文档库 最新最全的文档下载
当前位置:文档库 › 运筹学复习整理(保准管用)

运筹学复习整理(保准管用)

运筹学复习整理(保准管用)
运筹学复习整理(保准管用)

1. 简答题

(1) 运筹学的工作步骤

提出和形成问题:即要弄清问题的目标,可能的约束,问题的可控变量以及相关的参数,搜集相关资料;

建立模型:即把问题中可控变量,参数,目标与约束之间的关系用模型表示出来;

求解:用各种手段将模型求解,解可以是最优解,次优解,满意解。复杂模型的求解需用计算机,解得精度要求可有决策者提出;

解的检验:首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题;

解的控制:通过控制解的变化过程决定对解是否做一定的改变; 解的实施:是指将解用到实际中必须考虑的实际问题,如向实际部门讲清解的用法,在实施中可能产生的问题和修改。

(2)

退化产生原因及解决办法

单纯形法计算中用θ规则确定换出变量时,有时存在两个以上相同的最小比值,这样在下一次迭代中就有一个或几个基变量等于零,这就出现退化解。 勃兰特规则:

1.选取cj-zj >0中下标最小的非基变量xk 为换入变量,即k=min(j |cj-zj >0)

2. 当按θ规则计算存在两个和两个以上最小比值时,选取下标最小的基

变量为换出变量。

(3)对偶问题的经济解释

? 这说明yi 是右端项bi 每增加一个单位对目标函数Z 的贡献。 ? 对偶变量 yi 在经济上表示原问题第i 种资源的边际价值。

? 对偶变量的值 yi*所表示的第i 种资源的边际价值,称为影子价值。

∑∑=====n j m

i i i j j y b x c Z 1

1

ω

i

i

y b Z

=??

若原问题的价值系数Cj 表示单位产值,则yi 称为影子价格; 若原问题的价值系数Cj 表示单位利润,则yi 称为影子利润。

影子价格不是资源的实际价格,而是资源配置结构的反映,是在其它数据相对稳定的条件下某种资源增加一个单位导致的目标函数值的增量变化。

(4)分枝定界法步骤

a) 先求出整数规划相应的LP(即不考虑整数限制)的最优解, b) 若求得的最优解符合整数要求,则是原IP 的最优解; c) 若不满足整数条件,则任选一个不满足整数条件的变量来构造新的约束,在原可行域中剔除部分非整数解。

d) 然后,再在缩小的可行域中求解新构造的线性规划的最优解,这样通过求解一系列线性规划问题,最终得到原整数规划的最优解。

(5)树的性质

一个无圈的连通图称为树。 1 树至少有两个悬挂点。

2 一个图为树的充要条件是:不含圈,边数比点数少1.

3 一个图为树的充要条件是:连通,边数比点数少1.

4 一个图为树的充要条件是:任两点之间恰有一条链。

2. 建模题

(1)线性规划建模:

)

.(x ,,x ,x b ),(x a x a x a ).(b ),(x a x a x a b ),(x a x a x a )

.(x c x c x c z max(min)n m

n m m m n n n n n n 310

21112122112

22221211

12121112211≥≥=≤+++≥=≤+++≥=≤++++++=ΛΛΛΛΛ

Λ

Λ

Λ

Λ

Λ

Λ

ΛΛΛΛΛ约束条件

目标函数

(2)目标规划建模:

最好等于:min d - -d + 最好不大于:min d + 最好不小于:min d -

目标的重要程度不同,用优先等级因子P k 来表示第k 等级目标。 优先等级因子P k 是正的常数,P k >> P k+1 。

同一优先等级下的目标的相对重要性,赋以不同的加权系数w

(3) 整数规划模型

Max (min) Z = Σcjxj s.t. Σaijxj ≤ bi(i=1,2,…m) xj ≥ 0 且部分或全部是整数

n

j d d x K

k E d d x c

m

i b x a

d w d w

P Z k k j k

n

j k k j kj i

n

j j ij

l kl L l l kl K k k k

,...,2,10

,,,...,2,1,...,2,1),()

(min *

1

1

1

1

=≥==-+==≥≤+=+-=+-=+

+=--

=∑∑∑∑非负性约束目标约束绝对约束

3. 证明题

(1)证明可行域为凸集

为了证明满足线性规划问题的约束条件

的所有点(可行解)组成的集合是凸集,只要证明D 中任意两点连线上的点必然在D 内即可。 设

是D 内的任意两点;X(1)≠X(2)。

(2)证明无界解的判定

构造一个新的解 X (1),它的分量为

因 σm+k >0,所以对任意的λ>0都是可行解,把x(1)代入目标函数内得

∑==≥=n

j j j

j n

j x b x

P 1

,,2,1,0,Λ()()()()()()()()()()

T

n

T

n

x x x X x x x X

222

2

12

112111,,,,,,ΛΛ==则有

()()

()()∑

∑===≥==≥=n

j j j j n j j j j n

j x b x P n j x b x P 1

221

11,,2,1,0,,,2,1,0,ΛΛ 令X=(x 1,x 2,…,x n )T 为x (1),x (2)连线上的任意一点,即

X=αX (1)+(1-α)X (2)

(0≤α≤1) X 的每一个分量是()()21)1(j j j x x x αα-+=,将它代入约束条件, 得到 ()()

()[]

()()()

b b b b x P x P x P x x P x P n j n

j j j j j n j j j n j n j j j j j j =-+=-+=--=∑∑

∑=====αααααα11221111211又因()()01,0,0,21>->≥ααj j x x ,所以x j ≥0,j=1,2,…,n 。 由此可见X ∈D ,D 是凸集。 证毕。

()()

()

()k

m j n m j x x a b x j k m k

m i i

i

+≠+===>-=++并且,,,1;0011'

,'1Λλ

λλ

z=z0+λσm+k ;

因σm+k >0,故当λ→+∞,则z →+∞,故该问题目标函数无界。

(3)证明弱对偶性

4. 计算题

(1) 标准型,单纯行法计算

∑∑∑==++=+++++------------→-m

i in

i n m

i m i i m m

i i

i m

mn m m m m m n m n m n m m B

B i

n m m j a c c a c c b c z a a b x c a a b x c a a b x c x x x x b X C c c c c c 11

1,111

,2

21

,2222111,111

111110

0100001Λ

Λ

Λ

ΛM

M M M M M M

M ΛΛ

ΛΛΛΛΛθθθθ.

