文档库 最新最全的文档下载
当前位置:文档库 › 粗大误差处理方法

粗大误差处理方法

粗大误差处理方法
粗大误差处理方法

粗大误差处理方法

在一组条件完全相同的重复试验中,个别的测量值可能会出现异常。如测量值过大或过小,这些过大或过小的测量数据是不正常的,或称为可疑的。对于这些可疑数据应该用数理统计的方法判别其真伪,并决定取舍。常用的方法有拉依达法、肖维纳特(Chavenet)法。格拉布斯(Grubbs)法等。

一、拉依达法

当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某一测量数据(xi)与其测量结果的算术平均值(x-‘)之差大于3倍标准偏差时,用公式表示为:

︳xi -x-‘︳>3S

则该测量数据应舍弃。

这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。

取3S的理由是:根据随机变量的正态分布规律,在多次试验中,测量值落在x-‘一3S与x-‘十3S之间的概率为99.73%,出现在此范围之外的概率仅为0.27%,也就是在近400次试验中才能遇到一次,这种事件为小概率事件,出现的可能性很小,几乎是不可能。因而在实际试验中,一旦出现,就认为该测量数据是不可靠的,应将其舍弃。

另外,当测量值与平均值之差大于2倍标准偏差(即︳xi -x-‘︳>2S)时,则该测量值应保留,但需存疑。如发现生产(施工)、试验过程屯有可疑的变异时,该测量值则应予舍弃。

拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时可以应用,当试验检测次数较少时(如n<10)在一组测量值中即使混有异常值,也无法舍弃。

二、肖维纳特法

进行n次试验,其测量值服从正态分布,以概率1/(2n)设定一判别范围(一knS,knS),当偏差(测量值xi与其算术平均值x-‘之差)超出该范围时,就意味着该测量值xi 是可疑的,应予舍弃。判别范围由下式确定:

肖维纳特法可疑数据舍弃的标准为:

︳xi一x-‘︳/S≥kn

三、格拉布斯法

格拉布斯法假定测量结果服从正态分布,根据顺序统计量来确定可疑数据的取舍。

进行n次重复试验,试验结果为x1、x2、…、xi、…、xn ,而且xi服从正态分布。

为了检验(i=1,2,…,n)中是否有可疑值,可将按其值由小到大顺序重新排列,根据顺序统计原则,给出标准化顺序统计量g:

当最小值x(1)可疑时,则: g=( x-‘一x(1) )/S

当最大值x(n)可疑时,则: g=( x(n) 一x-‘)/S

根据格拉布斯统计量的分布,在指定的显著性水平β(一般β=0.05)下,求得判别可疑值的临界值g0(β,n),格拉布斯法的判别标准为:

g≥g0(β,n)

利用格拉布斯法每次只能舍弃一个可疑值,若有两个以上的可疑数据,应该一个一个数据的舍弃,舍弃第一个数据后,试验次数由n变为n一1,以此为基础再判别第二个可疑数据。

四. 分布图法

将多次独立测量的测量结果按从小到大排列为

X1,X2,…,X N

定义中位数Xm为:

定义上四分位点F0为区间[Xm, X N]的中位数;

下四分位点F1为区间[X1 , Xm]的中位数。

四分位数离散度dF = F0-F1

则,认定无效数据的判定区间为:

其中为常数,与测量精度有关,在本程序中取定为2。

淘汰点定义为:

区间[,]的测量数据被认为是有效的一致性测量数据,利用这一有效区间的数

据选定可以排除50%的离异值干扰。而且中位数Xm和四分位数离散度dF的选择与极值点的大小无关,仅与数据的分布位置有关。有效区间的获取与需要排除的可疑值关系不大。因此,用分布图法来获得的一致性策略数据的方法能够增强对不确定因素的适应度。具有一定的鲁棒性。

本程序中采用的粗大误差排除方法是:

