文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析中不动点理论及其应用

泛函分析中不动点理论及其应用

泛函分析中不动点理论及其应用
泛函分析中不动点理论及其应用

泛函分析与微分方程有着密切的联系,泛函分析的算子半群理论、巴拿赫代数、拓扑线性空间理论,不动点原理等在常微分方程中都有重要的应用。

首先,算子半群最简单的原型在线性常微分方程的初值问题,且由

H i l l e Yo s i d a -定理表明:当稠定闭算子A 满足定理条件时,是下列方程的解,

且解是唯一的。

设A 是一个n n ?实矩阵,方程组

()

()()00n

dx t Ax t dt x x R ?=?

?

?=∈?

在空间中解存在唯一。设0t ≥,考察映射 ()()0:.T t x x t →

则(){}0T t t ≥是强连续算子半群。在常微分方程中把算子半群(){}

0T t t ≥通过矩阵写出来:

()0

!n n

tA

N t A T t e n ∞

===∑. 且不动点在常微分方程中有很多应用。例如,应用不动点定理证明微分方程解的存在性定理

微分方程解的存在性与唯一性定理 若常微分方程

()0

0,,x dy

F x y y y dx

==满足以下条件:

(1)(),F x y 在整个平面上连续;

(2)()()11,,F x y F x y K y y -≤-,其中K >0; 那么存在唯一的连续函数()y x j

=满足

()

(),d x F x y dx

?=且()00x y ?=。 证明:用()()

0,X C U x d =表示所有定义在()0,U x d 上取值于R 的连续函数全

体,其中d 满足1K d <。,f g X "?,用()(

)

()()0,,m

a x xUx f g f x g x a

r

?

=-表示,f g 间

的距离,同样由泛函分析的知识知X 为完备度量空间。上述常微分方程等价于

等价于积分方程()()()

0,x

x y x y f t y t dt =+ò,定义映射()()

0,x

x Tf y F t f t dt =+ò,由

F 的连续性知Tf X ?,,f g X "?

()()

()()0,,max x U x Tf Tg Tf x Tg x a r ?=-

()

()()()()00

,max

,,x

x U x x F x f x F x g x dt δ∈??=-???

()

()()00

,max

x

x U x x K f t g t dt δ∈≤-?

()

()()0,max x x K f t g t δδ≤-

(),K f g dr

=

因为1K d <,故存在唯一的连续函数()()

,,y x x U x j

d =?,使得

()()()0

0,x

x x y f t t d t ??=+?

,显然

()y x ?=可微,所以()()0

,,y x x U x ?δ=∈满足()

(),d x F x y dx

?=且()00x y ?=,然后在延拓到整个R 上即得。 第二, 应用不动点定理证明隐函数定理 (隐函数定理)若满足以下条件:

(1)函数F 在()000,P x y 为内点的某一区域()

{}

0102,,D x y x x r y y r R

=-<-

(2)()00,0F x y =;

(3)F 在D 内存在连续的偏导数(),y F x y ; (4)()00,0y F x y 1。

则在0P 的某领域()0U P D ì内,方程(),0F x y =唯一地确定了一个定义在某闭区间上()0,U x a 内的函数()y x j =,使得

(1)()0

x y j

=,当()0

,x U x a ?时,()()0

,x U y j d ?且()(),0F x x j =;

(2)()x j

在()0

,U x a 内连续。

证明:用()()

0,X C U x a =表示所有定义在()0,U x a 上取值于R 的连续函数全体。其中,1r a <。

,f g X "?,用()()

()()0,,max x x f g f x g x a r

?=

-表示,f g 间的距离。由泛函分

析的知识知X 为完备度量空间。取()100,0y c F x y -=>,f X "?定义映射

:T f Tf ?,使得()()()

(

)()0,,(),x U x T f

x f x c F x f x α?∈=-,则T f X ?。

,f g X "?,由微分中值定理及(),y F x y 的连续性得:

()()

()()0,,max x U x Tf Tg Tf x Tg x a r ?=-

()

()()()()()()0,max ,,g x x f x g x c F x f x F x x α??=---??

()

()()()()()

()()()()0,max ,1x x f x g x cF x f x g x f x g x a q q ?=--+--

()()()()()()()()0,max 1,1y x U x cF x f x g x f x g x αθθ∈??=-+--?

? ()

()()()()()

()()

00,,max 1,1max y x U x x U x cF x f x g x f x g x ααθθ∈∈≤-+-?-()

()()()()()0,max 1,1,y x U x cF x f x g x f g αθθρ∈=-+-?