.,0;;min :,证毕于是得到得到右乘上式将所以满足是对偶问题的可行解,因原问题的对偶问题是左乘上式,得到

将是对偶问题的可行解,若即

以满足约束条件是原问题的可行解,所因设原问题是b

Y X A Y X C C X A Y X C A Y Y Y C YA Yb b

Y X A Y Y Y b

X A X 0

X b;AX CX;z max ≤≤≥≥≥≥=≤≤≥≤=ω

(2) 对偶型计算

原问题(LP )

对偶问题

,,,max 211212

1112112211≥????

? ??=??????

?

???????

??+++=n

m n mn m m n n

n x x x b b x x x a a a a a a x c x c x c z ΛM M Λ

M O M M ΛΛ()()0

,,,,,,,,,min 2121211121121m 2211≥≥???

?

?

??+++=n n mn m m n m m y y y c c c a a a

a a a y y y

b y b y b y ΛΛΛM O

M M ΛΛΛω

(3)运输问题

1.初始解确定

最小元素法:

–从单位运价表中逐次挑选最小元素,安排运量min{a i,b j}。

–然后,划去该元素所在行或列:

?当产大于销,划去该元素所在列;

?当产小于销,划去该元素所在行。

伏格尔法:

第一步:求出每行次小运价与最小运价之差,记为ui,i=1,2,…,m ;同时求出每列次小运价与最小运价之差,记为vj,j=1,2,…,n ;

第二步:找出所有行、列差额的最大值,即L=max{ui,vi},差额L对应行或列的最小运价处优先调运;

第三步:这时必有一列或一行调运完毕,在剩下的运价中再求最大差额,进行第二次调运,依次进行下去,直到最后全部调运完毕,就得到一个初始调运方案。

2.判定最优解

闭合回路法:

从每一空格出发找一条闭回路。它是以某空格为起点,用水平或垂直线向前划,当碰到一数字格时可以转90°后,继续前进,直到回到起始空格为止。当检验数还存在负数时,说明原方案不是最优解。

位势法:

变量的检验数σij=cij –ui –vj=0, 即cij =ui +vj ,且令u1 =0,计算位势量ui 和vj 计算非基变量的检验数σij = c ij –u i – v j 3. 改进方法

确定进基变量

a) 检查非基变量xij 的检验数σij ,按 min{σij| σij <0}= σlk 确定xlk 进基。 确定离基变量

b) 非基变量xlk 进基之后,能让它的运量增加多少呢?

就要求它所在行和列的运量保持产销平衡。 保持产销平衡的方法是闭回路法。

c) 闭回路法:以进基变量xlk 所在格为始点和终点,其余顶点均为基变

量的封闭回路。 d) 闭回路的画法:从进基变量xlk 所在格开始,用水平或垂直线向前划,

每碰到一个基变量格转90o,继续前进,直到返回始点。

e) 奇偶点: 始点是偶点,依次奇偶相间标注;偶点标“+” ,表示运量

增加量;奇点标“-” ,表示运量减少量。

f) 调整量:最小可减少的运量,即奇点运量的最小值。

奇点运量的最小值所在格的基变量离基。

4. 产销不平衡

产大于销:只要增加一个假想的销地j=n+1(实际上是储存),该销地总需

要量为 而在单位运价表中从各产地到假想销地的单位运价为 销大于产:可以在产销平衡表中增加一个假想的产地i=m+1,该地产量为 在单位运价表上令从该假想产地到各销地的运价为

(4) 指派问题

1. 各行各列出现零元素

a. 每行元素减去该行最小元素

b. 每列元素减去该行最小元素 2. 进行试指派,寻求最优解

a.

给只有一个0元素的行(列)的0加圈,然后划去0元素所在行的其他0元素,记作φ

b. 加圈0元素数目等于矩阵的阶数,则指派问题达到最优解

3. 做最少的直线覆盖所有0元素,已确定该系数矩阵中能找到最多的独立元素数

a. 对没有圈的行打√号

b. 对已打√的行所有含φ元素的列打√

c. 在对打有√的列中含圈的元素打√

d. 对没有打√的行及打√的列画一纵线,这就是覆盖所有0元素的最少直线

e.

∑∑==-n

j j m i i b a 110

;

1

,=+n i c ∑∑==-n j m i j j a b 11

0;

,1=+j m c

(5) 最小支撑树

破圈法:任取一圈,去掉权重最大的边,重复进行直到无圈可破。

避圈法:选取权重最小的边,重复进行直到形成部分树,并保证不构成圈。

(6) 最短路径问题 Dijkstra 算法:

? S: 已确定最短路的(即具有P 标号)的节点集合。 ? P :最短路径长度信息; ? T: 目前路径长度信息。 ? λ: 相关长度的路径信息

(7) 最大流问题

标号过程:

(1)给vs 标号(-,+∞),vs 成为已标号未检查的点,其余都是未标号点。 (2)取一个已标号未检查的点vi ,对一切未标号点vj :若有非饱和弧(vi,vj),则vj 标号(vi,l(vj)),其中l(vj)=min[l(vi),cij-fij],vj 成为已标号未检查的点;若有非零弧(vj,vi),则vj 标号(-vi,l(vj)),其中l(vj)=min[l(vi),fji],vj 成为已标号未检查的点。vi 成为已标号已检查的点。

(3)重复步骤(2),直到vt 成为标号点或所有标号点都检查过。若vt 成为标号点,表明得到一条vs 到vt 的增广链,转入调整过程;若所有标号点都检查过,表明这时的可行流就是最大流,算法结束。

(4) 调整过程:在增广链上,前向弧流量增加l(vt),后向弧流量减少l(vt)。 截集:

给定容量网络D =(V,A,C),若点集V 被剖分为两个非空集合V1和V2,使 vs ∈V1 ,vt ∈V2,则把弧集(V1,V2)称为(分离vs 和vt 的)截集。

显然,若把某一截集的弧从网络中去掉,则从v s 到v t 便不存在路。所以,直观上说,截集是从v s 到v t 的必经之路。截集的容量(简称截量) 最小截集。

(8) 网络计划

工序最早开始时间: 工序最早可能开始时间。 T ES (i,j)=T E (i) =max{T E (i)+T(i, j)} 标号的上界

{}

ij i j j w v P v T v T +=)(),(min )(

工序最迟结束时间:工序最迟必须结束的时间。

T LF(i,j)=T L(j) =min{T L(j)-T(i, j)} 标号的下界

工序最早结束时间:工序最早可能结束的时间。

T EF(i,j)=T ES(i,j)+T(i,j) 标号上界+持续时间

工序最迟开始时间:工序最迟必须开始的时间。

TLS(i,j)=TLF(j)-T(i,j) 标号下界-持续时间

?工序总时差:

?TE(i,j)= TLF(i,j)-TEF(i,j)= TLS(i,j)-TES(i,j)

TE(i,j)=0,则为关键工序

?工序自由时差:

FF(i,j)= ES(j,k)-EF(i,j) 标号上界+持续时间-标号下界(紧后)紧后工序最早开始时间-工序最早完成时间

运筹学作业习题

线性规划建模及单纯形法 思考题 主要概念及内容: 线性规划模型结构(决策变量,约束不等式、等式,目标函数);线性规划标准形式; 可行解、可行集(可行域、约束集),最优解;基、基变量、非基变量、基向量、非基向量;基本解、基本可行解、可行基、最优基。 复习思考题: 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,哪种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基本解、基本可行解、最优解、最优基本解的概念及它 们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个 最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什 么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情 况下,继续第二阶段? 作业习题 1、将下列线性规划问题化为标准型

(1)?????? ?≥=--+-≥-+-≤+-++-+=0 ,,953413 223183622453max 4214321432143214 321x x x x x x x x x x x x x x x x x x x z (2)?????? ?≤≥=+-+-≥-+--≤--++++=0 ,0,152342722351 232243min 4214321432143214 321x x x x x x x x x x x x x x x x x x x f 2、(1)求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点): ??? ??≥≤++-≤++0,,124326 3323 21321321x x x x x x x x x (2)对下述线性规划问题找出所有基本解,指出哪些是基本可行解,并确定最优解. ??? ??? ?≥=-=+-+=+++++=)6,,1(00 310 24893631223max 615 32143213 21 j x x x x x x x x x x x x x x z j 3、用图解法求解下列线性规划问题 (1)???????≥≤≤+≤-+=0 ,31223622max 2112 12 12 1x x x x x x x x x z (2)?????≥≥-≥++-=0 ,155356 743min 2121212 1x x x x x x x x z 4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。 ??? ??≥≤-+≤++-+=0,,44622max 3 21321321321x x x x x x x x x x x x z 5、用单纯形法求解以下线性规划问题 (1)??? ??≥≤+-≤-+=0,533223max 2 121212 1x x x x x x x x z (2)?????≥≤-=++-=0,,12212 432max 3 213 23213 2x x x x x x x x x x z 6、用大M 法及两阶段法求解以下线性规划问题

运筹学概念整理

运筹学概念整理 名解5、简答4、建模与模型转换2、计算5~6 第1章线性规划与单纯形法(计算、建模:图解法) 线性规划涉及的两个方面:使利润最大化或成本最小化 线性规划问题的数学模型包含的三要素: 一组决策变量:是模型中需要首确定的未知量。 一个目标函数:是关于决策变量的最优函数,max或min。 一组约束条件:是模型中决策变量受到的约束限制,包括两个部分:不等式或等式;非负取值(实际问题)。 线性规划问题(数学模型)的特点:目标函数和约束条件都是线性的。 1.解决的问题是规划问题; 2解决问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值; 3解决问题的约束条件是多个决策变量的线性不等式或等式。 图解法利用几何图形求解两个变量线性规划问题的方法。 求解步骤:第一步:建立平面直角坐标系; 第二步:根据约束条件画出可行域; 第三步:在可行域内平移目标函数等值线,确定最优解及最优目标函数值。 LP问题的解:(原因) 唯一最优解、无穷多最优解(有2个最优解,则一定是有无穷多最优解) 无界解(缺少必要的约束条件)、无可行解(约束条件互相矛盾,可行域为空集) 标准形式的LP模型特点:目标函数为求最大值、约束条件全部为等式、约束条件右端常数项bi全部为非负值,决策变量xj的取值为非负 ●线性规划模型标准化(模型转化) (1) “决策变量非负”。若某决策变量x k为“取值无约束”(无符号限制),令:x k= x’k–x”k,(x’k≥0, x”k≥0) 。 (2) “目标函数求最大值”。如果极小化原问题minZ = CX,则令Z’ = – Z,转为求maxZ’ = –CX 。注意:求解后还原。 (3) “约束条件为等式”。对于“≤”型约束,则在“≤”左端加上一个非负松弛变量,使其为等式。对于“≥”型约束,则在“≥”左端减去一个非负剩余变量,使其为等式。(4) “资源限量非负”。若某个bi < 0,则将该约束两端同乘“–1” ,以满足非负性的要求。基假设线性规划问题模型系数矩阵为m行、n列,则系数矩阵中秩为m的m行m列子矩阵,称为基矩阵,简称为基 可行解:满足约束条件AX=b和X≥0的解。 基(本)解:在某一确定的基中,令所有非基变量等于零,解得的唯一解。 基(本)可行解:满足X≥0的基解。 可行基:基可行解对应的基矩阵。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 最优解判别定理:在单纯形表中,若所有非基变量的检验数小于零,且B-1b均为非负,则线性规划问题具有唯一最优解。 无穷多最优解判别定理:在单纯形表中,若所有非基变量的检验数小于等于零,且B-1b均为非负,其中某个检验数等于零,则线性规划问题具有无穷多最优解(多重最优解)。 无界解判定定理:在单纯形表中,若某个检验数σk 大于零,且xk对应列向量的元素均为非正,导致出基变量无法确定,则线性规划问题具有无界解

