围压力控制系统,压力室,孔隙压力测量系统,数据采集系统,试验机等。 3.试样制备步骤 (1).本次试验所用土属于粉粘土,采用击实法对扰动土进行试样制备,试样直径39.1mm,试样高度80mm。选取一定数量的代表性土样,经碾碎、过筛,测定风干含水率,按要求的含水率算出所需加水量。 (2).将需加的水量喷洒到土料上拌匀,稍静置后装入塑料袋,然后置于密闭容器内24小时,使含水率均匀。取出土料复测其含水率。 (3).击样筒的内径应与试样直径相同。击锤的直径宜小雨试样直径,也允许采用与试样直径相同的击锤。击样筒在使用前应洗擦干净。 (4).根据要求的干密度,称取所需土质量。按试样高度分层击实,本次试验为粉粘土,分5层击实。各层土料质量相等。每层击实至要求高度后,将表面刨毛,然后再加第2层土料。如此继续进行,直至击完最后一层,并将击样筒中的试样取出放入饱和器中。 表1 含水率记录表 试验要求干密度为1.7g/cm3,饱和器容积为96cm3,所以所需湿土质量为: + ? = + mρ(g) w =v 1(= ? ) 188 8. 7.1 96 ) .0 1( 1575 分5层击实,则每层质量为37.76g。 (5).试样饱和:采用抽气饱和,将装有试样的饱和器置于无水的抽气缸内,进行抽气,当真空度接近当地1个大气压后,应继续抽气1个小时。抽气完成后徐徐注入清水,并保持真空度稳定。待饱和器完全被水淹没即停止抽气,并释放

岩石蠕变模型研究进展及若干问题探讨

0引言 岩石在长时间应力、温度和差应力作用下发生永久变形不断增长的现象,叫做岩石的蠕变。早在 1939年Griggs [1]在对砂岩、泥板岩和粉砂岩等进行 大量蠕变试验时就发现,当荷载达到破坏荷载的 12.5%~80%时就发生蠕变,它是岩石流变力学中最 主要的一种现象,也是岩土工程变形失稳的主要原因。1980年湖北省盐池磷矿由于岩石的蠕变,160m 高,体积约100万m 3的山体突然崩塌,4层楼被抛 掷对岸,造成了巨大的伤亡。在国外岩石蠕变研究中,Okubo [2](1991)完成了大理岩、砂岩、花岗岩和灰岩等岩石的单轴压缩试验,获得了岩石加速蠕变阶段的应变-时间曲线,结果表明蠕变应变速率与时间成反比例关系。 E.Maranini [3](1999)对石灰岩等进行了单轴和三轴压剪蠕变试验,研究表明,石灰岩的蠕变最主要的表现在是低围压情况下的扩张、裂隙,而在高围压状态下,岩石内部则发生孔隙塌陷,得出石灰岩的蠕变对岩石主要影响是其屈服应力的降低。Hayano K [4](1999)等进行了沉积软岩的长期蠕变试验。K.Shina [5](2005)对日本的6种岩石进行了各种条件下单轴和三轴压缩,拉伸试验,统计了各种蠕变影响参数,如蠕变应力对时间的依赖性参数δ,蠕变寿命相关系数α和β等,并对其强度和蠕变寿命做了分析。由此可见,研究和开展岩石蠕变特性的研 基金项目:安徽建筑工业学院2010年度大学生科技创新基金 (20101018)。 作者简介:马珂(1987—),男,安徽安庆人,硕士,主要从事岩石力学 方面研究。 收稿日期:2011-05-26责任编辑:樊小舟 岩石蠕变模型研究进展及若干问题探讨 马珂,宛新林,贾伟风,宛传虎 (安徽建筑工业学院土木工程学院,安徽合肥230022) 摘要:岩石蠕变是岩土工程变形失稳的主要原因之一。近年来蠕变研究正处于一个探索阶段,本文从四个方面综述了蠕变模型的研究进展。研究发现,在岩石蠕变的三个阶段中利用经典本构模型均很难描述加速蠕变阶段,研究者们通过新的元件或者改进的非线性黏弹塑性本构模型可以很好的模拟岩石蠕变实际曲线;基于损伤理论的岩石蠕变模型是近年来发展的主要方向,可以很好的解决岩石微观裂纹所带来的蠕变;随着岩石深部工程的发展,岩体受到周围实际环境下的影响是不可忽略的,从而研究含水量的变化与水力和其它应力耦合下的岩石蠕变也是今后的重点。最后指出,由于试验仪器的原因,高温高压和各向异性下的岩石蠕变模型研究进行的还不是很多,是今后岩石蠕变研究的难点。 关键词:岩石蠕变;本构模型;非线性黏弹塑性;损伤;各向异性:高温高压中图分类号:TU454 文献标识码:A Advances in Rock Creep Model Research and Discussion on Some Issues Ma Ke,Wan Xinlin,Jia Weifeng and Wan Chuanhu (Civil Engineering Department,Anhui University of Architecture,Hefei,Anhui 230022) Abstract:The rock creep is one of major causes in geotechnical engineering deformation and destabilization.The creep research is just in an exploring stage in recent years,the paper has summed up the progress of creep model research from 4aspects.The research has found,among three stages of rock creep,the accelerated creep stage is hard to describe through classic constitutive models,the researchers have found that through new elements or using modified nonlinear visco-elastoplastic constitutive models can modulate rock creep active curves commendably.Rock creep model based on damage theory is the major development direction in recent years;it can solve the rock creep issues brought by microfissures.Along with development of deep rock engineering,impacts from peripheral practical setting on rock mass should not be ignored,thus to study rock creep under coupled moisture content variation and hydraulic,as well as other stresses is also emphasized from now on.Finally,the paper has point out,in virtue of testing instrument,the studies on rock creep model under high temperature,high pressure and anisotropy are not many thus far,and thus the nodus in rock creep studies henceforth. Keywords:rock creep;constitutive model;nonlinear visco-elastoplastic;damage;anisotropy;high temperature and high pressure 中国煤炭地质 COAL GEOLOGY OF CHINA Vol.23No.10Oct .2011 第23卷10期2011年10月 文章编号:1674-1803(2011)10-0043-05 doi :10.3969/j.issn.1674-1803.2011.10.10

