文档库 最新最全的文档下载
当前位置:文档库 › 气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择
气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择[摘要] 本文是利用GC/MS对生物碱进行分离,运用质谱库进行检索筛选

得到混合物的主要成分。探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。实验结果表明,温程序和柱前压与流速对分离效果影响最大,进样口温度,接口温度对分离效果影响较小。

[关键词] 气相色谱-质谱联用;最佳分离条件;成分;影响

1.引言

GC/MS技术是化学工作者分离有机混合物常用的手段。色谱-质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。这种技术适用于做多组分混合物中未知组分的定性鉴别,可以判断化合物的分子结构,可以准确的测定未知组分的分子量,可以修正色谱分析的判断错误,可以鉴定出部分分离甚至未分开的色谱峰。特别是近年来计算机技术的发展,使GC/MS仪使用更为方便,简单,快捷。

本文是利用GC/MS对未知样品(生物碱)进行分离,从而得到它的最佳分离条件,运用质谱库进行检索筛选得到混合物的主要成分,并且进一步探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。分离条件的探索对混合物的分离有重要的指导意义。对分离其它样品具有极大的参考价值。

2.实验部分

2.1样品的性质和仪器参数

样品来源于从植物的茎叶中提取的生物碱。柱温选择在50-260℃。

仪器:GC/MS-QP2010 ,He气源(99.999%),毛细管色谱柱DB-5MS (30m×0.25mm×0.25um)。

2.2最佳分离条件的探索与讨论

2.2.1升温程序

仪器参数:

①GC:注射模式:分流; 分流比:20/1; 柱前压:100.1Kpa;

流速:1.69ml/min;进样口温度:200℃

②MS:离子源温度:200℃;检测范围:35—550;去溶剂峰:2min

接口温度:250℃;检测器电压:1000kv

升温程序对分离效果有显著的影响。所以选择适宜的升温程序最为重要。拟采用如下升温程序:

升温程序一:初温50℃,以10℃/min 的升温速率升至200℃,保留30min;结果发现,在保留时间为20min时,峰较多,可能出峰不完全,所以应该提高柱温。在20min以前出峰较少,间距太宽,所以应该增加升温速率。

升温程序二:初温50℃,以12℃/min 的升温速率升至200℃,以2℃/min 的升温速率升至220℃保留10min;结果发现,在保留时间为17min时,出峰较多,没有分开。要使分离效果更好,在210℃时采用降温程序。

升温程序三:初温50℃,以10℃/min 的升温速率升至210℃,以-5℃/min 的降温速率降至190℃,以20℃/min 的升温速率升至240℃;结果发现,降温使分离效果明显变好,但是出峰不完全,为此,需增加保持时间。在10min以前出峰太少,间距较大,可以增加升温速率缩短间距。

现代分离技术复习题

第一章 1、分离过程分类?机械分离传质分离(平衡分离、速率控制分离) 反应分离 分离装置中,利用机械力简单地将两相混合物相互分离的过程称为机械分离过程。 2、列举几种典型的机械分离过程:过滤、沉降、离心分离、旋风分离、除尘。 3、传质分离的分离过程如何分类?举例说明: 平衡分离:蒸发、闪蒸、蒸馏、吸收、萃取、吸附、离子交换、萃取蒸馏结晶 速率控制分离:气体渗透、反渗透、渗析、渗透蒸发、泡沫分离、色谱分离、电渗析4、几种典型的反应分离技术?可逆反应:(离子交换、反应萃取)不可逆反应:(反应吸收、反应结晶)生物分解反应:(生物降解)电化学反应:(双极膜水解反应) 第二章 1、按膜的分离原理及推动力不同,膜分几类? 根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超过滤膜、反渗透膜、纳滤膜、渗析膜、电渗析膜、渗透蒸发膜等。 2、按膜的形态分类? 按膜的形状分为平板膜(Flat Membrane)、管式膜(Tubular Membrane)和中空纤维膜(Hollow Fiber)、卷式膜。 3、按膜结构分类?对称膜、非对称膜和复合膜。 4、按膜的孔径大小分类?多孔膜和致密膜。 5、微滤、超滤、纳滤、反渗透,推动力是压力差。渗析,推动力浓度差。电渗析,推动力电位差。气体分离、渗透蒸发推动力是压力差。液膜分离推动力是浓度差。 6、常用的有机高分子膜材料?聚砜类、聚酰胺类、纤维素脂类。 7、醋酸纤维膜的优缺点?优点:醋酸纤维素性能稳定缺点:在高温和酸、碱存在下易发生水解,易受微生物侵蚀,pH值适应范围较窄,不耐高温和某些有机溶剂或无机溶剂。 8、醋酸纤维膜的结构?是一种非对称的多孔膜。表皮层、过渡层、支撑层(多孔层) 9、固体膜的保存应注意?主要应防止微生物、水解、冷冻对膜的破坏和膜的收缩变形。微生物的破坏主要发生在醋酸纤维素膜;而水解和冷冻破坏则对任何膜都可能发生。温度、pH值不适当和水中游离氧的存在均会造成膜的水解。冷冻会使膜膨胀而破坏膜的结构。 10、工业上应用的膜组件主要有中空纤维式、管式、螺旋卷式、板框式等四种型式。管式和中空纤维式组件也可以分为内压式和外压式两种 11、四种膜组件中装填密度最大的是?料液流径最快的是?中控纤维膜装填密度最高,管式料液流动最快。 12、什么是浓差极化?如何消除浓差极化? 在膜表面附近浓度高于主体浓度的现象称为浓度极化或浓差极化。可通过降低膜两侧压差,减小料液中溶质浓度,改善膜面流体力学条件,来减轻浓差极化程度,提高膜的透过流量。 13、微孔过滤(MF)、超滤(UF)、反渗透(RO)、纳滤(NF)有什么共同特点?1、推动力都是压力差。2、四种膜中溶剂分子都能通过。不同:截流溶质大小不同。 14、反渗透系统的主要部件 主要部件有:压力容器(膜壳)、高压泵、保安过滤器、自动控制与仪器仪表、辅助设备15、.保安过滤器 是反渗透装置的最后一级过滤器,要求进水浊度小于2mg/L以下,出水浊度低于0.3-0.12mg/L。