运筹学考试练习题(天津大学)

07级工管运筹学期末习题课 一、考虑线性规划问题(P )max 0 z CX AX b X ==?? ≥? (1) 若12,X X 均为(P )的可行解,[0,1]λ∈,证明12(1)X X λλ+-也是(P ) 的可行解; (2) 写出(P )的对偶模型(仍用矩阵式表示)。 二、有三个线性规划: (Ⅰ) [Min] z =CX (Ⅱ) [Min] z =CX (Ⅲ) [Min] z =CX 约束条件AX =b 约束条件AX =b 约束条件AX =b X 0 X 0 X 0 已知 X 是(Ⅰ)的最优解,X 是(Ⅱ)的最优解,X *是(Ⅲ)的最优解,Y 是(Ⅰ)的对偶问题的最优解, 试证:(1)()()'-'-≤**C C X X 0; (2) C X X Y b b ()()***-≤-。 三、已知线性规划问题 ?? ? ??=≥+=++++=++++++++=)5,,1(03.00)(max 2 253232221212 143132121115 43322111Λj x t b x x a x a x a t b x x a x a x a st x x x c x c x t c z j 当1t =2t =0时,用单纯形法求得最终表如下: 要求:1. 确定23222113121121321,,,,,,,,,,a a a a a a b b c c c 的值; 2. 当2t =0时,1t 在什么范围内变化上述最优解不变; 3. 当1t =0时,2t 在什么范围内变化上述最优基不变。 1x 2x 3x 4x 5x 3x 5/2 0 1/2 1 1/2 0 1x 5/2 1 -1/2 0 -1/6 1/3 j j z c - -4 -4 -2

运筹学作业3(第二章部分习题)答案

运筹学作业2(第二章部分习题)答案 2.4 给出线性规划问题 123412341234min 2356232.. 2330,1,2,3,4 j z x x x x x x x x s t x x x x x j =+++?+++≥? -+-+≤-??≥=? (1)写出其对偶问题;(2)用图解法解对偶问题;(3)利用(2)的结果及根据对偶问 题性质写出原问题的最优解。 解:(1)原问题的对偶问题为: 12 12121212 12max 2322 23.. 35 36 0,0 w y y y y y y s t y y y y y y =--≤??+≤?? -≤??+≤??≥≤? 或者等价变形为: 12 12121212 12max 232223..3536 0,0 w y y y y y y s t y y y y y y =++≤??-≤?? +≤??-≤??≥≥? (2)用图解法求解对偶问题 12 12121212 max 2322 23.. 3536 w y y y y y y s t y y y y =++≤??-≤?? +≤??-≤ 如图示,可行区域为四边形OABC ,最优顶点为B 点,即(1.6,0.2)y * =, 3.8w * =

(3)利用互补松紧定理及(2)的结果求解原问题: 设原问题的最优解为( )1 23 4x x x x x ** ***=。 由于121.60, 0.20y y * * =>=>,故在最优解()12 3 4x x x x x ** * **=处有: 1234 1234232 2330,1,2,3,4j x x x x x x x x x j ******** * ?+++=??-+-+=-??≥=?? 又因对偶问题第4个约束方程为:1.6-0.6=1<6,故40x * =,代入上式得到: 123 123232 230,1,2,3,4j x x x x x x x j ****** * ?++=??-+-=-??≥=?? 原问题有无穷多个最优解。令30x *=得到解为1 1.6x *=,20.2x *= 即()1.60.200x * =, 3.8z * = 2.8题解答见课堂讲解。 2.9 用对偶单纯形法求解下列线性规划问题: (2) 123 123123123min 524324 .. 63510,,0z x x x x x x s t x x x x x x =++++≥?? ++≥??≥? , 解:先将原问题进行标准形化: 1231234123512345max()524324 .. 63510,,,,0 z x x x x x x x s t x x x x x x x x x -=---++-=?? ++-=??≥? 选45,x x 为基变量,并将问题化为: 1231234123512345max()524324 .. 63510,,,,0z x x x x x x x s t x x x x x x x x x -=------+=-?? ---+=-??≥? 列表计算如下:

运筹学复习重点

运筹学复习重点 第1章线性规划与单纯形法 (1)化线形规划标准形的手法 (2)线性规划解的概念、解的情形、解的判定 (3)单纯形法的计算过程、迭代逻辑。 (4)熟练运用单纯形表求解问题;若给出单纯形表,要会解读,会基于单纯形法基本原理反推出表中一些参数。 (5)两阶段法、大M法 第2章对偶理论和灵敏度分析 (1)会写对偶问题,掌握对偶性质,原问题与对偶问题之间的关系。 (2)互补松弛定理的应用:知道一个问题的最优解,求另一个问题的最优解。(3)对偶单纯形法 (4)当目标函数系数和右端项变化时灵敏度分析的简便方法 第3章目标规划 (1)根据问题的特征和对多个目标的追求,通过引入偏离量,正确构建所需的目标规划数学模型 (2)会用图解法求目标规划的最优解或满意解 第4章整数规划 (1)分支定界法:如何构造分支子问题,如何更新目标函数最优值上下界,何时终止。 (2)割平面法:如何写对源约束方程;如何拆分、组装割平面方程;如何利用对偶单纯形法继续求解。 第5章无约束优化 (1)凸函数与凸规划的定义与判别 (2)一维搜索的0.618法基本原理和迭代过程 (3)无约束优化的最速下降法的基本原理、迭代过程 第6章约束极值优化 (1)可行下降方向的含义、满足什么代数条件、几何意义 (2)正确写出Kuhn-Tucker条件,理解K-T条件与最优解的关系 (3)利用Kuhn-Tucker条件,求出K-T点和最优解。