其中01q <<,又(),

y F xy 在()000,P x y 处连续,所以取{}21

,min ,2

c r e

d a =$<当00,x x y y a d -<-<时,有()()()()

1

,12

y F x f x g x c q q +-<。于是

()()()()

11,12y c F x f x g x q q -+-<,从而()()1

,,2

Tf Tg f g r r <。由定理知,T 在

X 中存在唯一的不动点,即存在唯一的连续函数()y x ?=使得()()T x x ??=代入T 的定义可得()(),0F x x ?=,定理得证。

不动点定理及其应用

不动点定理及其应用 一、不动点定理 不动点定理fixed-point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =???,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。 (一)、压缩算子: 1、定义: 设(1)X 距离空间; (2)算子:T X X →的映射。 若(01),..,s t x y X θθ?≤

(2)定理的条件是结论成立的充分非必要条件。 (3)迭代的收敛性和极限点与初始点无关。但T 的选取及初始点0x 的选取对迭代速度有影响。初始点离极限点越近,其收敛速度越快,而不影响精确度。 (4)误差估计 ①事前(或先验)误差:根据预先给出的精确度,确定计算步数。此方法有时理论上分析困难。 设迭代到第n 步,将* n x x ≈,则误差估计式为 * 0010(,)(,)(,)11n n n x x Tx x x x θθρρρθθ ≤=-- ②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取* n x x ≈。此方法简单,但有时无法估计计算步数。 设迭代到第n 步,将*n x x ≈,则误差估计式为 *1(,)(,)1n n n x x x x θ ρρθ -≤ - 或 *11 (,)(,)1n n n x x x x ρρθ +≤ - 3、求解不动点的具体步骤: Step1 提供迭代初始点0x ; Step2 计算迭代点10x Tx =; Step3 控制步数,检查10(,)x x ρ,若10(,)x x ρε>。则以1x 替换0x 转到第二步,继续迭代,当10(,)x x ρε≤时终止,取1x 为所求结果。误差不超过 1θ εθ -。 对于不动点理论,为了便于应用,下面给出两种不同情况下所适合的方法。 推论1 设(1)X ----完备的距离空间; (2):T X X →的算子。

不动点原理及其应用

题目:不动点原理及其应用 摘要 本文主要讨论了压缩映射原理,Schauder不动点定理以及不动点的应用三个方面。在解决微分方程,积分方程,以及其他方程的解的存在唯一性时,将问题转换为求某一映射的不动点,利用不动点原理进行解决。 关键词:压缩映射原理;Schauder不动点定理;不动点原理应用

Abstract In this paper ,we talked about contraction mapping principle,Schauder’s fixed point theorem and the application of the fixed point theorem.As we deal with the solutions about differential equation, integral equation and other kinds of equations, it is a useful way to transform the problem into fixed point theorem.We can use it to solve plenty of practice problems too. Keywords: contraction mapping principle; Schauder’s fixed point theorem;the application of fixed point theorem.

目录 引言 (1) 1.压缩映射原理 (1)

1.1压缩映射原理(距离空间) (1) 1.2压缩映射原理(巴拿赫空间) (7) 2.Schauder不动点定理 (9) 3不动点定理的应用 (11) 总结 (12) 参考文献 (14)

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

泛函分析中不动点理论及其应用

泛函分析与微分方程有着密切的联系,泛函分析的算子半群理论、巴拿赫代数、拓扑线性空间理论,不动点原理等在常微分方程中都有重要的应用。 首先,算子半群最简单的原型在线性常微分方程的初值问题,且由 H i l l e Yo s i d a -定理表明:当稠定闭算子A 满足定理条件时,是下列方程的解, 且解是唯一的。 设A 是一个n n ?实矩阵,方程组 () ()()00n dx t Ax t dt x x R ?=? ? ?=∈? 在空间中解存在唯一。设0t ≥,考察映射 ()()0:.T t x x t → 则(){}0T t t ≥是强连续算子半群。在常微分方程中把算子半群(){} 0T t t ≥通过矩阵写出来: ()0 !n n tA N t A T t e n ∞ ===∑. 且不动点在常微分方程中有很多应用。例如,应用不动点定理证明微分方程解的存在性定理 微分方程解的存在性与唯一性定理 若常微分方程 ()0 0,,x dy F x y y y dx ==满足以下条件: (1)(),F x y 在整个平面上连续; (2)()()11,,F x y F x y K y y -≤-,其中K >0; 那么存在唯一的连续函数()y x j =满足 () (),d x F x y dx ?=且()00x y ?=。 证明:用()() 0,X C U x d =表示所有定义在()0,U x d 上取值于R 的连续函数全 体,其中d 满足1K d <。,f g X "?,用()( ) ()()0,,m a x xUx f g f x g x a r ? =-表示,f g 间 的距离,同样由泛函分析的知识知X 为完备度量空间。上述常微分方程等价于