气质联用

气相色谱-质谱分析(GC-MS) 学生:郑德 摘要目的:练习气相色谱-质谱仪的操作,熟悉气质工作站的使用;掌握SCAN及SIM的应用。 关键词气相色谱质谱 1.实验材料 1.1仪器 气相色谱-质谱仪(MS检测器);微量注射器;质谱工作站; 1.2试药 样品溶液:混合溶剂 2.方法与原理 2.1色谱条件 色谱参数:进样口250℃,分流进样,分流比80:1,色谱柱:甲基苯基硅烷柱(30m×0.25mm ×0.25μm),载气流量:1.2ml/min(He),接口温度280℃,柱温:70℃。 质谱参数:溶剂延迟1min,SCAN:30-400质量数,SIM:自选参数 进样量:0.2 μl 2.2原理 气质联用技术是在气相色谱分离的基础上,利用质谱作检测器(MSD),可以得到不同时刻的质谱信息,灵敏度高,选择性好,给定性、定量分析带来方便。在气质联用中,质谱检测器采集数据有两种模式:SCAN(全扫描)和SIM(选择离子监测),其中SCAN连续扫描采集选定质荷比范围内所有离子的信号,可以获得化合物的质谱图,通过自动检索能够得到化合物的结构,常用于定性分析,峰形及灵敏度稍差,而SIM只监测采集某几个所选的特征离子的信号,灵敏度高,峰形好,主要用于定量分析。 本实验首先对样品作SCAN分析,以获得个化合物的质谱图,通过检索进行定性分析,并选择每个化合物的特征离子(一般选丰度较高的),利用所选的特征离子作SIM分析,并比较SCAN和SIM的异同。 3.操作与结果 4.思考题 1.讨论SCAN和SIM两种方法的差异及特点。

答:SCAN即全扫描方式适应于未知物的定性分析,而待定量分析的组分则采用SIM 即选择离子检测。 2.溶剂延迟的作用是什么? 答:保护灯丝 3.调谐的作用是什么? 答:诊断;编写系统性能变化表;提高灵敏度。

蛋白质纯化的一般原则及方法选择

随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易lIl。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1 蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨常用的离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指蛋白的各成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2.各种蛋白纯化方法及优缺点 2.1蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸。在蛋白质的等电点处若溶液的离子强度特别高或特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白质最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保护蛋白的活性。硫酸

渗透剂成分分析

渗透剂成分分析 国内首创,行业第一,渗透剂成分分析权威检测机构------微谱检测 https://www.wendangku.net/doc/155528885.html, 微谱检测是国内最专业的未知物剖析技术服务机构,拥有最权威的图谱解析数据库,掌握最顶尖的未知物剖析技术,建设了国内一流的分析测试实验室。首创未知物剖析,成分分析,配方分析等检测技术,是未知物剖析技术领域的第一品牌! 上海微谱化工检测技术有限公司,是一家专业从事材料分析检测技术服务的机构,面向社会各业提供各类材料样品剖析、配方分析、化工品检验检测、单晶硅纯度检测及相关油品测试服务。 本公司由高校科研院所教授博士领衔、多个专业领域专家所组成的技术团队具有长期从事材料分析测试的经验,技术水平和能力属国内一流。通过综合性的分离和检测手段对未知物进行定性鉴定与定量分析,为科研及生产中调整配方、新产品研发、改进生产工艺提供科学依据。 微谱检测与同济大学联合建立微谱实验室,完全按照CNAS国家认可委的要求建设,通过CMA国家计量认证,并依据CNAS-CL01:2006、CNAS-CL10和《实验室资质认定评审准则》进行管理,微谱实验室出具的检测数据均能溯源到中国国家计量基准。 微谱检测的分析技术服务遍布化工行业,从原材料鉴定、化工产品配方分析,到产品生产中的工业问题诊断、产品应用环节的失效分析、产品可靠性测试,微谱检测都可以提供最专业的分析技术服务。 微谱检测深耕于未知物剖析技术领域内的创新,以振兴民族化工材料产业为

己任! 微谱检测可以提供塑料制品,橡胶制品,涂料,胶粘剂,金属加工助剂,清洗剂,切削液,油墨,各种添加剂,塑料,橡胶加工改性助剂,水泥助磨剂,助焊剂,纺织助剂,表面活性剂,化肥,农药,化妆品,建筑用化学品等产品的成分分析,配方分析,工艺诊断服务。 微谱检测-中国最大的未知物剖析技术服务机构,拥有专业的渗透剂成分分析,配方分析等检测技术,已经成为行业第一品牌! 双氧水退煮漂汽蒸一步短流程工艺符合低成本、高效、清洁生产的要求,但对印染助剂的要求也较高,尤其是渗透剂的作用,直接影响其工艺效果。渗透剂是一类能使液体迅速而均匀渗透到某种物质内部的表面活性剂,目前应用于印染前处理的渗透剂主要是阴离子型表面活性剂和非离子型表面活性剂。单一的渗透剂往往达不到预期的效果,必须通过几种表面活性剂进行复配,通过协同效应和相互增效作用来达到满意的效果。 本中心拥有长期从事渗透剂成分分析经验的专业领域的专家技术团队,技术报告提供测试数据图谱,以专业、科学的测试手段服务于相关企业。 微谱检测-中国最大的未知物剖析技术服务机构,国内首创,行业第一!! 本公司提供分析,测试,检验,化验,检测服务,可根据客户要求定性定量。可分析测试的样品包括: 1、各种未知物:未知固体,未知粉末,未知液体等 2、有机溶剂:混合溶剂的成分分析,分离,定性定量;纯溶剂的性能检测, 电子、纺织、印刷行业用溶剂,油漆稀释剂,天那水,脱漆剂。 3、各种金属材料