(4)外点法和内点法的基本原理、无约束优化目标函数的一般构造手法 第7章动态规划 (1)动态规划的基本原理和基本方程 (2)动态规划的逆推解法 (3)动态规划求静态规划问题的套路 第8章图与网络优化 (1)图的基本概念、树的基本性质、最小支撑树的求法 (2)求最短路的Dijkstra算法 (3)增广链的概念、用途,求网络最大流的标号法 第9章网络计划 (1)遵循网络计划图的绘制规则,正确画出网络计划图。 (2)会计算网络计划的各种时间参数,确定关键线路 (3)不同目标下网络计划优化的方法 第10章排队论 (1)排队系统基本性能指标的含义、关系 (2)泊松流与负指数分布的关系,排队系统中基本参数λ和μ含义的多维解读。(3)系统状态概率Pn的含义、它在推导系统基本性能指标中的基础地位,推导它自身所依据的状态转移图。 (4)标准M/M/1模型的系统状态概率、基本性能指标的表达式。 第11章对策论 (1)矩阵对策中鞍点、最优纯策略、对策的值 (2)矩阵对策的混合策略和图解法 (3)矩阵对策局中人各自对应的线性规划问题之间的关系(理解互补松弛定理在对策论中的应用) 第12章决策论 (1)风险决策的EMV准则,EOL准则,二者之间的关系 (2)多级风险决策的图形工具:决策树,以及基于决策树的EMV决策套路(3)会利用决策树计算抽样信息的期望价值、完全信息的期望价值 题型:计算题和证明题。计算量不大,不必带计算器,可带尺子画图。

运筹学各章的作业题答案解析

《管理运筹学》各章的作业 ----复习思考题及作业题 第一章绪论 复习思考题 1、从运筹学产生的背景认识本学科研究的内容和意义。 2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。 3、体会运筹学的学习特征和应用领域。 第二章线性规划建模及单纯形法 复习思考题 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 作业题: 1、把以下线性规划问题化为标准形式: (1) max z= x1-2x2+x3 s.t. x1+x2+x3≤12 2x1+x2-x3≥ 6 -x1+3x2=9 x1, x2, x3≥0 (2) min z= -2x1-x2+3x3-5x4 s.t x1+2x2+4x3-x4≥ 6 2x1+3x2-x3+x4=12 x1+x3+x4≤ 4 x1, x2, x4≥0

运筹学基础复习要点

《运筹学基础》复习要点 一、基本概念与理论 1.任意多个凸集的交集还是凸集。 2.任意多个凸集的并集不一定是凸集 3.给定1R b ∈及非零向量n R a ∈,称集合}|{b x a R x H T n =∈=是n R 的一个超平面。 4.由超平面}|{b x a R x H T n =∈=的两个半平面 }|{b x a R x H T n ≥∈=+和}|{1b x a R x H T n ≤∈= 都是凸集。 5.设S 是凸集,S x ∈。若对任何z y S z S y ≠∈∈,,,以及任何10<<λ,都有 z y x )1(λλ-+≠,则称x 为S 的顶点。 6.如果一个LP 问题无界,则它的对偶问题必无可行解。 7.设w x ,分别为原始LP 问题、对偶问题的可行解,若b w x c T T =,则原始LP 问题、对偶问题的最优解分别为w x ,。 8.可行解x 是基本可行解的充分必要条件是x 的正分量,所对应的A 中列向量线性无关。 9.写出LP 问题的对偶问题 0..min ≥≥?????x b Ax x c t s T 的对偶问题是: 0..min ≥≤?????w c w A w b t s T T 10.设一个标准形式的LP 问题的基为B ,右端向量为b ,则对应的基本解是??? ? ??=-01b B x 。 11.线性规划问题的可行域是凸集。 12.设线性规划问题LP 为 0..min ≥=?? ? ??x b Ax t s x c T B 为一个基,对应的典式为 0..min 111≥=+?? ? ? ?-=---x b B Nx B x t s x b B c z N B T T B ζ 其中),0(1T N T B T c N B c -=-ζ 。

《运筹学》综合练习题

《 运筹学》综合练习题 第一章 线性规划及单纯形法 1、教材43页——44页1.1题 2、教材44页1.4题 3、教材45页1.8题 4、教材46页1.13题 5、教材46页1.14题 6、补充:判断下述说法是否正确 ● LP 问题的可行域是凸集。 ● LP 问题的基本可行解对应可行域的顶点。 ● LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。 ● 若LP 问题有两个最优解,则它一定有无穷多个最优解. ● 求解LP 问题时,对取值无约束的自由变量,通常令 "-'=j j j x x x ,其中∶ ≥"' j j x x ,在用单纯形法求得的最优解中,不可能同时出现 "' j j x x . ● 当用两阶段法求解带有大M 的LP 模型时,若第一阶段的最优目标函数值为零,则可 断言原LP 模型一定有最优解。 7、补充:建立模型 (1)某采油区已建有n 个计量站B 1,B 2…B n ,各站目前尚未被利用的能力为b 1,b 2…b n (吨液量/日)。为适应油田开发的需要,规划在该油区打m 口调整井A 1,A 2…A m ,且这些井的位置已经确定。根据预测,调整井的产量分别为a 1,a 2…a m (吨液量/日)。考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。按规划要求,每口井只能属于一个计量站。假定A i 到B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。 (2)靠近某河流有两个化工厂(见附图),流经第一个工厂的河流流量是每天500万立方米;在两个工厂之间有一条流量为每天200万立方米的支流。第一个工厂每天排放工业污水2万立方米;第二个工厂每天排放工业污水1.4万立方米 。从第一个工厂排出的污水流到第二个工厂之前,有20%可自然净化。根据环保要求,河流中工业污水的含量不应大于0.2%,若这两个工厂都各自处理一部分污水,第一个工厂的处理成本是1000元/万立方米,第二个工厂的处理成本是800元