蠕变分析

4.4蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。

对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=2.718281828(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设Nc是某个特定单元类型的应变分量的个数。如果则有:

蠕变分析

蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。

上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设 Nc是某个特定单元类型的应变分量的个数。 如果则有:

第23例 材料蠕变分析实例

第23例材料蠕变分析实例—受拉平板本例简单地介绍了蠕变的概念及蠕变材料模型的创建方法,简单地介绍了结构蠕变分析的方法、步骤及要点。 23.1蠕变简介 蠕变是指金属材料在长时间的恒温、恒载作用下,持续发生缓慢塑性变形的行为,大多数金属材料在高温下都会表现出蠕变行为。 如果材料发生了蠕变,在恒载作用下结构会发生持续变形;如果结构承受恒位移,则应力会随时间而减小,即产生应力松弛。 图23-1 蠕变曲线 蠕变一般分为蠕变初始阶段(Primary)、蠕变稳定阶段(Secondary)和蠕变加速阶段(Tertiary)三个阶段,如图23-1所示。蠕变初始阶段时间很短,应变率随时间而减小;在蠕变稳定阶段,应变以常速率发展;在蠕变加速阶段,应变率急剧增大直至材料失效。研究蠕变行为,主要针对蠕变初始阶段和蠕变稳定阶段。 研究问题时一般以蠕变方程(又称本构关系)来表征蠕变行为,蠕变方程以蠕应变率的,形式表示dεcr/dt =AσBεC t P式中,εcr为蠕应变。A、B、C、D是由实验得到的材料特性参数。当D<0时,蠕应变率随时间减小,材料处于蠕变初始阶段;当D=0时,蠕应变率不随时间变化,材料处于蠕变稳定阶段。

在ANSYS中,有一个蠕应变率库供选择。 23.2问题描述 一矩形平板,左端固定,右端作用有恒定压力p=100MPa,矩形平板尺寸如图23-2所示,材料的弹性模量为2xl05MPa,泊松比为0.3,蠕变稳定阶段蠕变方程dεcr/dt =C1σC2。C2,式中,C1=3.125 x10-14,C2=5。试分析平板右端的位移随时间的变化情况。 提示:为避免出现较小值,力单位用N,长度单位用mm,时间单位为h。 图23-2受拉矩形平板 23.3分析步骤 23.3.1改变任务名 拾取菜单Utility Menu→File→Change Jobname,弹出如图23-3所示的对话框,在“[/FJLNAM]”文本框中输入EXAMPLE23,单击“OK”按钮。 图23-3改变任务名对话框 23.3.2选择单元类型 拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图23-4所示的对话框,单击“Add…”按钮,弹出如图23-5所示的对话框,