色谱分离条件的选择

分离度R作为色谱柱的分离效能指标,其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值 一、分离度 两个组分怎样才算达到完全分离?首先是两组分的色谱峰之间的距离必须相差足够大,若两峰间仅有一定距离,而每一个峰却很宽,致使彼此重叠,则两组分仍无法完全分离;第二是峰必须窄。只有同时满足这两个条件时,两组分才能完全分离。 判断相邻两组分在色谱柱中的分离情况,可用分离度R作为色谱柱的分离效能指标。其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值 R值越大,就意味着相邻两组分分离得越好。因此,分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。 从理论上可以证明,若峰形对称且满足于正态分布,则当R=1时,分离程度可达98%;当R=1.5时,分离程度可达99.7%因而可用R=1.5来作为相邻两峰已完全分开的标志。 当两组分的色谱峰分离较差,峰底宽度难于测量时,可用半峰宽代替峰底宽度,并用下式表示分离度: 二、色谱分离基本方程式: 值,亦可使分析时间在不至于过长。使峰的扩展不会太严重对检测发生影响。

由分离度基本方程式可看出: (1)分离度与柱效的关系(柱效因子) 分离度与n的平方根成正比。 (2)分离度与容量比的关系(容量因子),k >10时,k/(k+1)的改变不大,对R的改进不明显,反而使分析时间在为延长。因此k值的最佳范围是1< k <10,在此范围内,既可得到大的R 表2-2 k值对k/(k+1)的影响 k 0.5 1.0 3.0 5.0 8. 0 10 30 50 k/(k+1) 0.33 0.50 0.75 0.83 0.89 0.91 0.97 0.98 (3)分离度与柱选择性的关系(选择因子),α越大,柱选择性越好,分离效果越好。分离度从1.0增加至1.5,对应于各α值所需的有效理论塔板数大致增加一倍。 分离度、柱效和选择性参数之间的联系为: a n有效 R=1.0R=1.5 1.00 1.005 1.01 1.02 1.05 1.07 1.10 1.15 1.25 1.50 2.0 ∞ 650000 163000 42000 7100 3700 1900 940 400 140 65 ∞ 1450000 367000 94000 16000 8400 4400 2100 900 320 145 三、分离操作条件的选择 1.载气及其流速的选择 对一定的色谱柱和试样,有一个最佳的载气流速,此时柱效最高,根据下式 H=A+B/u+C U 用在不同流速下的塔板高度H对流速u作图,得H-u曲线图。在曲线的最低点,塔板高度H最小(H最小) 。此时柱效最高。该点所对应的流速即为最佳流速u最佳,及H最小可由式(14-17)微分求得:

未知物红外光谱图的简易解析

未知物红外光谱图的简易解析 当我们准备分析一张未知物的红外光谱图时,首先应该确定一些主要的官能团是否存在。 如C=O、O=H、N=H、C=C、C≡C、C≡N和NO2,这些官能团的吸收峰很显著,如果它们存在,可给出结构信息。 一般可以按以下步骤分析: 1、有无羰基? C=O,在1820~1660cm-1范围有强吸收,在谱图中,峰最强具有中等宽度。2、若有C=O,看看属于哪一类? 酸,有没有OH ,有宽吸收大约在3400~2400 cm-1范围。 酰胺,有没有NH ,中等强度的吸收在3500 cm-1。 酯,有没有C-O ?强吸收在1300~1000 cm-1范围。 酐,有两个C=O,吸收在~1810 cm-1和1760 cm-1 醛,有没有C=O、CH,两个中等强度的吸收峰,约在2850 cm-1和2750 cm-1。酮,上面5种情况都不是。 3、若没有C=O, 醇、酚,检查OH,宽吸收在3600 cm-1~3300 cm-1。 C-O吸收在1300~1000 cm-1,作进一步确认。 胺检查NH,中等强度的吸收在~3500 cm-1。 醚检查C-O(OH不存在),吸收在1300~1000 cm-1。 4、双键或芳环 C=C键,有一个弱吸收在~1650 cm-1。 在1650~1450cm-1范围有中到强吸收,常表示有芳环; 芳烃或烯烃C-H的吸收峰大于3000 cm-1,(脂肪C-H小于3000 cm-1) 亚胺和肟C=N吸收峰在1690~1640cm-1范围。 烯酮、异氰酸酯、硫代异氰酸盐X=C-Y ,吸收大于2270~1950cm-1。 硝基,N-O吸收在1550~1350cm-1范围。 5、三键 C≡N 有一个中等强度、尖的吸收在~2250cm-1; C≡C 有一个弱、尖的吸收在~2150cm-1;炔的C-H 在~3300 cm-1。 6、硝基 两个吸收在1600~1500cm-1和1390~1300cm-1。 7、以上基团都没有。 主要吸收在C-H 范围~3000 cm-1; 非常简单的光谱,其他有吸收仅~1450 cm-1和1375 cm-1。