运筹学期末复习及答案

运筹学概念部分 一、填空题 1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。 2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。 3.模型是一件实际事物或现实情况的代表或抽象。 4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。 6.运筹学用系统的观点研究功能之间的关系。 7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。 9.运筹学解决问题时首先要观察待决策问题所处的环境。 10.用运筹学分析与解决问题,是一个科学决策的过程。 11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。 12.运筹学中所使用的模型是数学模型。用运筹学解决问题的核心是建立数学模型,并对模型求解。 13用运筹学解决问题时,要分析,定义待决策的问题。 14.运筹学的系统特征之一是用系统的观点研究功能关系。 15.数学模型中,“s·t”表示约束(subjectto 的缩写)。 16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。 18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。 二、单选题 19.建立数学模型时,考虑可以由决策者控制的因素是( A ) A.销售数量B.销售价格C.顾客的需求 D.竞争价格 20.我们可以通过( C)来验证模型最优解。 A.观察B.应用C.实验D.调查 21.建立运筹学模型的过程不包括( A )阶段。 A.观察环境B.数据分析C.模型设计D.模型实施 22.建立模型的一个基本理由是去揭晓那些重要的或有关的(B ) A数量B变量C约束条件 D 目标函数 23.模型中要求变量取值( D ) A可正 B可负 C非正 D非负 24.运筹学研究和解决问题的效果具有(A ) A 连续性 B整体性C 阶段性D再生性

运筹学定义

1.运筹学定义:用数学的方法研究各问题的变化。 2.线性规划:数学模型的目标函数为变量的线性函数,约束条件也为变量的线性等式或不 等式,故此模型称之为线性规划 3.可行解:把满足所有约束条件的解称为该线性规划的可行解。 4.最优解:把目标函数值最大(即利润最大)的可行解称为该线性规划的最优解。 5.最优值:在最优解条件下的目标函数值为最优目标函数值,简称最优值。 6.松弛量:在线性规划中,一个“≤”约束条件中没使用的资源或能力称之为松弛量 7.松弛变量:为了把一个线性规划标准化,需要有代表没使用的资源或能力的变量,诚挚 为松弛变量。 8.标准化: 把所有约束条件都写成等式,称为线性规划模型的标准化。所得结果称为线性 规划的标准形式。 9.剩余变量:对于“≥”约束条件,可以增加一些代表最低限约束的超过量,称之为剩余 变量。 10.灵敏度分析:建立数学模型和求得最优解之后,研究线性规划的一些系数Ci,Gij,bj的 变化对最优解产生的影响。 11.对偶价格:在约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量称之 为这个约束条件的对偶价格 12.单纯形法的基本思路:一,找出一个初始基本可行解二,最优性检验三,基变换 13.线性规划的基本解:由线性规划的知识知道,如果我们在约束方程组系数矩阵中找到一 个基,令这个基的非基变量为零,再求解这个m元线性方程组就可得到唯一的解,这个解称之为线性规划的基本解。 14.基本可行解:一个基本解可以是可行解,也可以是非可行解,他们之间的主要区别在于 其所有变量的解是否满足非负的条件,我们把满足非负条件的一个基本解叫做基本可行解,并把这样的基叫做可行基。 15.初始可行基:在第一次找可行基时,所找到的基或为单位矩阵或由单位矩阵的各列向量 所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行解。 16.最优性检验:判断已求得的基本可行解是否是最优解。 17.最优性检验的依据-----检验数σj:目标函数中所有变量的系数即为各变量的检验数, 把变量xi的检验数记为σi,显然所有基变量的检验数必为零。 18.最优解判别定理:在求最大目标函数的问题中,对于某个基本可行解,如果所有检验数 σj≤0,则这个基本可行解是最优解,这就是最优解判别定理。 19.确定基变量的方法:把已确定的入基变量在各约束方程中的正的系数除其所在约束方程 中的常数项的值,把其中最小比值所在的约束方程中的原基变量确定为出基变量。这样在下一步迭代的矩阵中可以确保新得到的bj值都大于等于零。 20.大M法:像这样,为了构造初始可行基得到初始可行解,把人工变量“强行”地加到原 来的约束方程中去,又为了尽力地把人工变量从基变量中替换出来,就令人工变量在求最大值的目标函数里的系数为-M的方法叫做大M法,M叫做罚因子。 21.几种特殊情况:一,无可行解,二,无界解,三,无穷多最优解,四,退化问题。 22.一般的运输问题:就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地 的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总得运输费用最小的方案的问题。 23.纯整数规划问题:在整数规划中,如果所有的变量都为非负整数,则称之为纯整数规划 问题。 24.混合整数规划问题:如果只有一部分变量为非负整数,则称之为混合整数规划问题

最全的运筹学复习题及答案78213

最全的运筹学复习题及 答案78213

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250 ,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋 90根,长度为4米的 钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相 当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学 各章习题

思考题、主要概念及内容 1、了解运筹学的分支,运筹学产生的背景、研究的内容和意义。 2、了解运筹学在工商管理中的应用。 3、体会管理运筹学使用相应的计算机软件,注重学以致用的原则。 第二章 思考题、主要概念及内容 图解法、图解法的灵敏度分析 复习题 1. 考虑下面的线性规划问题: max z=2x1+3x2; 约束条件: x1+2x2≤6, 5x1+3x2≤15, x1,x2≥0. (1) 画出其可行域. (2) 当z=6时,画出等值线2x1+3x2=6. (3) 用图解法求出其最优解以及最优目标函数值. 2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解.(1) min f=6x1+4x2; 约束条件: 2x1+x2≥1, 3x1+4x2≥3, x1,x2≥0. (2) max z=4x1+8x2; 约束条件: 2x1+2x2≤10, -x1+x2≥8, x1,x2≥0. (3) max z=3x1-2x2; 约束条件:

2x1+2x2≥4, x1,x2≥0. (4) max z=3x1+9x2; 约束条件: x1+3x2≤22, -x1+x2≤4, x2≤6, 2x1-5x2≤0, x1,x2≥0 3. 将下述线性规划问题化成标准形式: (1) max f=3x1+2x2; 约束条件: 9x1+2x2≤30, 3x1+2x2≤13, 2x1+2x2≤9, x1,x2≥0. (2) min f=4x1+6x2; 约束条件: 3x1-x2≥6, x1+2x2≤10, 7x1-6x2=4, x1,x2≥0. (3) min f=-x1-2x2; 约束条件: 3x1+5x2≤70, -2x1-5x2=50, -3x1+2x2≥30, x1≤0,-∞≤x2≤∞. (提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.) 4. 考虑下面的线性规划问题: min f=11x1+8x2; 约束条件: 10x1+2x2≥20, 3x1+3x2≥18, 4x1+9x2≥36, x1,x2≥0. (1) 用图解法求解. (2) 写出此线性规划问题的标准形式. (3) 求出此线性规划问题的三个剩余变量的值.