泛函分析在力学和工程中的应用

泛函分析在力学和工程中的应用 陆章基 (复旦大学应用力学系) 摘要 本文简单介绍泛函分析方法在力学和工程中的若干应用,包括泛函观点下的结构数学理论、直交投影法、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法、与实验技术有关的泛函方法等。并介绍当前非线性分析中部分动态。 $ 1 泛函分析概述 泛函分析是高度抽象的数学分支,研究各类泛函空间及算子理论。所谓泛函空间是带有某类数学结构(主要是拓扑和代数结构)的抽象集。其元(或点)可以是数、向量、函数、张量场,甚至各种物理状态等。根据不同拓扑和代数结构,泛函空间划分为各个类别。力学和工程中常见的有①:(i)度量(距离)空间。对任意两抽象元引入距离,由此自然地引入开集等拓扑结构。从而,度量空间是一特殊拓扑空间,但尚未赋予代数结构;(ii)线性拓扑空间(拓扑向量空间。同时带有拓扑和代数结构。所谓拓扑无非是在抽象集中规定某些子集为开集),他们满足开集的基本公理。有了拓扑后,即能引入极限、连续、紧致和收敛等初等分析的重要概念。这里所述的代数结构指的是线性结构(加法和数乘运算)。由此可讨论线性无关、基和维数等代数概念。泛函分析的空间(尤其各类函数空间)绝大部分是无限维的。线性空间(带有线性结构的度量空间)是线性拓扑空间的一例。但最重要的线性拓扑空间应是下列线性赋范空间;(iii)线性赋范空间。每个元(常称向量)配有番薯||x||(是普通向量长度的推广)。线性空间配上范数后,能自然地诱导出度量和拓扑。就这个意义而言,它是特殊的线性拓扑和度量空间。于是,具有这两个空间中所有概念。例如可以讨论该空间(或其子集)是否完备。即任何柯西序列是否为收敛序列。(iv)Banach空间。它是完备的线性赋范空间。完备性使该空间具有十分良好的性质。例如闭图像定理、共鸣定理、逆算子定理和开映照原理等。(v)内积空间。内积的引入使该空间更直观形象,内容格外丰富。内积把普通的几何术语差不多全带到抽象空间中。例如:长度、两向量交角、直交性、直交投影、就范直交系、点(向量)和子空间的距离等。使抽象泛函空间涂上浓厚的几何色彩。力学家和工程师对此尤感兴趣。由于内积可诱导番薯,内积空间是特殊线性赋范空间,但反之不然。与普通欧式空间最相像的应数下述Hilbert空间;(vi)Hilbert空间。它是完备的内积空间,内容最丰富。例如Fourier展开、Bessel不等式和Parseval等式等。由于本文讨论泛函的力学应用,必须提及的最后一类空间是Sobolev空间。(vii)Sobolev空间W m,p(Ω)(p (Ω)空间中可以连续求m阶分布导数的函数u组成的子空间,≥1,m≥0)[3]。它是由L p 并配上Sobolev空间。它是特殊的线性赋范空间。其中,分布导数是普通导数的推广,对于性质极差的Dirac delta之类的广义函数,也能求分布导数。因此,对函数的“光滑程度”提供更一般、更精确的含义。由于Sobolev嵌入定理,可以通过找弱解来讨论偏微分方程的定解问题。p=2这类Sobolev空间特别重要,它是特殊的Hilbert空间,记之为H m(Ω),称作Hilbert-Sobolev空间。 泛函分析另一内容是算子理论,可以讲更为重要。它研究上述各类泛函空间上线性与非线性算子的各种特性。对于单个算子,可引入连续、有界、下有界、闭、紧致和全连续等性质。对于算子集(线性连续算子集或线性连续泛函集等)又可引入新的线性结构和范数等,构成高层的算子空间。其中对偶(共轭)空间尤为重要。据此,可引入自共轭(自伴)算子、投影算子、酉算子、正常算子、自反空间、强和弱收敛等。在初等分析中卓见成效的微分运算