高中化学 物质的分离与提纯的原则和要求

物质的分离 ?分离与提纯的原则和要求: (1)选择分离与提纯方法应遵循的原则 ①不增:指不能引入新的杂质。 ②不减:指应尽可能减少被分离与提纯的物质的损失。 ③易分离:指如果使用试剂除去杂质时,要求反应后的产物跟被提纯的物质容易分离。 ④易复原:指分离物或被提纯的物质都要容易复原。 (2)分离与提纯操作过程应遵循“三必须” ①除杂质试剂必须过量; ②过量试剂必须除尽(因过量试剂会带人新的杂质); ③除杂途径必须选最佳。 ?常见的分离与提纯的方法: (1)物质分离与提纯常用的物理方法 粗盐提纯时把粗盐 溶于水,经过滤把 不溶于水的杂质除 去

KNO3 变化大, 解度随温度变化小,可用该法从二者的混合液中提纯KNO3 从食盐水溶液中提取食盐晶体 制无水乙醇 灰 [ 3)2] CCl4 2

水、苯的分离 除去 除去 气体,可使混合气体通过盛有饱和HCO3 粗碘中碘与钾、钠、钙、镁的碘化物混合,利用碘易升华的特点将碘与杂质分开 除去 中的

(2)物质分离与提纯常用的化学方法: ①加热法 混合物中混有某些热稳定性差的物质时,可直接加热,使热稳定性差的物质分解而分离出来。例如:食盐中混有氯化铵、纯碱中混有小苏打等均可直接加热除去杂质。 ②沉淀法 在混合物中加入某试剂,使其中一种以沉淀形式分离出去的方法。使用该方法一定要注意不能引入新杂质,若使用多种试剂将溶液中不同粒子逐步沉淀时,应注意后加入试剂能将先加入的过量试剂除去,最后加入的试剂不引入新杂质。例如:加入适量BaCl2溶液可除去NaCl中混有的Na2SO4。 ③转化法 利用化学反应将某种物质进行多次转化而分离。例如:分离Fe3+和Al3+时,可加入过量的NaOH溶液,生成Fe(OH)3和NaAlO2,过滤后,分别再加盐酸重新生成Fe3+和 Al3+。注意转化过程中尽量减少被分离物质的损失.而且转化后的物质要易恢复为原物质。 ④酸碱法 被提纯物质不与酸或碱反应,而杂质可与酸或碱发生反应,可用酸或碱作除杂试剂。例如:用盐酸除去SiO2中的石灰石,用氢氧化钠除去铁粉中的铝粉。 ⑤氧化还原法 a.对混合物中混有的还原性杂质,可加入适当的氧化剂将杂质氧化为被提纯物质。例如:将氯水滴入混有FeCl2的FeCl3溶液中,除去FeCl2杂质。 b.对混合物中混有的氧化性杂质,可加入适当还原剂将杂质还原为被提纯物质。例如:

分离工程考题(选择,填空)

重点:掌握分离过程的特征,分离因子和固有分离因子的区别,平衡分离和速率分离的原理。 难点:用分离因子判断一个分离过程进行的难易程度,分离因子与级效率之间的关系。 ?1、说明分离过程与分离工程的区别? ?2、实际分离因子与固有分离因子的主要不同点是什么? ?3、怎样用分离因子判断分离过程进行的难易程度? ?4、比较使用ESA与MSA分离方法的优缺点。 ?5、按所依据的物理化学原理不同,传质分离过程可分为那两类? ?6、分离过程常借助分离剂将均相混合物变成两相系统,举例说明分离剂的类型. 1、下列哪一个是机械分离过程() (1)蒸馏(2)吸收(3)膜分离(4)离心分离 2、下列哪一个是速率分离过程() (1)蒸馏(2)吸附(3)膜分离(4)沉降 3、下列哪一个是平衡分离过程() (1)蒸馏(2)热扩散(3)膜分离(4)离心分离 1、分离技术的特性表现为其()、()和()。 2、分离过程是(混合过程)的逆过程,因此需加入()来达到分离目的。 3、分离过程分为()和()两大类 4、分离剂可以是()或(),有时也可两种同时应用。 5、若分离过程使组分i及j之间并没有被分离,则()。 6、可利用分离因子与1的偏离程度,确定不同分离过程分离的()。 7、平衡分离的分离基础是利用两相平衡(组成不等)的原理,常采用()作为 处理手段,并把其它影响归纳于()中。 8、传质分离过程分为()和()两类。 9、速率分离的机理是利用溶液中不同组分在某种()作用下经过某种介质时的 ()差异而实现分离。

10、分离过程是将一混合物转变为组成()的两种或几种产品的哪些操作。 11、工业上常用()表示特定物系的分离程度,汽液相物系的最大分离程度又称 为()。 12、速率分离的机理是利用传质速率差异,其传质速率的形式为()、()和 ()。 13、绿色分离工程是指分离过程()实现。 14、常用于分离过程的开发方法有()、()。 1、分离过程是一个() a.熵减少的过程; b.熵增加的过程; c.熵不变化的过程; d. 自发过程 2、组分i、j之间不能分离的条件是() a.分离因子大于1; b.分离因子小于1; c.分离因子等于1 3、平衡分离的分离基础是利用两相平衡时()实现分离。 a. 组成不等; b. 速率不等; c. 温度不等 4、当分离因子()表示组分i及j之间能实现一定程度的分离。 a. ; b. ; c. 5.下述操作中,不属于平衡传质分离过程的是() a. 结晶; b. 吸收; c. 加热; d. 浸取。 6、下列分离过程中属机械分离过程的是(): a.蒸馏; b. 吸收; c. 膜分离; d.离心分离。 7、当分离过程规模比较大,且可以利用热能时,通常在以下条件选择精馏法(): a. 相对挥发度<1.05; b. 相对挥发度>1.05; c. 相对挥发度<1.5; d. 相对挥发 度>1.5。 8、以下分离方法中技术成熟度和应用成熟度最高的是(): a. 超临界萃取; b. 吸收; c. 精馏; d. 结晶。 9、工业上为提高分离或反应效果,常把不同的过程进行组合,以下不属于反应过程与分离过程的耦合的是(): a. 化学吸收; b. 在精馏塔里进行的由甲醇和醋酸制备醋酸甲酯的过程; c. 分离沸点相近的混合物的萃取结晶过程; d.催化精馏过程。 ?分离过程分离因子分离剂固有分离因子膜分离 ?平衡分离速率分离机械分离过程传质分离过程分离工程