1.拉依达法

为了实现的简洁性以及误差判别的精确性,省略了后期的2S的判断,而将3S准

则修订为2.8S准则,有利于严格的排除可能的粗大误差。

2.分布图法

没有采用肖维纳特法与格拉布斯法的原因:这两种方法都需要查表求参数,不利于计算机的自动实现。

粗大误差处理方法

粗大误差处理方法 在一组条件完全相同的重复试验中,个别的测量值可能会出现异常。如测量值过大或过小,这些过大或过小的测量数据是不正常的,或称为可疑的。对于这些可疑数据应该用数理统计的方法判别其真伪,并决定取舍。常用的方法有拉依达法、肖维纳特(Chavenet)法。格拉布斯(Grubbs)法等。 一、拉依达法 当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某一测量数据(xi)与其测量结果的算术平均值(x-‘)之差大于3倍标准偏差时,用公式表示为: ︳xi -x-‘︳>3S 则该测量数据应舍弃。 这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。 取3S的理由是:根据随机变量的正态分布规律,在多次试验中,测量值落在x-‘一3S与x-‘十3S之间的概率为99.73%,出现在此范围之外的概率仅为0.27%,也就是在近400次试验中才能遇到一次,这种事件为小概率事件,出现的可能性很小,几乎是不可能。因而在实际试验中,一旦出现,就认为该测量数据是不可靠的,应将其舍弃。 另外,当测量值与平均值之差大于2倍标准偏差(即︳xi -x-‘︳>2S)时,则该测量值应保留,但需存疑。如发现生产(施工)、试验过程屯有可疑的变异时,该测量值则应予舍弃。 拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时可以应用,当试验检测次数较少时(如n<10)在一组测量值中即使混有异常值,也无法舍弃。 二、肖维纳特法 进行n次试验,其测量值服从正态分布,以概率1/(2n)设定一判别范围(一knS,knS),当偏差(测量值xi与其算术平均值x-‘之差)超出该范围时,就意味着该测量值xi 是可疑的,应予舍弃。判别范围由下式确定: 肖维纳特法可疑数据舍弃的标准为: ︳xi一x-‘︳/S≥kn

粗大误差四种判别准则的比较

粗大误差四种判别准则的比较 粗大误差是指在测量过程中,偶尔产生的某些不应有的反常因素造成的测量数值超出正常测量误差范围的小概率误差。含有粗大误差的数据会干扰对实验结果的分析,甚至歪曲实验结果。若不按统计的原理剔除异常值,而把一些包含较大正常误差但不属于异常值的数据舍弃或保留一些包含较小粗大误差的异常值,就会错估了仪器的精确等级。因此,系统检验测量数据是否含有粗大误差是保证原始数据的可靠及其有关计算的准确的前提。排除异常数据有四种较常用的准则,分别是拉伊达准则、格拉布斯准则、肖维勒准则和狄克逊准则。每种判别准则都有其处理方法,导致用不同准则对异常值判别的结果有时会不一致。目前异常值的剔除还没有统一的准则,本文综合判别粗大误差四种方法的特点,系统归纳各种准则的应用,以便更好地发现和判别含有粗大误差的数据。 1.四种判别粗大误差准则的特点 1.1拉伊达准则 拉伊达准则[4]是以三倍测量列的标准偏差为极限取舍标准,其给定的置信概率为99.73%,该准则适用于测量次数n>10或预先经大量重复测量已统计出其标准误差σ的情况。Xi为服从正态分布的等精度测量值,可先求得它们的算术平均值X、残差vi和标准偏差σ。 若|Xi- X|>3σ,则可疑值Xi含有粗大误差,应舍弃; 若|Xi- X|≤3σ,则可疑值Xi为正常值,应保留。 把可疑值舍弃后再重新算出除去这个值的其他测量值的平均值和标准偏差,然后继续使用判别依据判断,依此类推。 1.2格拉布斯准则 格拉布斯准则适用于测量次数较少的情况(n<100),通常取置信概率为95%,对样本中仅混入一个异常值的情况判别效率最高。其判别方法如下: 先将呈正态分布的等精度多次测量的样本按从小到大排列,统计临界系数G(a,n)的值为G0, 然后分别计算出G1、Gn:G1=( X-X1)/σ,Gn=(Xn- X)/σ (1) 若G1≥Gn且G1>G0,则X1应予以剔除; 若Gn≥G1且Gn>G0,则Xn应予以剔除; 若G1Zcσ}的前提下的(其中m是绝对值大于Ecσ的误差出现次数,P是置信概率)。设等精度且呈正态分布的测量值为Xi,若其残差vi ≥Zcσ则Xi可视为含有粗大误差,此时把读数Xi应舍弃。把可疑值舍弃后再重新计算和继续使用判别依据判断,依此类推。 1.4狄克逊准则 狄克逊准则是一种用极差比双侧检验来判别粗大误差的准则。它从测量数据的最值入手,一般取显著性水平a为0.01.此准则的特点是把测量数据划分为四个组,每个组都有相应的极端异常值统计量R1、R2的计算方法,再根据测量次数n和所对应的统计临界系数D(a,n)按照以下方法来判别: 若R1>R2,R1>D(a,n),则判别X1为异常值,应舍弃; 若R2>R1,R2>D(a,n),则应舍弃Xn;

