文档库 最新最全的文档下载
当前位置:文档库 › 实用圆切线方程的证明

实用圆切线方程的证明

实用圆切线方程的证明
实用圆切线方程的证明

关于圆的切线方程及相关公式的证明

一、点P(x 0,y 0)在圆上

1、在圆的标准方程(x-a) 2+(y-b) 2=r 2上,则过点P(x 0,y 0)的切线方程为

(x 0-a) (x-a) +(y 0-b) (y-b) =r 2或

(x 0-a) (x-x 0) +(y 0-b) (y-y 0) =0

证明:∵P(x 0,y 0)在圆上,(x 0-a) 2+(y 0-b) 2=r 2

,圆心O(a,b),OP 的斜率a

x b

y k --=00 ∴切线的斜率为k

1

-

,切线方程)(0000

x x b

y a x y y ----=-

0))(())((0000=--+--y y b y x x a x ① (x 0-a) 2+(y 0-b) 2=r 2 ②

①+②得出(x 0-a )(x -x 0+x 0-a)+(y 0-b)(y -y 0+y 0-b)= r 2 (x 0-a) (x -a) +(y 0-b) (y -b) =r 2

2、在圆的特殊方程x 2+y 2=r 2上,则过点P(x 0,y 0)的切线方程为

x 0x + y 0y ==r 2

(当a=0,b=0)

3、在圆的一般方程x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F >0)上,则过点P(x 0,y 0)的切线方程为x 0x + y 0y + D ×(2

x x + )+ E ×(

2

y y + )+ F =0

证明:x 2+y 2+Dx+Ey+F=0 化成圆的标准方程 44)2()2(222

2

F

E D E

y D

x -+=

+

++

∵P(x 0,y 0)在圆上,4

4)2

()2

(222020F

E D E

y D

x -+=

+

++

,OP 的斜率

2

2

00D

x E

y k +

+=

∴切线的斜率为

k

1

-

,切线方程

)

(2

20000x x E

y D x y y -+

+-

=-

0))(2

())(2

(0000=-+

+-+

y y E

y x x D

x ①

4

4)2

()2

(222020F

E D E

y D

x -+=

+

++

①+②得出

4

4)2

)(2

()2

)(2

(22000000F

E D E

y y y E

y D

x x x D

x -+=

+

+-+

++

+-+

4

442)(42)(22200200F

E D E y y E y y D x x D x x -+=++?++++?+

x 0x + y 0y + D ×(

2

x x + )+ E ×(

2

y y + )+ F =0

二、点P(x 1,y 1)在圆外

1、切线长22121)()(r b y a x PA --+-= (标准方程(x-a) 2+(y-b) 2=r 2) 证明:用勾股定理。

切线长F Ey Dx y x PA ++++=112

12

1 (一般方程x 2+y 2+Dx+Ey+F=0)

证明:把圆的方程整理成标准方程,用勾股定理。 2、过切点AB 弦的直线方程

(1) (x 1-a)(x-a)+(y 1-b)(y-b)= r 2 (弦方程) (标准方程(x-a) 2+(y-b) 2=r 2)

(2)x 1x + y 1y + D ×(

2

1

x x + )+ E ×(

2

1

y y + )

+ F =0 (一般方程x 2+y 2+Dx+Ey+F=0) (弦方程)

证明(1):设切点A(x 01,y 01),B(x 02,y 02),过切点A 、B 的切线方程为

(x 01-a) (x -a) +(y 01-b) (y -b) =r 2 (x 02-a) (x -a) +(y 02-b) (y -b) =r 2 ∵两条切线均过P(x 1,y 1)

则 (x 01-a) (x 1-a) +(y 01-b) (y 1-b) =r 2 ① (x 02-a) (x 1-a) +(y 02-b) (y 1-b) =r 2 ② 由①②式得出点A(x 01,y 01),B(x 02,y 02) 满足线性方程 (x -a) (x 1-a) +(y -b) (y 1-b) = r 2

因此AB 的直线方程(x 1-a) (x -a) +(y 1-b) (y -b) = r 2 证明(2): x 2+y 2+Dx+Ey+F=0

设切点A(x 01,y 01),B(x 02,y 02),过切点A 、B 的切线方程为

x 01x + y 01y + D ×(

2

01

x x + )+ E ×(

2

01

y y +)+ F =0

x 02x + y 02y + D ×(

2

02

x x + )+ E ×(

2

02

y y +)+ F =0

∵两条切线均过P(x 1,y 1)

x 01x 1 + y 01y 1 + D ×(

2

01

1x x + )+ E ×(

2

01

1y y +)+ F =0 ①

x 02x 1 + y 01y 1 + D ×(

2

02

1x x + )+ E ×(

2

02

1y y +)+ F =0 ②

由①②式得出点A(x 01,y 01),B(x 02,y 02) 满足方程

x 1x + y 1y + D ×(

2

1

x x + )+ E ×(

2

1

y y + )+ F =0

因此该方程为AB的直线方程。

3、两圆x2+y2+D1x+E1y+F1=0和x2+y2+D2x+E2y+F2=0相交,其公共弦的方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0

证明:设交点A(x1,y1),B(x2,y2),分别代入两个圆的方程

x12+y12+D1x1+E1y1+F1=0 ①

x12+y12+D2x1+E2y1+F2=0 ②

①-②得(D1-D2)x1+(E1-E2)y1+(F1-F2)=0

同理把B(x2,y2)代入得(D1-D2)x2+(E1-E2)y2+(F1-F2)=0

可见点A(x1,y1),B(x2,y2) 满足线性方程(D1-D2)x+(E1-E2)y+(F1-F2)=0

因此该方程为AB的直线方程。

三、过两点为直径圆的方程

过A(x1,y1),B(x2,y2)两点为直径的圆,其方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0