气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择[摘要] 本文是利用GC/MS对生物碱进行分离,运用质谱库进行检索筛选 得到混合物的主要成分。探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。实验结果表明,温程序和柱前压与流速对分离效果影响最大,进样口温度,接口温度对分离效果影响较小。 [关键词] 气相色谱-质谱联用;最佳分离条件;成分;影响 1.引言 GC/MS技术是化学工作者分离有机混合物常用的手段。色谱-质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。这种技术适用于做多组分混合物中未知组分的定性鉴别,可以判断化合物的分子结构,可以准确的测定未知组分的分子量,可以修正色谱分析的判断错误,可以鉴定出部分分离甚至未分开的色谱峰。特别是近年来计算机技术的发展,使GC/MS仪使用更为方便,简单,快捷。 本文是利用GC/MS对未知样品(生物碱)进行分离,从而得到它的最佳分离条件,运用质谱库进行检索筛选得到混合物的主要成分,并且进一步探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。分离条件的探索对混合物的分离有重要的指导意义。对分离其它样品具有极大的参考价值。 2.实验部分 2.1样品的性质和仪器参数 样品来源于从植物的茎叶中提取的生物碱。柱温选择在50-260℃。 仪器:GC/MS-QP2010 ,He气源(99.999%),毛细管色谱柱DB-5MS (30m×0.25mm×0.25um)。 2.2最佳分离条件的探索与讨论 2.2.1升温程序 仪器参数: ①GC:注射模式:分流; 分流比:20/1; 柱前压:100.1Kpa; 流速:1.69ml/min;进样口温度:200℃ ②MS:离子源温度:200℃;检测范围:35—550;去溶剂峰:2min 接口温度:250℃;检测器电压:1000kv 升温程序对分离效果有显著的影响。所以选择适宜的升温程序最为重要。拟采用如下升温程序: 升温程序一:初温50℃,以10℃/min 的升温速率升至200℃,保留30min;结果发现,在保留时间为20min时,峰较多,可能出峰不完全,所以应该提高柱温。在20min以前出峰较少,间距太宽,所以应该增加升温速率。 升温程序二:初温50℃,以12℃/min 的升温速率升至200℃,以2℃/min 的升温速率升至220℃保留10min;结果发现,在保留时间为17min时,出峰较多,没有分开。要使分离效果更好,在210℃时采用降温程序。 升温程序三:初温50℃,以10℃/min 的升温速率升至210℃,以-5℃/min 的降温速率降至190℃,以20℃/min 的升温速率升至240℃;结果发现,降温使分离效果明显变好,但是出峰不完全,为此,需增加保持时间。在10min以前出峰太少,间距较大,可以增加升温速率缩短间距。

分离技术复习题

第一章 二、分离技术的分类 传质分离 是指在分离过程中,游戏服务器.,,有物质传递过程的发生。分为两大类:平衡分离过程和速率控制分离过程。 平衡分离过程为借助分离媒介(如热能、溶剂、吸附剂等)使均相混合物系统变为两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。 速率控制分离过程是指借助某种推动力,如浓度差、压力差、温度差、电位差等的作用,某 其他物理场辅助分离技术 1.超声波萃取 2.微波辅助萃取 3.超声微波协同萃取 食品分离技术指各种分离技术在食品科学与食品工程中的应用,它依据某些理化原理将食品物料中的不同组分进行分离,是食品加工中的一个主要操作过程,是食品工业单元操作的深化和归属 第二节食品分离过程的特点及选择原则

一、食品分离技术的分类 食品分离技术按其分离规模可分为:实验室规模和工业生产规模。 食品分离技术按分离方法可分为:①物理法。②化学法。③物理化学法。 食品分离技术按分离性质可分为非传质分离和传质分离两大类。 二、食品分离过程的特点 ①分离对象种类多,性质复杂。②产品质量与分离过程密切相关。③产品要求食用安全。 ④分离对象在分离过程的易腐败 三、食品分离技术的选择原则 总的原则是先要确定分离的目的,了解待分离混合物中各组分的物理、化学、生物学方面的性质,并要充分关注分离的目标成分。根据目标成分的性质,确定分离工作的步骤。 分离工作的步骤 ①选择和确定对目标成分的定性、定量方法,以便在分离过程中能对目标成分进行检测,对分离效果进行评价。 ②了解物料的性质。例如,物料的粘度、目标成分在物料中存在的部位、含量等。 ③确定分离方法并进行实验。是否可利用自然的能量进行分离?是否为超高纯度的分离?分离规模的大小?按这些要求选择合适的分离技术 ④确定分离方法的评价指标。一般来说,评价指标有:回收率、截留率、选择性、经济性等 ⑤中试或工业生产应用的放大设计。 分离方法的选择时要考虑的因素 1.产品纯度和回收率。 2.产品价格 3.目标产物的特性 4.混合物中的分子性质 5.经济因素 6.安全与环保 四、食品分离技术的评价 ①回收率和产品纯度②产品质量③产品安全性④简化生产工艺⑤降低能耗、场地,节省成本 三个关键环节:概念形成到课题的选定、技术与经济论证(可行性)和工业放大技术。 三、食品分离技术的发展趋势 未来食品工业所关注的重点问题有: ①环境问题。减少温室气体的排放,消除水、土壤的污染。②工艺改进。需要开发更好的食品工业分离技术。③产品开发。产品多样化,新的及有高附加值的产品开发。④能源问题。提高能源利用率,找到能替代高耗能的工艺。⑤安全问题。有时这与新的分离技术关系密切。第二章 膜材料 有机膜材料 1.纤维素衍生材料:醋酸纤维素、硝酸纤维素等。2. 聚砜:性能优于纤维素3. 其它高分子材料:较高的机械强度,耐pH范围宽及较耐高温 无机膜材料 金属、金属化合物、陶瓷、玻璃以及沸石等。 有实用价值的膜需具备下列条件 1. 高的截留率和高透水率; 2. 强的抗物理、化学和微生物的侵蚀性能; 3. 良好的柔韧性和足够的机械强度; 4. 使用寿命长,使用pH范围广; 5. 运行操作压力低; 6. 制备方便,便于工业化生产。 四、膜的制备方法