第四章 3 岩石的蠕变

1 / 46 ε σ 五、岩石的蠕变 1、 蠕变特征 ① 岩石蠕变的概念 在应力σ不变的情况下,岩石变形随时间t 而增长的现象。 即 dt d ε 随时间而变化。 ②岩石蠕变类型 有两种类型: 稳定型蠕变 非稳定型蠕变

2 / 46 a 、 稳定型蠕变:在 恒定应力作用下,变形速率随时间递减, 最终趋于零,即 0=dt d ε ,变形区域稳定。 一般在较小应力下或硬岩中。 b 、 非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不 断增长,直至破坏。 ε Ⅰ Ⅱ Ⅰ t

一般为软弱岩石或应力较大。 ③蠕变曲线变化特征 岩石的蠕变曲线可分为 三个阶段: Ⅰ阶段:初期蠕变。 应变-时间曲线向下弯 曲,应变速率 dt d 由大变小。属弹性变形。 Ⅱ阶段:等速蠕变。 t ε A B C P Q R εe T U V Ⅰ Ⅲ Ⅱ 3 / 46

应变-时间曲线近似直线,应变随时间呈近于等速增长。出现塑性。Ⅲ阶段:加速蠕变。 应变-时间曲线向上弯曲,其应变速率加快直至破坏。 应指出,并非所有的蠕变都能出现等速蠕变阶段,只有蠕变过程中结构的软化和硬化达到动平衡,蠕变速率才能保持不变。 在Ⅰ阶段,如果应力骤降到零,则ε-t曲线具有PQR形式,曲线从P点骤变到Q点,PQ= ε为瞬时弹性变形,而后随时间慢慢退到应变 e 为零,这时无永久变形,材料仍保持弹性。 4 / 46

在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU=e 。 ④不同应力下的蠕变 岩石蠕变速率与应力大小 有直接关系。低应力时, 应变速度变化缓慢,逐渐 趋于稳定。应力增大时, 应变速率增大。高应力时,蠕变加速,直至破 t ε a a 10 15 18 20 25 b b b b b a-稳定蠕变(不破坏) b-非稳定蠕变(蠕变破坏) 5 / 46

第四章3岩石的蠕变

五、岩石的蠕变 1、 蠕变特征 ① 岩石蠕变的概念 在应力σ不变的情况下,岩石变形随时间t 而增长的现象。 即 dt d ε 随时间而变化。 ②岩石蠕变类型 有两种类型: 稳定型蠕变 非稳定型蠕变

a、稳定型蠕变 应力作用下, 随时间递减, dε 零,即0 = dt 域稳定。 一般在较小应力下或硬岩中。 b、非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不断增 长,直至破坏。 一般为软弱岩石或应力较大。

③蠕变曲线变化特征 三个阶段: Ⅰ阶段:初期蠕变。 d 曲,应变速率 dt 小。属弹性变形。 Ⅱ阶段:等速蠕变。 应变-时间曲线近似直线,应变随时间呈近于等速增长。出现塑性。

Ⅲ阶段:加速蠕变。 应变-时间曲线向上弯曲,其应变速率加快直至破坏。 应指出,并非所有的蠕变都能出现等速蠕变阶段,只有蠕变过程中结构的软化和硬化达到动平衡,蠕变速率才能保持不变。 在Ⅰ阶段,如果应力骤降到零,则ε-t曲线具有PQR形式,曲线从P 点骤变到Q点,PQ= ε为瞬时弹性变形,而后随时间慢慢退到应变为 e 零,这时无永久变形,材料仍保持弹性。 在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU= ε。 e

有直接关系。 变速度变化缓慢, 稳定。 率增大。 蠕变速率越大,反之愈小。

岩石长期强度:指 岩石由稳定蠕变转为非稳定蠕变时的应力分界值。即,岩石在长期荷载作用下经蠕变破坏的最小应力值(∞σ或∞τ) 岩石极限长期强度:指长期荷载作用下岩石的强度。 2、 蠕变经验公式 由于岩石蠕变包括瞬时弹性变形、初始蠕变、等速蠕变和加速蠕变,则在荷载长期作用下,岩石蠕变的变形ε可用经验公式表示为: ε=e ε+)(t ε+t M +)(t T ε e ε-瞬时变形;)(t ε-初始蠕变;t M -等速蠕变;)(t T ε-加速蠕变。