误差和分析数据处理

第二章 误差和分析数据处理 第一节 概 述 定量分析的任务是要准确地解决“量”的问题,但是定量分析中的误差是客观存在的,因此,必须寻找产生误差的原因并设法减免,从而提高分析结果的可靠程度,另外还要对实验数据进行科学的处理,写出合乎要求的分析报告。 第二节 测量误差 一、绝对误差和相对误差 1. 绝对误差 测量值与真实值之差称为绝对误差。δ = x - μ 2. 相对误差 绝对误差与真值的比值称为相对误差。 %100%100?-=?μ μμδ x 若真实值未知,但δ 已知,也可表示为 %100?x δ 3. 真值与标准参考物质 理论真值:如某化合物的理论组成等。 约定真值:如国际计量大会上确定的长度、质量、物质的量单位等。 相对真值:如标准参考物质的含量。 标准参考物质:经权威机构鉴定并给予证书的,又称标准试样。 实际工作中,常把最有经验的人用最可靠的方法对标准试样进行多次测定所得结 果的平均值作为真值的替代值。 二、系统误差和偶然误差 1. 系统误差(可定误差) 由某种确定的原因引起,一般有固定的方向,大小在试样间是恒定的,重复测定 时重复出现。

按系统误差的来源分类:方法误差、仪器或试剂误差、操作误差。 方法误差:滴定分析反应进行不完全、干扰离子的影响、滴定终点与化学计量点 不符、副反应的发生、沉淀的溶解、共沉淀现象、灼烧时沉淀的分解或挥发。 仪器或试剂误差:砝码、容量器皿刻度不准、试剂中含有被测物质或干扰物质。 操作误差:称样时未注意防止吸湿、洗涤沉淀过分或不充分、辨别颜色偏深(浅)、 读数偏高(低)。 按系统误差的数值变化规律分类:恒定误差、比例误差。 系统误差可用加校正值的方法予以消除。 2. 偶然误差(随机误差、不可定误差) 由于偶然的原因如温度、湿度波动、仪器的微小变化、对各份试样处理时的微小 差别等引起,其大小和正负都不固定。 偶然误差服从统计规律,可用增加平行测定次数加以减免。 三、准确度和精密度 1. 准确度与误差 准确度表示分析结果与真实值接近的程度。准确度的大小用绝对误差或相对误差 表示。评价一个分析方法的准确度常用加样回收率衡量。 2. 精密度与偏差 精密度表示平行测量的各测量值之间互相接近的程度。精密度的大小可用偏差、 相对平均偏差、标准偏差和相对标准偏差表示。重复性与再现性是精密度的常见别名。 偏差:d = x i - x 平均偏差: n x x d n i i ∑=-=1 相对平均偏差: %100/)(%1001?-=?∑=x n x x x d n i i 标准偏差(标准差): 1 )(1 2 --= ∑=n x x S n i i

定位误差计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准)由夹 具定位元件的定位工作面体现的,用于调 整加工刀具位置所依据的基准。必须指出, 对刀基准与上述两工艺基准的本质是不 同,它不是工件上的要素,它是夹具定位 元件的定位工作面体现出来的要素(平面、 轴线、对称平面等)。如果夹具定位元件是 支承板,对刀基准就是该支承板的支承工 a) 作面。在图3.3中,刀具的高度尺寸由对 导块2的工作面来调整,而对刀块2工作 面的位置尺寸7.85±0.02是相对夹具体4 的上工作面(相当支承板支承工作面)来 确定的。夹具体4的上工作面是对刀基准, 它确定了刀具在高度方向的位置,使刀具 加工出来的槽底位置符合设计的要求。图 3.3中,槽子两侧面对称度的设计基准是工 b 图3.21 钻模加工时的基准分析