分离技术

1.简述分离技术的分类及其分离原理? (一)机械分离对象是由两相或两相以上所组成的混合物,其目的是简单地将各相加以分离,过程中间不涉及传质过程。 名称分离因子分离原理举例 沉降重力密度差水处理 离心离心力密度差油精制、牛乳脱脂 旋风分离惯性流动力密度差喷雾干燥 过滤过滤介质粒子大小除菌、喷雾干燥/果汁澄清、 颗粒分离 压榨机械力压力下液体流动油脂生产 (二)传质分离是指在分离过程中,有物质传递过程的发生,传质分离的原料,可以是均相体系,也可以是非均相体系。分为两大类:平衡分离过程和速率控制分离过程1平衡分离过程为借助分离媒介(如热能、溶剂、吸附剂等)使均相混合物系统变为两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。2速率控制分离过程是指借助某种推动力,如浓度差、压力差、温度差、电位差等的作用,某些情况下在选择性透过膜的配合下,利用各组分扩散速度的差异而实现混合物的分离操作。分为膜分离和场分离(三)其他物理场辅助分离技术1.超声波萃取 2.微波辅助萃取 3.超声微波协同萃取 2食品为什么要分离?1获得需要的产品①农作物中非食用物质与食用物质的分离。②多层次、多样化产品的需求。2食品安全性的要求①农药残留。②工业“三废”进入食物链危害人体健康。③天然食品在生长过程中次生代谢产生多种微量的有毒成分。 3食品分离过程的特点:分离对象种类多,性质复杂。产品质量与分离过程密切相关。产品要求食用安全。分离对象在分离过程中易腐败。 4食品分离技术的选择原则:先要确定分离的目的,了解待分离混合物中各组分的物理,化学,生物学方面的性质,并要充分关注分离的目标成分。对目标成分,要了解目标成分的性质,它的相对分子质量,化学结构,理化性质,电荷性,热敏性以及生物活性等基础性资料对确定分离方法的选择起决定性作用。 5食品分离技术的考虑因素:产品纯度,回收率(主要)产品价格目标产物的特性混合物中的分子性质经济因素安全与环保 6食品分离技术在食品工业中的地位与作用 1. 是重要的食品工艺过程之一2. 提高农作物综合利用程度,生产高附加值的产品。3.改进食品的营养与风味。4. 符合卫生,安全要求。5. 改变生产面貌。 膜分离技术 1按膜的性质分:⒈天然膜⒉合成膜.按膜的结构分:⒈多孔膜⒉致密膜 3.液膜.按膜的作用机理分:1.吸附性膜2.扩散性膜 3.离子交换膜4.选择渗透膜5.非选择性膜 2膜分离技术的原理:膜分离概念:用天然的或人工合成的膜,以外加压力或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离,分级,提纯或富集的方法,统称膜分离法。 3膜分离技术特点:在常温下进行,不发生相变化,能耗低,在密闭容器中进行,不用添加化学试剂、添加剂,选择性好,使用范围广,操作简便,易自动化操作 4膜分离的特点1.不发生相变,能耗低。2.一般在常温下操作不需加热,适应于热敏性物质 3.应用范围广。4.以压力为推动力,装置简单、体积小、操作容易、

超详细气质联用原理

3在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相; 自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1. 按两相状态分类 气体为流动相的色谱称为气相色谱(GC)根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)。 液体为流动相的色谱称液相色谱(LC)同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。超临界流体为流动相的色谱为超临界流体色谱(SFC)。 随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC). 4 由检测器输出的电信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。如果进样量很小,浓度很低,在吸附等温线(气固吸附色谱)或分配等温线(气液分配色谱)的线性范围内,则色谱峰是对称的。在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。色谱峰顶点与基线之间的垂直距离,以(h)表示 5不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积。试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间 6调整保留时间实际上是组份在固定中停留的总时间。保留时间是色谱法定性的依据。但同一组分的保留时间受到流动相流速的影响,因此,常用保留体积等参数进行定性分析。死体积指色谱柱在填充后,柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和。某组分的保留时间扣除死时间后,称为该组分的调整保留时间。由于组分在色谱柱中的保留时间tr包含了组分随流动相通过柱子所须的时间和组分在固定相中滞留所须的时间,所以tr实际上是组分在固定相中保留的总时间。保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱工作者有时用保留体积来表示保留值。指从进样开始到被测组分在柱后出现浓度极大点时所通过的流动相的体积。某组分的保留体积扣除死体积后,称为该组分的调整保留体积。 7相对保留值只与柱温以及固定相性质有关,与柱径柱长、填充情况和流动相流速无关。是常用的定性数据。在定性分析中,通常固定一个色谱峰作为标准(s),然后再求其它峰(i)对这个峰的相对保留值,此时可用符号α表示, 式中tr '(i)为后出峰的调整保留时间,所以α总是大于1的。相对保留值往往可