蠕变分析

4.4 蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为:

三轴压缩实验(DOC)

实验四 三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

常温单轴拉伸实验、压缩实验、扭转实验

实验1 常温单轴拉伸实验 马 杭 编写 单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验。由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。 一、实验目的 1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。 2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。 二、实验设备 1.电子万能材料试验机WDW-100A(见附录一)。 2.计算机、打印机。 3.游标卡尺。 图1-1 圆棒拉伸试样简图 三、试样 材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。本试验采用圆棒试样,如图1-1所示。试样的工作部分(即均匀部分,其长度为C l )应保持均匀光滑以确保材料的单向应力状态。均匀部分的有效工作长度0l 称为标距,0d 和0A 分别为工作部分的直径和面积。试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。 材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397-86)。例如,由于颈缩局部及其影响区的塑性变形在断后延伸

三轴压缩实验

三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

单轴压缩

单轴压缩 单轴压缩软件包提供圆柱形岩石和混凝土试件的压缩和变形试验运行用的所有硬件和软件附件。该压缩软件包包括: 力传感器 对低载荷试验--一个661型力传感器。一个把该力传感器附着 到载荷框架上的附着件。对高载荷试验-一个660.23P型元件。 直接安装到作动缸口。一个信号调节器-供每个力传感器用。2 档标定。一个从力传感器到调节器的电缆0到10个间隔片-取 决于载荷序列的构形和附带的硬件。 一个643型压盘夹具 应变传感器 ?一个轴向应变测量元件一个周向应变测量元件一个信号调节器和各传感器的电缆 790.61型岩石力学软件 ?按照ASTM D2938-86, D-3148-86, 4341-84 和4405-84的岩石单轴压缩试验ISRM建议的确定岩石单轴压缩强度和单轴压缩中岩石材料的变形能力的方法。

子。设计高刚度载荷力链,以使脆性 材料试验时贮存在框架和载荷力链 部分的变形能量减到最小。在进行关 于试件破坏后性状的试验时,这特别 关键。对于要求大于1000 kN (220 kip)的压缩试验,可以卸除载荷传感 器,并可用适合框架载荷的差压(P) 传感器测量力。由于作动器摩擦力, 要求的力小于1000 kN (220 kip) 的试验,应当使用一个力传感器。请 注意,315型载荷框架试用的载荷, 超过了该力传感器的范围。该试验区 域前、后的Lexan板(未示出),在 进行单轴压缩强度试验时,确保防护 试件碎片伤人。除了单轴压缩试验的 机械夹具外,提供了790.61型单轴 岩石力学软件,以便执行某些最普通 的压缩试验,并分析得到的数据。这 软件包通过一系列预定步骤,指导你 进行标准的ASTM试验和TSRM建 议的试验方法。该软件在鼠标驱动和点击环境中运行,并使用下拉菜单和图标,提供方便和直观的操作界面。该软件也包括:运行时间率控制(它使你在试验期间增加或减少加载率或应变率,以更好地控制破坏后试验,并充分改进)和实时显示所选择的反馈的运行时间图(使你在运行时监控试验进程)。该分析特 征自动地分析收集的数据,并产生一个完整的专业试验报告。

蠕变

1 蠕变的概念 岩石的变形不仅表现出弹性和塑性,而且也具有流变性质,岩石的流变包括蠕变、松弛和弹性后效。 岩石的流变性是指岩石应力应变关系随时间而变化的性质。蠕变是当应力不变时,变形随时间增加而增长的现象。 2 岩石的蠕变曲线 通常用蠕变曲线(ε-t 曲线)表示岩石的蠕变特性。 。 图中三条蠕变曲线是在不同应力下得到的,其中C B A σσσ>>。蠕变实验表明,当岩石在较小的恒定力作用下,变形随时间增加到一定程度后就趋于稳定,不再随时间增加而变化,应变保持为一个常数,这种蠕变称为稳定蠕变;当岩石承受的恒定荷载较大,当岩石应力超过某一临界值时,变形随时间增加而增大,其变形速率逐渐增大,最终导致岩体整体失稳破坏,这种蠕变称为不稳定蠕变。 不稳定蠕变(典型蠕变)可分为三个阶段: 第一蠕变阶段:如曲线AB 所示,应变率随时间增加而减小,故又称为减速蠕变或初始蠕变阶段。 第二蠕变阶段:如曲线中的BC 段所示,应变速率保持不变,故又称为等速蠕变阶段。