《运筹学参考综合习题》

《运筹学参考综合习题》 (我站搜集信息自编,非南邮综合练习题,仅供参考) 资料加工、整理人——杨峰(函授总站高级讲师) 可能出现的考试方式(题型) 第一部分填空题(考试中可能有5个小题,每小题2分,共10分) ——考查知识点:几个基本、重要的概念 第二部分分步设问题(即是我们平常说的“大题”,共90分) ——参考范围: 1、考两变量线性规划问题的图解法(目标函数为max z和min z的各1题) 2、考线性规划问题的单纯形解法(可能2个题目:①给出问题,要求建立线性规划模型,再用单纯形迭代表求解;②考查对偶问题,要求写出原问题的线性规划模型之后写出其对偶问题的线性规划模型,然后用大M法求解其对偶问题,从而也得到原问题的最优解) 3、必考任务分配(即工作指派)问题,用匈牙利法求解。 4、考最短路问题(如果是“动态规划”的类型,则用图上标号法;如果是网络分析的类型,用TP标号法,注意不要混淆) 5、考寻求网络最大流(用寻求网络最大流的标号法) 6、考存储论中的“报童问题”(用概率论算法模型解决) ——未知是否必考的范围: 1、运输规划问题(用表上作业法,包括先求初始方案的最小元素法和将初始方案调整至最优的表上闭回路法); 2、求某图的最小生成树(用破圈法,非常简单) ※考试提示:可带计算器,另外建议带上铅笔、直尺、橡皮,方便绘图或分析。

第一部分 填空题复习参考 一、线性规划部分: ㈠基本概念:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。 定义:达到目标的可行解为最优解。 由图解法得到的三个结论:①线性规划模型的可行解域是凸集; ②如果线性规划模型有唯一的最优解的话,则最优解一定是凸集(可行解域)的角顶; ③任何一个凸集,其角顶个数是有限的。 ㈡有关运输规划问题的概念:设有m 个产地A i (i=1,2,…,m ),n 个销地B j (j=1,2,…,n ), A i 产量(供应量)S i ,B j 销量(需求量)d i ,若产、销平衡,则:∑∑===n j j m i i d s 1 1 二、网络分析中的一些常用名词: 定义:无方向的边称为边;有方向的边称为弧。 定义:赋“权”图称为网络。 定义:有向图中,若链中每一条弧的走向一致,如此的链称为路。闭链称为圈。闭回路又称为回路。 定义:在图G 中任两点间均可找到一条链,则称此图为连通图。无重复边与自环的图称为连通图。 定义:树是无圈的连通图。 树的基本性质:①树的任两点之间有且只有一条链; ②若图的任两点之间有且只有一条链,则此图必为树;

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案 一、单选题 1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()B A.任意网络 B.无回路有向网络 C.混合网络 D.容量网络 2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()B A.非线性问题的线性化技巧 B.静态问题的动态处理 C.引入虚拟产地或者销地 D.引入人工变量 3.静态问题的动态处理最常用的方法是?B A.非线性问题的线性化技巧 B.人为的引入时段 C.引入虚拟产地或者销地 D.网络建模 4.串联系统可靠性问题动态规划模型的特点是()D A.状态变量的选取 B.决策变量的选取 C.有虚拟产地或者销地 D.目标函数取乘积形式 5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。C A.降低的 B.不增不减的 C.增加的 D.难以估计的 6.最小枝权树算法是从已接接点出发,把( )的接点连接上C A.最远 B.较远 C.最近 D.较近 7.在箭线式网络固中,( )的说法是错误的。D A.结点不占用时间也不消耗资源 B.结点表示前接活动的完成和后续活动的开始 C.箭线代表活动 D.结点的最早出现时间和最迟出现时间是同一个时间 8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。C A.1200 B.1400 C.1300 D.1700 9.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。D A.最短路线—定通过A点 B.最短路线一定通过B点 C.最短路线一定通过C点 D.不能判断最短路线通过哪一点 10.在一棵树中,如果在某两点间加上条边,则图一定( )A A.存在一个圈 B.存在两个圈 C.存在三个圈 D.不含圈 11.网络图关键线路的长度( )工程完工期。C A.大于 B.小于 C.等于 D.不一定等于

运筹学复习题及答案

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示: 根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少? 五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当 于图解法可行域中的哪一个顶点。 六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。 八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3 六、已知线性规划问题 应用对偶理论证明该问题最优解的目标函数值不大于25 七、已知线性规划问题 maxZ=2x1+x2+5x3+6x4 其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。 七、用对偶单纯形法求解下列线性规划问题: 八、已知线性规划问题