HPLC分离技术

液相色谱分离技术 一、液相色谱分离条件选择 HPLC可供选择的固定相及流动相选择都有自身的特点和应用范围。选择分离类型应根据分离分析的目的、试样的性质和量的多少、现有设备条件等来确定最佳分离方法. 1、依据相对分子质量选择 一般的液相色谱(吸附、分配及离子交换)最适合的相对分子质量范围200—2000.对于相对分子质量大于2000的样品,则用空间排阻色谱较佳. 2、根据溶解性能选择 如果样品可溶于水并属于能离解的物质,以采用离子交换色谱为佳;如果样品溶于烃类(如苯或异辛烷),则可采用液固吸附色谱;如果样品溶于四氯化碳,则大多数可采用常规的分配或吸附色谱分离;如果样品既溶于水,又溶于异丙醇,则可采用液—液分配色谱,以水和异丙醇的混合物为流动相,以憎水性化合物为固定相. 3、根据分子结构选择 判断样品存在什么官能团.然后确定合适的色谱分离类型.例如,样品为酸、碱化合物,则采用离子交换色谱;样品为脂肪族或芳香族,可采用液—液分配色谱或液—固吸附色谱;异构体采用液—固吸附色谱;同系物不同官能团及强氢键的样品可用液—液分配色谱.现在将其 列入表18.10,作为选择分离类型的参考.

4、流动相的选择 a、液相色谱中流动相的一般要求 ①化学稳定性好.与样品不发生化学反应;与固定相不发生不可逆作用,应保持色谱柱效或柱的保留性能长期不变. ②对样品组分具有合适的极性和良好的选择性. ③必须与检测器相适应,例如,采用紫外检测器,所选用的检测波长(工作波长)应比溶剂的紫外截止波长更长.所谓溶剂的紫外截止波长是当小于外截止波长的辐射通过溶剂时,溶剂对辐射产生强烈吸收,此时溶剂被看作是光学不透明的,它严重干扰组分的吸收测量.表18.11列出了部分常用溶剂的紫外截止波长。

未知物成分分析

未知物成分分析 一、化工领域定义 未知成分分析[1](现称为“微谱分析”)指通过微观谱图对未知成分进行分析的技术方法,引用自“微谱技术官网”。该技术类似于法学界“反向工程”,通过对目标产品进行拆解、测试、重组从而达到还原的目的。 未知成分分析(也称为“未知物剖析”)是通过综合的分离和分析手段对复杂的未知化学品的成分进行定性和定量分析,为科研、配方研究、产品开发、改进生产工艺提供科学依据,为企业引进、消化吸收再创新提供强大的技术支撑。[2]二、科学界定义 未知物分析方法(analyses methods of unknown material)系指从未知物的分析需求出发?综合考虑并采取不同的分离、提纯的物理、化学的技术和方法将未知物样品中的各个组分分离开并进行纯化,然后分别采用不同的分析仪器设备对其进行分析、鉴定并最终确定其未知样品的名称、含量的方法。许多年来,国内外的一些专家、学者在高分子材料的开发研究中发表了许多相关的研究报告。其应用领域主要涉及化学工业中的精细化工类产品。其目的是为我国相关的科研部门提供与创新研究相结合的相关资料和数据。 三、发展概况 未知成分分析是自2008年起被微谱分析测试中心。现微谱技术,引入化工材料分析领域。至2010年左右,因分析结果一般以成分显示,称呼逐渐变更为“成分分析”。2011年后半年开始,因分析领域及对象不断拓宽。并不仅仅针对成分进行分析,多数情况被用于解决现实问题。因此以分析方法命名的“微谱分析”(即微观谱图分析)逐渐为行业所接受。 常规未知成分分析的作用 1、可以对先进产品组成成分进行分离、鉴定、提高自身产品质量 2、可以提高文物鉴定的科学性、准确性、缩短鉴定时间、提高工作效率 3、也适用于大专院校?科研单位、工矿企业内从事于化学、化工的科技人员及科研原理人员。 未知成分分析被引入化工领域的应用 1、分析未知成分、消除隐患 3、分析对手产品、对比优化 2、分析产品组分、还原配方 4、分析先进产品、仿制生产

气相色谱与气质联用原理简介(精)

色谱法也叫层析法, 它是一种高效能的物理分离技术, 将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素, 其方法是这样的:在一玻璃管中放入碳酸钙, 将含有植物色素 (植物叶的提取液的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗, 随着石油醚的加入, 谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带, 继续冲洗就可分别接得各种颜色的色素, 并可分别进行鉴定。色谱法也由此而得名。 现在的色谱法早已不局限于色素的分离, 其方法也早已得到了极大的发展, 但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理: 由以上方法可知,在色谱法中存在两相, 一相是固定不动的, 我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时, 混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异, 与固定相之间产生的作用力的大小、强弱不同, 随着流动相的移动, 混合物在两相间经过反复多次的分配平衡, 使得各组分被固定相保留的时间不同, 从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合, 实现混合物中各组分的分离与检测。 二、色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。