对粗大误差和随机误差处理

用matlab 对一组随机数据的随机误差的处理 当今社会,人们对测量和仪器的精确性要求越来越高,传统的测量精确度远远不能满足当今科技以及人们生活方面的要求,所以需要一种能够快速分析误差的方法出现。matlab 可以大大减少人工运算的成本,成本低,可行性高,而且具有普遍性,故采用matlab 来进行误差处理。 等精度测量粗大误差处理 粗大误差的判别准则 (1)莱以特准则(3σ准则) 具体方法:求出平均值和σ,将残差的绝对值与3σ进行比较,大于3σ的测量值都是坏值。这种方法称为 3σ法则(正态分布)。 适合测量点数较大的情况,计算所有的点。逐一剔除异常值 (2)罗曼诺夫斯基准则 具体方法:首先剔除一个可疑的测得值,然后按照t 分布检验被剔除的测量值是否含有粗大误差。如果是,剔除后,再判断其它的测试结果点。 适合条件:测量次数较少的情况,是逐一剔除的。 等精度测量随机误差处理 (1) 算数平均值 1 1==∑n i n i x x 大多数情况下,真值未知,用=-i i v x x 来代替误差: σ==σ=s δ=-i i x x n :测量次数 (2)测量列算数平均值标准差 /σσ=x (3)算数平均值的极限误差: ,δδσ= =t t lim δσ=±x t t 为置信系数,通过查表可得。 |()d x x |K n -2,a σ -≥1,1=-1n i i i d x x n =≠∑

结果表示: lim δ=±X x t x (4 (5 软件流程设计 等精度测量计算流程 开始 读取数据文件

matlab程序 clc; clear; data=load('test.txt'); % v_2=0; %定义残差的平方 average_data=0; %定义数据的平均值 average_data=mean(data);%计算平均值 if(length(data)<10) %判断数据的长度,用罗曼诺夫斯基准则剔除粗大误差 while(1) for i=1:length(data) %计算残差和残差的平方和 v(i)=data(i)-average_data; v_2=v_2+v(i)^2; end [max_v,I]=max(abs(v));` sum=0; for i=1:length(data)

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

定位误差计算方法

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸 H 1所产生的定位误差: 故得: O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε 2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量 C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1C O ='' 所以: C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε 3. 工序基准为上母线 如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为 K K ''',就是对加工尺寸H 3 所产生的定位误差。

粗大误差处理

. 莱以特准则 load a.txt while(1) i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); d=3*bzc; [maxv,I]=max(abs(v(i))); if maxv>d fprintf('cdw is %f\n',a(I)); a(I)=[]; else break; end end cdw is 29.520000 cdw is 28.400000 罗曼诺夫斯基准则 load a.txt n=input('please input n:\n'); xzd=input('please input xzd:\n'); switch xzd case xzd==0.05 x=1; otherwise x=2; end b=a(n); a(n)=[]; while(1) c=mean(a); i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); k=[4.97 3.56 3.04 2.78 2.62 2.51 2.43 2.37 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.10 2.09 2.09 2.08;11.46 6.53 5.04 4.36 3.96 3.71 3.54 3.41 3.31 3.23 3.17 3.12 3.08 3.04 3.01 3.00 2.95 2.93 2.91 2.90 2.88 2.86 2.85 2.84 2.83 2.82 2.81]; g=k(x,n-2); f=g*bzc; e=abs(b-c); if e>f fprintf('cdw is %f\n',b); else fprintf('wcdw\n'); end break; end please input n: 4 please input xzd: 0.05 cdw is 29.520000

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

常见定位方式定位误差的计算

常见定位方式定位误差得计算 ⑴工件以平面定位 平面为精基面 基准位移误差△基=0 定位误差△定=△不 、⑵工件以内孔定位 ①工件孔与定位心轴(或销)采用间隙配合得定位误差计算△定= △不+ △基 工件以内孔在圆柱心轴、圆柱销上定位。由于孔与轴有配合间隙,有基准位移误差,分两种情况讨论: a、心轴(或定位销)垂直放置,按最大孔与最销轴求得孔中心线位置得