第三蠕变阶段:如曲线中的CD段所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可以发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展;小于此临界应力时,蠕变按稳定蠕变发展。通常称此临界应力为岩石的长期强度。 3实例 3.1 层状岩坡蠕变破坏 综合工程地质条件、力的作用方式及边坡具体破坏形式,在考虑时间效应的基础上,杨晓华,陈沅江[1] 对层状岩质边坡的蠕变破坏类型及其所致因素进行了分析探讨,将层状岩质边坡的蠕变破坏分为如下五种主要类型。 3.1.1 水平层状边坡座落式剪切蠕变破坏 该类蠕变破坏发生在构造活动区水平或近水平岩层边坡中。当边坡最终形成后,由于其高度很大,上部破碎岩体的自重应力亦很大,边坡在该自重应力的作用下时常会发生沿边坡下部的水平或近水平软弱夹层蠕动滑移的座落式滑坡。故这种边坡的蠕变破坏一般首先表现为边坡上部岩体的较大水平剪切位移,当边坡开挖到一定深度时又将表现为垂直剪切位移,

[课程]静三轴压缩实验报告_secret

指导老师: 班级:岩土工程2007级小组:第一小组时间:2008.5~2008.6 小组成员:

一 实验目的 1.通过静三轴压缩实验了解实验过程及方法; 2. 通过实验数据的处理掌握用EXCEL 处理实验数据; 3.通过实验加深对土的本构关系的理解; 4.掌握邓肯—张模型参数的计算方法。 二 实验原理 Duncan —Chang 模型是与时间无关的试验本构模型,其本质是依据Kondner 提出的用双曲线拟合应力应变关系,即 a 13a a b εσσε-= + (1) 其中a 、b 为试验常数。 1.切线变形模量E t 对于常规三轴压缩试验,εa =ε1,将(1)式改写为 1113 a b εεσσ+= - (2) 将常规三轴压缩试验的结果按 113 εσσ-~1ε的关系进行整理,则二者近似成 线性关系。其中,a 为直线截距;b 为直线斜率。参看图1。 图1 土的应力应变的双曲线关系 在常规三轴压缩试验中,由于d σ2=d σ3=0,所以切线模量为 13t 2 11d()d () a E a b σσεε-= =+ (3) 在试样的起始点,ε1=0,E t =E i ,则 i 1 E a = (4) 这表明a 代表的是在这个试验中的起始变形模量E i 的倒数。在(1)式中,如果1ε→∞,则 13ult 1 ()b σσ-= (5)

或者 13ult 1 ()b σσ= - (6) 由此可看出b 代表的是双曲线的渐近线所对应得极限偏差应力(σ1-σ3)ult 的倒数。 在土的试样中,如果应力应变曲线近似于双曲线关系,则往往是根据一定应变值(如ε1=15%)来确定土的强度(σ1-σ3)f ,而不可能在试验中使ε1无限大,求取(σ1-σ3)ult ;对于有峰值点的情况,取(σ1-σ3)f =(σ1-σ3)峰,这样(σ1-σ3)f <(σ1-σ3)ult 。定义破坏比R f 为 13f f 13ult ()()R σσσσ-= - (7) f 13ult 13f 1 ()()R b σσσσ= =-- (8) 将式(8)、(4)代入式(3)中,得 2 t f i 1i 13f 11 1()E R E E εσσ?? ? ?= ?+ ? -?? (9) 式(9)中E t 表示为应变ε1的函数,使用时不够方便,可将E t 表示为应力的函数形式。从式(2)可以得到 13113() 1() a b σσεσσ-= -- (10) 将式(10)代入式(3),得 t 2 2 2 131******** 1 ()()111()1()1()a E ab b a a a b b b σσσσσσσσσσ= = = ?? ????--++?? ????------? ??? ?? (11) 将式(8)、(4)代入式(11),得 2 13t i f 13f 1()E E R σσσσ?? -=-??-? ? (12) 根据莫尔-库仑强度准则,有

相关文档