从两相的状态分类: 色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC 和液相色谱法(LC 。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气 -液色谱、气 -固色谱、液 -固色谱、液 -液色 气相色谱仪的组成 :载气处理控制系统:专用气源,进入气体恒定; 进样装置:液体样品手动进样:实验室; 气体样品定量管进样:工业色谱柱:分离混合样品组分:填充、毛细管。吸附 (固、分配 (液检测器和记录仪:热导、电离 2. 定性和定量分析色谱图分析组分物质; 分析组分含量。基线滞留时间:峰值最大;死时间; 峰高、峰宽、半峰宽; 峰面积、分辨率 3. 定性分析滞留时间法:滞留时间一定, 由此判别组分。加入纯物质法:加入后分析色谱峰值判别。 4. 定量分析定量进样法:面积归一化法:外标法:智能化 GC7890F 气相色谱仪操作规程, 填充柱恒温操作 1. 打开载气高压阀, 调节减压阀至所需压力(载气输入到 GC7890系列气相色谱仪的压力必须在 0.343MPa ~0.392MPa ,如果使用氢气为载气时, 输入到气相色谱仪的载气入口压力应为 0.343MPa 。打开净化器上的载气开关阀,用检漏液检漏,保证气密性良好。调节载气稳流阀载气使流量达到适当值(查 N2或 H2流量输出曲线 7890II 用刻度~流量表 ,通载气 10min 以上。 2. 打开电源开关,根据分析需要设置柱温、进样温度和 FID 检测器的温度(FID 检测器的温度应>100℃。 3. 打开空气、氢气高压阀,调节减压阀至所需压力 (空气输入到 GC7890系列气相色谱仪的压力必 须在 0.294MPa ~0.392MPa , 氢气输入到 GC7890系列气相色谱仪的压力必须在 0.196MPa ~ 0.392MPa 。打开净化器的空气、氢气开关阀, 分别调节空气和氢气针形阀使流量达到适当值 (查空气和 H2流量输出曲线针形阀刻度~流量表。 4. 按[基流 ]键, 观察此时的基流值。 5. 按 [量程 ]键,设置 FID 检测器微电流放大器的量程。按 [衰减 ]键,设置输出信号的衰减值。

生化分离技术原理及应用复习提纲

《生物分离工程》 复习题 1、什么是等电点沉淀? 调节溶液的 pH至溶质的等电点,溶质所带净电荷为零时,其分子间的吸引力增加,分子相互吸引,把该溶质从溶液中沉淀出来,即等电点沉淀 2、什么是微滤? 微滤(micfiltation,MF)是以多孔细小薄膜为过滤介质,靠膜两侧的压力差来对物质进行选择性透过,达到膜分离的目的。微滤膜的孔径分布范围在0.05? 10um之间;采用的压力一般在0.05?0.5MPa范围内。 3、什么是超滤? 超滤(ultafiltationUF)是利用膜两侧的压力差为动力将分子有选择地透过膜的过程,透过膜的分子除溶剂水外,还可以将溶质中的小分子(如无机盐等)通过膜,因此它属于一种“膜分离”过程。超滤的分离介质与微滤膜类似,但孔径更小,为0 001?0.05um,采用的压力常为0.1?1.0MPa。 4、什么是反萃取? 反萃取(backextraction):将萃取液和反萃取剂(含无机酸或碱的水溶液、水等)相接触,使某种被萃取到有机相的溶质转人水相,可看作是萃取的逆过程。 5、什么是溶剂萃取 溶剂萃取:利用物质在互不相溶的两相溶剂中溶解度的不同,将物质从一相溶剂转移到另一相溶剂中,从而进行分离、浓缩和提纯目的产物的方法. 6、什么是色谱技术? 色谱技术是一组相关分离方法的总称,色谱柱的一般结构含有固定相和流动相,根据物质在两相间的分配行为不同,经过多次分配(吸附-解吸-吸附-解吸…),达到分离的目的。 7、什么是膜分离技术? 膜分离技术利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。

气质联用法分析有机磷

Agilent 7890 / 5975C -GC/MSD 气质联用仪实验 (贵州民族大学化学与环境科学学院)

一、实验目的 1.了解Agilent 7890A气相色谱仪和5975C质谱仪的结构和操作。 2.了解仪器的开机、关机;初步掌握软件中有关仪器参数设定、分析方法的编辑、谱库检索。 3.自行编辑完整的方法分离混合有机磷标准样品,使得所有样品均能分离出来,并能检索出样品名称。 二、实验方法原理 1、气—质联用技术实质上是利用气相色谱分离混合物后利用质谱仪进充当检测器的一种分析技术,目前已十分成熟。 2、EI离子源及四极杆质谱原理: EI源主要由电离室(离子盒)、灯丝、离子聚焦透镜和一对磁极组成。灯丝发射电子,经聚焦并在磁场作用下穿过离子余弦定理到达收集极。此时进入离子化室的样品分子在一定能量电子的作用下发生电离,离子被聚焦、加速聚焦成离子束进入质量分析器四极杆。 四极杆是由四根精密加工的电极杆以及分别施加于x、y方向的两组高压高频射频组成的电场分析器电场分析器电场分析器电场分析器。四根电极可以是双曲面也可以是圆柱型的电极;高压高频信号提供了离子在分析器中运动的辅助能量,这一能量是选择性的——只有符合一定数学条件的离子才能够不被无限制的加速,从而安全的通过四极杆分析器。 三、仪器设备与试剂材料 1.7890A气相色谱仪+5975C质谱仪。

2.色谱柱: DB-5ms石英毛细柱 4.标准样品(AR级) 5.未知试样。 四、实验步骤 1、认真阅读气相色谱仪操作说明; 2、在教师指导下,开启仪器,并学会编辑一个完整的方法; 3、甲醇将标准样品稀释,将样品进样后逐步优化方法使得出峰效果能够达到目标; 4、用最终的方法另行配置样品进样,进行数据处理比对、谱库检索。 五、数据处理 1、将混合标准样品的峰逐一进行谱库检索,学会谱库检索; 2、学习察看匹配度、CAS等信息。 六、思考题 1、气质联用仪为何需要抽真空; 2、气质联用技术相对气相色谱技术的优点和不足之处。

相关文档
相关文档 最新文档