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析在控制工程的应用

泛函分析在控制工程中的 应用 作者:景苏银 学号: 0211443 单位:兰州交通大学 日期:2011.12.1

泛函分析在控制工程中的应用 【摘要】本文综合运用函数论,几何学,代数学的观点来研究无限维向量空间上的函数,算子和极限理论,通过泛函理论求解工程中可微方程的极值问题,为工程的设计提供了理论基础。它可以看作无限维向量空间的解析几何及数学分析。 【关键词】泛函分析控制工程控制优化 泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。主要内容有拓扑线性空间等。它广泛应用于物理学、力学以及工程技 术等许多专业领域。 泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。 Functional analysis in water conservancy of application

Abstract:This article through the functional theory solution of differential equations can be hydraulic extremum problems, for water conservancy project design provides theory basis. It draws function theory, geometry, algebra point of view to study the infinite dimensional vector space function, operator and limit theory. It can be as infinite dimensional vector space analytic geometry and mathematics analysis。 Functional Analysis (Functional Analysis) is the modern a branch of mathematics, belongs to learn Analysis, the study of main object is function consists of the space. Functional analysis is made to transform (such as Fourier transform, etc.) of the nature of the study and differential equation and integral equation of research and development. Using functional as a statement from the variational method, representative of the function for function. And take Hector <(Stefan Banach) is functional analysis of the theory of the primary founders, and mathematician and physicist voltaire pull (Vito Volterra) to the wide application of functional analysis is an important contribution. Functional analysis is the 1930 s of the formation of the mathematics branch. From the variational problem, integral equation and theoretical physics research develops. Functional analysis in mathematical physics equation, probability theory, the calculation of mathematics branch all has the application, is also a degree of freedom with an infinite physical system mathematical tools. Main content have topological space, etc. It is widely used in physics and mechanics and engineering skills and Art etc many professional fields. 【正文】

不动点理论及其应用

不动点理论及其应用 主要内容: ●不动点理论—压缩映像原理 ●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用 目录: 一、引言 二、压缩映像原理 三、在微分方程中的应用 四、在中学数学中的应用 五、其它

一、 引言 取一张照片,按比例缩小,然后把小照片随手放在大照片上, 那么大小两张照片在同一个部位,一定有一个点是重合的。 这个重合点就是一个不动点。 函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。 二、 压缩映像原理 定理:(Banach 不动点定理—压缩映像原理) 设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。

这里有三个概念:距离空间,完备的距离空间,压缩映射 距离空间又称为度量空间。 定义:(距离空间)设 X 是一个非空集合。X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件: (1)。0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。),(),(x y y x ρρ=; (3)。),(),(),(z y y x z x ρρρ+≤, (X ,,∈?z y x )。 这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。 定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。 定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<

不动点定理研究

前言 不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3]. 我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、 许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。 作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧

泛函分析的应用

现代数学基础学习报告 泛函分析应用 院系: 专业: 导师: 姓名: 学号:

摘要 信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍 泛函分特点和内容[1] 泛函分析是20世纪30年代形成的分科,是从变分问题,积分方程和的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和。它可以看作无限维向量空间的解析几何及。泛函分析在,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的。 泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。 泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个的系统的运动,实际上需要有新的来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多力学系统的例子。一般来说,从力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的理论就属于无穷自由度系统。 正如研究有穷自由度系统要求n维空间的几何学和作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因此,泛函分析也可以通俗的叫做无穷的几何学和微积分学。古典分析中的基本方法,也就是用的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。 泛函分析是分析数学中最“年轻”的分支,是古典分析观点的推广,综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在、概率论、函数论、连续介质力学、、计算数学、、等学科中都有重要的应用,还是建立理论的基本工具,也是研究无限个自由度的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。 泛函分析在数学物理方程、、、、等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。 泛函的理论[2]

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

不动点定理及其应用(高考)

摘要 本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用. 关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性. Abstract This article firstly introduced the Fixpoint Theorem in Banach space, the one-dimensional extended form of the Fixpoint Theorem in other linear topological space and the extended form in general complete metric space. Then, we summarized the problem on sequence of number using Fixpoint Theorem, analyzing the characteristics of tests emerged on math papers of all parts of our country recent years, including the problem of general term and boundedness of a sequence of number. At last, attractive fix point and rejection fix point in Fixpoint Theorem v/ere introduced v/hich can solve the problem about the monotonicity and astringency of sequence of number. Keywords:Banach fixed point theorem, Sequence, Boundedness, Monotonicity Convergence. 第1章绪论 (1) 1.1导论 (1) 1.1.1选题背景 (1)