变动量为: △基= δD+ δd+△min = △max =孔Dmax-轴dmin (最大间隙) b、心轴(或定位销)水平放置,孔中心线得最大变动量(在铅垂方向上)即为△定 △基=OO'=1/2(δD+δd+△mi n)=△max/2 或△基=(Dmax/2)-(dmin /2)=△max/2 = (孔直径公差+轴直径公差) / 2 ②工件孔与定位心轴(销)过盈配合时(垂直或水平放置)时得定位误差

此时,由于工件孔与心轴(销)为过盈配合, 所以△基=0。 对H1尺寸:工序基准与定位基准重合,均为中心O,所以△不=0 对H2尺寸:△不=δd/2 ⑶工件以外圆表面定位 A、工件以外圆表面在V型块上定位 由于V型块在水平方向有对中作用。基准位移误差△基=0 B.工件以外圆表面在定位套上定位 定位误差得计算与工件以内孔在圆柱心轴、圆柱销上定位误差得计算相同。

⑷工件与"一面两孔"定位时得定位误差 ①“1”孔中心线在X,Y方向得最大位移为: △定(1x)=△定(1y)=δD1+δd 1+△1min=△1max(孔与销得最大间隙) ②“2”孔中心线在X,Y方向得最大位移分别为: △定(2x)=△定(1x)+2δLd(两孔中心距公差) △定(2y)=δD2+δd2+△2min=△2max ③两孔中心连线对两销中心连线得最大转角误差:

粗大误差处理

莱以特准则 load a.txt while(1) i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); d=3*bzc; [maxv,I]=max(abs(v(i))); if maxv>d fprintf('cdw is %f\n',a(I)); a(I)=[]; else break; end end cdw is 29.520000 cdw is 28.400000 罗曼诺夫斯基准则 load a.txt n=input('please input n:\n'); xzd=input('please input xzd:\n'); switch xzd case xzd==0.05 x=1; otherwise x=2; end b=a(n); a(n)=[]; while(1) c=mean(a); i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); k=[4.97 3.56 3.04 2.78 2.62 2.51 2.43 2.37 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.10 2.09 2.09 2.08;11.46 6.53 5.04 4.36 3.96 3.71 3.54 3.41 3.31 3.23 3.17 3.12 3.08 3.04 3.01 3.00 2.95 2.93 2.91 2.90 2.88 2.86 2.85 2.84 2.83 2.82 2.81]; g=k(x,n-2); f=g*bzc; e=abs(b-c); if e>f fprintf('cdw is %f\n',b); else fprintf('wcdw\n'); end break; end please input n: 4 please input xzd: 0.05 cdw is 29.520000

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

常见定位方式定位误差的计算

常见定位方式定位误差的计算 ⑴工件以平面定位 平面为精基面 基准位移误差△基=0 定位误差△定=△不 .⑵工件以内孔定位 ①工件孔与定位心轴(或销)采用间隙配合的定位误差计算△定= △不+ △基

工件以内孔在圆柱心轴、圆柱销上定位。由于孔与轴有配合间隙,有基准位移误差,分两种情况讨论: a.心轴(或定位销)垂直放置,按最大孔和最销轴求得孔中心线位置的变动量为: △基= δD + δd + △min = △max =孔Dmax-轴dmin (最大间隙) b.心轴(或定位销)水平放置,孔中心线的最大变动量(在铅垂方向上)即为△定 △基=OO'=1/2(δD+δd+△min)=△max/2 或△基=(Dmax/2)-(dmin/2)=△max/2

= (孔直径公差+轴直径公差) / 2 ②工件孔与定位心轴(销)过盈配合时(垂直或水平放置)时的定位误差 此时,由于工件孔与心轴(销)为过盈配合, 所以△基=0。 对H1尺寸:工序基准与定位基准重合,均为中心O ,所以△不=0 对H2尺寸:△不=δd/2 ⑶工件以外圆表面定位 A、工件以外圆表面在V型块上定位

由于V型块在水平方向有对中作用。基准位移误差△基=0

B.工件以外圆表面在定位套上定位定位误差的计算与工件以内孔在圆柱心轴、圆柱销上定位误差的计算相同。

⑷工件与"一面两孔"定位时的定位误差 ①“1”孔中心线在X,Y方向的最大位移为: △定(1x)=△定(1y)=δD1+δd1+△1min=△1max(孔与销的最大间隙) ②“2”孔中心线在X,Y方向的最大位移分别为: △定(2x)=△定(1x)+2δLd(两孔中心距公差) △定(2y)=δD2+δd2+△2min=△2max ③两孔中心连线对两销中心连线的最大转角误差:

实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实 验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度, 缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器, 通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组 成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我 们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1. 实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量 误差。它来源于: (1))标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0 刻线和1 000 mm 刻线之间的实际长度与 1 000 mm 单位是有差异的。又如,标称值为1kg 的砝码的实际质量(真值)并不等于1kg 等等。 (2))仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转 换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被 测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天 平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡, 但两边的质量并不等,即造成测量误差。 (3))附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电 测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。 又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽 内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结 构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件

粗大-系统-随机误差处理

课程设计用仪器设备名称 此次课程设计用到的仪器设备和软件包括: (1) 个人计算机; (2) Matlab 软件。 课程设计过程 1、课程设计处理原理: 此次课程开展的数据处理包:(1)粗大误差处理;(2)系统误差处理;(3)随机误差处理。他们的原理分别分析如下: (1)粗大误差处理 对于粗大误差,采用莱以特准则和罗曼诺夫斯基准则。 莱以特准则:求出数据的算数平均值x 和标准差σ,将残差的绝对值i x v 和 3σ进行比较,大于3σ的值都认为是粗大误差。 罗曼诺夫斯基准则:首先剔除该数据中的最大值,然后再按照t 分布检验, 求出该项与剔除后平均值的差,即d x x ?,再与()2,K n a σ?进行比较,如果前者大于等于后者,那么该数据有系统误差。 (2)系统误差处理 对于系统误差,我们采用了残差总和判断法,阿贝-赫梅判别法,标准差比较法,他们的原理如下: 残差总和判断法:对于等精度的系统测量数据12,,...n x x x ,设相对的残差 分别是12,,...n v v v ,若有12n i i v =>∑,则怀疑测量数据有系统误差 阿贝-赫梅判别法:对于等精度的系统测量数据12,,...n x x x ,设相对的残, 分别是12,,...n v v v ,122311 1 ...n n n i i i u v v v v v v v v ?+==+++= ∑,如果2u >, 则判定该组数据含有系统误差。 标准差比较法:对于等精度的系统测量数据12,,...n x x x ,设相对的残差分

别是12, ,...n v v v ,用不同的公式计算标准差,通过比较可以发现存在的系 统误差。用贝塞尔公式计算,1s = ,用别捷尔斯公式计算, 1s =211s s ≥,则怀疑测量中存在系统误差。 (3)随机误差处理 我们考虑了正态分布和t 分布两种情况,通过置信概率和自由度分别在正态分布积分表和t 分布表中找到对应的t 值,再求出极限误差lim x t ?σ=+。 2 课程设计的整体流程图如图(一)所示。在图(一)中,粗大误差分析,系统误差分析,随机误差分析都作为子程序存在。首先我们是将存储在txt 文件中的测量数据导入到matlab 中,然后进行在子程序中用两种方式进行粗大误差分析,并返回剔除异常值以及剔除异常值后的测量数据。接着进行系统误差分析,用了三种方法检测是否具有系统误差,并返回测量结果。之后进行随机误差分析,返回两种分布的极限误差。最后将本次测量结果都写入到txt 文件中。

粗大误差判别方法的MATLAB实现

毕业设计 题目粗大误差判别方法的MATLAB实现学院自动化与电气工程学院 专业电气工程及其自动化 班级电传1101 二〇一五年五月三十一日

摘要 在现在的学习和教学过程中,MATLAB起着越来越重要的作用,起到了辅助教学、科学研究的重要作用。利用传统方法进行数据的误差处理既繁琐又浪费时间,而有了MATLAB之后,不仅可以缩短计算用的时间,还可以把庞大的数据几秒中就处理的很精确,达到了事半功倍的效果。再加上,MATLAB有简洁的绘图功能以及GUI界面,使图形形象生动的展现在我们面前,达到了图形数据化的效果,也在处理误差的同时给我们展现出一个完美的人机界面。因此,MATLAB的学习对我们至关重要,也是处理误差的非常好的工具。粗大误差对数据结果的影响很大,本文计算数据时,应该使最终结果尽可能的精确,所以处理粗大误差也是我们应该完成的任务,之前理论学习的七种粗大误差剔除的方法,即:莱以特准则、t检验准则、格拉布斯准则、狄克逊准则、奈尔准则、精细准则、肖维涅准则。把这七种方法编写成MATLAB程序,剔除粗大误差。 关键词:MATLAB;GUI;误差;数据处理;人机界面