运筹学概念

?运筹学:Operational Research,是一门应用科学。从实际出发解决实际问题的方法。 ?建模七步:第一步,定义问题;第二步,收集数据;第三步,构造模型;第四步, 验证模型;第五步,计算结果;第六步,提交报告;第七步,投入使用 ?线性规划是由丹捷格(G. B. Dantzig)在1947提出的,并提出了求解线性规划的单 纯形法,成为运筹学的标志性成就,被誉为「线性规划」之父。 ?线性规划模型就是目标函数为线性函数,约束条件也是线性函数的最优化模型。 ?线性规划模型包括三个部分:目标函数;决策变量;约束条件。 ?满足所有约束条件的解称为该线性规划的可行解;线性规划问题可行解的集合,称 为可行域。 ?把使得目标函数值最大(或最小)的可行解称为该线性规划的最优解,此目标函数 称为最优目标函数值,简称最优值。 ?图解法只适合于二维线性规划问题 ?松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松 弛或空闲能力) ?剩余变量,约束方程左边为“≥”不等式时,变成等式约束条件 ?如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可 以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点) ?唯一最优解:只在其一个顶点达到 ?无穷多个最优解:在其两个顶点的连线上达到 ?无界解:可行域无界。缺少必要的约束 ?无可行解(无解):可行域为空集。约束条件自相矛盾导致的建模错误 ?灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一些系数ci、aij、 bj变化时,对最优解产生什么影响。或者是这些参数在什么范围内发生变化,最优解不变。 ?对偶价格:在约束条件右边常量增加一个单位而使最优目标函数得到改进的数量称 之为这个约束条件的对偶价格。 ?对偶价格可以理解为对目标函数的贡献。如果对偶价格大于零,则其最优目标函数 值得到改进。即求最大值时,变得更大;求最小值时,变得更小。 ?如果对偶价格小于零,则其最优目标函数值变坏。即求最大值时,变得小了;求最 小值时,变得大了。 ?如果对偶价格等于零,则其最优目标函数值不变。 ?单纯形法的基本思路:寻找顶点中使得目标函数值最大的一个就是目标函数的最优 解 ?单纯形法是一种迭代方法 ?基:系数矩阵中的m×m的非奇异子矩阵; ?基向量:基中的列; ?非基向量:非基部分中的列; ?基变量:基向量对应的变量; ?非基变量:与非基变量对应的变量; ?基本解(基解):令非基变量都等于0得到的解为基本解。 ?基本可行解:基本解如果都非负,则为基本可行解,对应的基称可行基。 ?基本可行解中,将基变量用非基变量表示,带入目标函数,这时目标函数中就没有 基变量了,只剩下非基变量,它们的系数称为检验数

运筹学练习题

《运筹学》--- 数据、模型与决策练习题 2010年9月 一、线性规划:基本概念 1、下面的表格总结了两种产品A和B的关键信息以及生产所需的资源Q, R, S: 满足所有线性规划假设。 (1)在电子表格上为这一问题建立线性规划模型; (2)用代数方法建立一个相同的模型; (3)用图解法求解这个模型。 2、今天是幸运的一天,你得到了10000美元的奖金。除了将4000美元用于交税和请客之外,你决定将剩余的6000美元用于投资。两个朋友听到这个消息后邀请你成为两家不同公司的合伙人,每一个朋友介绍了一家。这两个选择的每一个都将会花去你明年夏天的一些时间并且要花费一些资金。在第一个朋友的公司中成为一个独资人要求投资5000美元并花费400小时,估计利润(不考虑时间价值)是4500美元。第二个朋友的公司的相应数据为4000美元和500小时,估计利润为4500美元。然而每一个朋友都允许你根据所好以任意比例投资。如果你选择投资一定比例,上面所有给出的独资人的数据(资金投资、时间投资和利润)都将乘以一个相同的比例。 因为你正在寻找一个有意义的夏季工作(最多600小时),你决定以能够带来最大总估计利润的组合参与到一个或全部朋友的公司中。你需要解决这个问题,找到最佳组合。 (1)为这一问题建立电子表格模型。找出数据单元格、可变单元格、目标单元格,并且用SUMPRODUCT函数表示每一个输出单元格中的Excel等式。 (2)用代数方法建立一个同样的模型。 (3)分别用模型的代数形式和电子表格形式确定决策变量、目标函数、非负约束、函数约束和参数。 (4)使用图解法求解这个模型。你的总期望利润是多少 3、伟特制窗(Whitt Window)公司是一个只有三个雇员的公司,生产两种手工窗户:木框窗户和铝框窗户。公司每生产一个木框窗户可以获利60美元,一个铝框窗户可以获利30

运筹学作业2(清华版第二章部分习题)答案讲解学习

运筹学作业2(清华版第二章部分习题)答案

解:根据原一对偶关系表,可得原问题的对偶规划问题为: m n maxw a i U i i 1 j 1 b j V j U i V j C ij i 1,111 |,m; j 1,川 ,n 2. 2判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。 运筹学作业2 (第二章部分习题)答案 2. 1题(P. 77)写出下列线性规划问题的对偶问题: maxz 2x 1 2x 2 4x 3 s.t x 1 3x 2 4x 3 2 (1) 2x 1 x 2 3x 3 3 x 1 4x 2 3x 3 5 x 1 0, x 2 0,x 3无约束 解:根据原一对偶关系表,可得原问题的对偶规划问题为: maxw 2y 3y 2 5y 3 s.t y i 2y 2 y 3 2 3y i 讨2 4y3 2 4y i 3y 2 3y 3 4 y i 0 ,y 2 °』3 0 (2) min z qX j i 1 j 1 qX j a i ,i 1,|| ,m 1 CM b j , j 1,|| ,n 1 0,i 1,|||,m;j 1」|| m n n j 1 n j 1 ,n X j U i 无约束,v j 无约 束

因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。但,现实中肯定有一些问题是无最优解的,故本题说法不对。 max z 3 X i X2 例如原问题X i X2 1有可行解,但其对偶问题 s.t. x2 3 X i 0, X2 0 min w y i 3 y 2 y i 3无可行解。 s.t. y i y2 i y i 0, y2 0 (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; 答:错,如(i)中的例子。 (3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或求极 小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函 数值。 答:错。正确说法是:在互为对偶的一对原问题与对偶问题中,求极大的问题可行解的目标函数值一定不超过求极小的问题可行解的目标函数值。 (4)任何线性规划问题具有唯一的对偶问题。 答:正确。 2. 5给出线性规划问题 max z X i 2 X2X3 X i X2 X3 2 X i X2 X3 i s.t. 2 X i X2 X 3 2 X i 0, X2 0, X3 0 写出其对偶问题;(2)禾I」用对偶问题性质证明原问题目标函数值z i

相关文档