Banach不动点理论及其应用

不动点定理及其应用综述 摘要本文主要研究Banach 空间的不动点问题。[1]介绍了压缩映射原理证明隐函数存在定理和常微分方程解得存在唯一性定理上的应用;[2][3]介绍了应用压缩映射原理需要注意的问题;[4]介绍了不动点定理在证明Fredholm 积分方程和V olterra 积分方程解的存在唯一性以及在求解线性代数方程组中的应用;[5]讨论了不动点定理在区间套定理的证明中的应用。 一、压缩映射原理 压缩映射原理的几何意义表示:度量空间中的点x 和y 在经过映射后,它们在像空间中的距离缩短为不超过d(x,y)的α倍(1α<)。它的数学定义为: 定义1.1设X 是度量空间,T 是X 到X 的映射,若存在α,1α<,使得对所有 ,x y X ∈,有下式成立 (,)(,)d Tx Ty d x y α≤(1.1) 则称T 是压缩映射。 定理1.1(不动点定理):设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有唯一的不动点,即方程Tx=x 有且只有唯一解。 证明:设0x 是X 种任意一点,构造点列{}n x ,使得 21021010,,,n n n x Tx x Tx T x x Tx T x -===== (1.2) 则{}n x 为柯西点列。实际上, 111(,)(,)(,)m m m m m m d x x d Tx Tx d x x α+--=≤ 21212(,)(,)m m m m d Tx Tx d x x αα----=≤ 10(,)m d x x α≤≤ (1.3) 根据三点不等式,当n m >时, 1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++ 1101()(,)m m n d x x ααα+-≤++ 011(,)1n m m d x x ααα --=- (1.4) 由于1α<,故11n m α--<,得到 01(,)(,)()1m m n d x x d x x n m αα ≤>-(1.5) 所以当,m n →∞→∞时,(,)0m n d x x →,即{}n x 为柯西列。由于X 完备, x X ?∈,

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

应用泛函分析习题解答

1 泛函分析与应用-国防科技大学 第 一 章 第 一 节 3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞?ε,0N ?,当0,N n m >时,有εε<-?<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。取0N m =,则有 0 ,0N n x x N n >+<ε, 令},,,,max{0021ε+=N N x x x x c ,则 1 ,≥?ε,总0N ?,当0,N p n ≥时,有 ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必 存在E ∈x ,使得∑∑∞ ==∞ →==1 1 lim k k n k k n x x x 。 9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。通常用E dim 表示 E 的维数, 并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。证明酉空间n C 的维数为n ,并问当视n C 为实线性空间时,其维数是多少? 证明:设n y x C ∈,,C ∈βα,, 则有n y x C ∈+βα。令)0,0,1,0,0( 项 共项 第n k k =e ,则对任意的),,(21n x x x x =,必有∑==n k k k x x 1 e ,因此},,,{21n e e e 是空间n C 的基,则n n =C dim 。 当视n C 为实线性空间时,可令基为},,,,,{11n n i i e e e e ,则对任意的 ) ,,(21n x x x x =,有 ∑∑==+=n k k k n k k k i x g x x 1 1 ) )((Im )Re(e e ,所以 n n 2dim =C 。 10.证明∞=],[dim b a C ,这里b a <。 证明:取],[,0,)(b a t k t t x k k ∈≥=,只需证},,{10 x x 线性无关。为此对 0≥?n ,令01 =∑=n k k k x c 。则00!01 =?=?=∑=n n n n k k k c c n x c 次求导 。因此必有 01 1 =∑-=n k k k x c ,求该式求1-n 导后有00)!1(11=?=---n n c c n 。依次类推,有 001====-c c c n n ,所以对任意的0≥n ,都有},,{10n x x x 线性无关,即∞=],[dim b a C 。 第 二 节 2.(点到集合的距离)设A 是E 的非空子集,E ∈x 。定义x 到A 的距离为: }|inf{),(A A ∈-=y x y x d 证明: 1) x 是A 的内点?0),(>c x d A ; 2) x 是A 的孤立点?A ∈x ,且0}){\,(>x x d A ; 3) x 是A 的外点?0),(>A x d 。 解: 1)必要性: x 是 A 的内点 内点的定义 ?ε ?,使得

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

相关文档
相关文档 最新文档