ABSTRACT MATLAB playing an increasingly important role in the current process of learning and teaching. It played an important supporting role in teaching, scientific research. Using traditional methods for data processing error cumbersome and time-consuming. after the MATLAB appeared, Not only shorten the time to calculate, but also can put in a few seconds on the large data processing is very precise, reduce the computing time used and achieve a multiplier effect. in addition, MATLAB neat graphics and GUI interface. So vivid graphics in front of us, to the graphic data of the results, while also addressing error showing us a perfect man-machine interface. Therefore , MATLAB learning is important to us, but also a very good tool for error handling .We should make the calculation results to calculate the precise ,because of the error is making great influence on the data results. Gross error handling is our mission to be accomplished .the methods of the gross error is excluding Levin with special guidelines ;t test guidelines ;Grubbs Guidelines; Dixon criteria Guidelines; Nair criteria Guidelines ;fine criterion ;Xiao Guidelines .we should process MATLAB program to deal with gross error. Key words: MATLAB;GUI;error;data processing;man-machine interface;

第三章 误差和分析数据的处理汇总

本章目录 §3-1 误差及其产生的原因 §3-2 测定值的准确度与精密度 §3-3 随机误差的正态分布 §3-4 有限测量数据的统计处理 §3-5 有效数字及其运算规则 §3-6 提高分析结果可靠性的方法 §3-1 误差及其产生的原因 分析结果与真实值之间的差值称为误差。分析结果大于真实值,误差为正;分析结果小于真实值,误差为负。 根据误差的性质与产生的原因,可将误差分为系统误差和偶然误差两类。 一、系统误差 系统误差也叫可测误差,它是定量分析误差的主要来源,对测定结果的准确度有较大影响。 产生原因: 由于分析过程中某些确定的、经常的因素造成的,对分析结果的影响比较固定。 特点: 是具有?°重现性?±、?°单一性?±和?°可测性?±。即在同一条件下,重复测定时,它会重复出现;使测定结果系统偏高或系统偏低,其数值大小也有一定的规律;如果能找出产生误差的原因,并设法测出其大小,那么系统误差可以通过校正的方法予以减小或消除。 系统误差产生的主要原因 (一)方法误差这种误差是由于分析方法本身所造成的。例如:在重量分析中,沉淀的溶解损失或吸附某些杂质而产生的误差;在滴定分析中,反应进行不完全,干扰离子的影响,滴定终点和等当点的不符合,以及其他副反应的发生等,都会系统地影响测定结果。 (二)仪器误差主要是仪器本身不够准确或未经校准所引起的。如天平、法码和量器刻度不够准确等,在使用过程中就会使测定结果产生误差。 (三)试剂误差由于试剂不纯或蒸馏水中含有微量杂质所引起。 (四)操作误差 主要是指在正常操作情况下,由于分析工作者掌握操作规程与正确控制条件稍有出入而引起的。例如,使用了缺乏代表性的试样;试样分解不完全或反应的某些条件控制不当等。 与上述情况不同的是,有些误差是由于分析者的主观因素造成的,称之为?°个人误差?±例如,在读取滴定剂的体积时,有的人读数偏高,有的人读数偏低;在判断滴定终点颜色时,有的人对某种颜色的变化辨别不够敏锐,偏深或偏浅等所造成的误差。 二、偶然误差 偶然误差也叫不可测误差,是由于某些偶然的因素(如测定时环境的温度、湿度和气压的微小波动,仪器性能的微小变化等)所引起的,其影响时大,时小,时正,时负。偶然误差难以察觉,也难以控制。 偶然误差的分布完全服从一般的统计规律: (一)大小相等的正、负误差出现的几率相等; (二)小误差出现的机会多,大误差出现的机会少,特别大的正、负误差出现的几率非常小、故偶然误差出现的几率与其大小有关。 §3-2 测定值的准确度与精密度 一、准确度与误差

相关文档
相关文档 最新文档