证明:取圆上任意一点M(x,y),MA⊥MB(M与A、B点重合除外)。

总有MA2+MB2=AB2成立

(x-x1)2+(y-y1)2+(x-x2)2+(y-y2)2=(x2-x1)2+(y2-y1)2

(x-x1)2-(x2-x1)2+(y-y1)2-(y2-y1)2 +(x-x2)2+(y-y2)2=0

(x-x2)( x-x1+x2-x1)+ (y-y2)(y-y1+y2-y1)+(x-x2)2+(y-y2)2=0

(x-x2)( x-x1)+ (x-x2) (x2-x1)+ (x-x2)2+(y-y2)( y-y1)+ (y-y2) (y2-y1)+ (y -y2)2=0

(x-x2)( x-x1)+ (x-x2) (x2-x1+ x-x2)+(y-y2)( y-y1)+ (y-y2) (y2-y1+ y-y2) =0

2(x-x2)( x-x1)+2(y-y2)( y-y1)=0

则(x-x1)( x-x2)+ (y-y1)( y-y2)=0

三招求圆的切线方程

三招求圆的切线方程 江西省永丰中学 吴全根 求圆的切线方程主要分为已知切线的斜率k 或已知切线上一点两种情况,而已知切线上一点又可分为点在圆上和点在圆外两种情况,面对这几种情况各采用什么方法求圆的切线方程呢?下面教你三招. 一、公式法 可求过圆上一点的切线方程. 公式如下: ① 过圆x 2+y 2= r 2上点P (x 0,y 0)的切线方程为x 0x+y 0y= r 2. ② 过圆(x-a)2+(y-b)2= r 2上点P (x 0,y 0)的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2. ③ 过圆x 2+y 2+Dx+Ey+F=0上点P (x 0,y 0)的切线方程 x 0x+y 0y+D 2 0x x ++E 20y y ++F=0 . 点评:(1)公式②中当a=b=0时即为公式①. (2)上述公式是利用“圆的切线垂直过切点的半径”这一性质推导的,当切线的斜率不存在时公式也适用. (3)当你忘记了这些公式,可利用公式推导方法求之. 例1 求过点A (4,1)且与圆(x-2)2+(y+1)2=8 相切的切线方程. 解一:(公式法) (4-2)2 +(1+1)2=8 ∴ 点A (4,1)在圆上, ∴ 圆的切线方程为(4-2)(x-2)+(1+1) (y+1)=8,即x+y-5=0. 解二:(公式推导法) 圆心C (2,-1)∴k AC =1 ∴ 过点A 的切线的斜率k= -1. ∴ 所求切线方程为y-1= -1(x- 4),即x+y-5=0. 二、待定系数法 可求过圆外一点P(x 0,y 0)的圆的切线方程或求已知切线的斜率k 的切线方程. 此时可设圆的切线方程为y-y 0=k(x-x 0)或y=kx+b,然后利用“圆心到直线的距离等于半径” 这一性质求k . 例2 求过点M (2,4)向圆(x-1)2+(y+3)2=1所引的切线方程. 解:设所求切线方程为y-4=k(x-2)即kx-y-2k+4=0 (倾斜角不为900), d=114 232=++-+k k k ,∴k=7 24,∴切线方程为24x-7y-20=0. 当倾斜角为900时,切线方程为x=2. ∴ 过M 点的切线方程为24x-7y-20=0或 x=2. 点评:因为过圆外一点P (x 0,y 0)引圆的切线有两条,故用此法求切线的斜率k 一般有两个值, 若k 只有一个值,说明还有一条切线,其斜率不存在,方程为x=x 0 ,应补回来. 三、判别式法 其依据是圆的切线的定义. 例3 已知圆C :x 2+y 2+2x-4y+3=0 ,若圆C 的切线在坐标轴上的截距绝对值相等,求此切线方程. 解:(1)当截距不为0时,设切线方程为y=-x+b 或y=x+c 分别代人圆C 的方程得2x 2-2(b-3)x+(b 2- 4b+3)=0,或2x 2+2 (c-1)x+(c 2- 4c+3)=0 直线与圆相切,上述两方程均有等根,∴?=0,由此可得:b=3 或 b= -1,c=5 或 c=1 ∴切线方程为x+y-3=0 或x+y+1=0 或x-y+5=0 或x-y+1=0. (2) 当截距为0时,类似可求此时切线的方程为y=(2±6)x. 点评:(1)此题也可以用方法二求解;(2)截距相等时别忘了截距为0的情况.

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

圆切线的有关证明和计算

圆切线的有关证明和计算 已知:如图,在Rt ABC △中,90C ∠= ,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长. 解:(1) (2) 已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于点M,经过 B,M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切; (2)当BC=4,cosC= 1 3 时,求⊙O 的半径. (1)通过平行找垂直。如果以下几种题型 如图,已知△ABC ,以AB 为直径的⊙O 经过BC 的中点D ,DE ⊥AC 于E . (1)求证:DE 是⊙O 的切线; (2)若2 1 cos = C , 6DE =, 求⊙O 的直径. 已知:如图,⊙O 为ΔABC 的外接圆,BC 为⊙O 的直径,作射线BF 使得BA 平分 ∠CBF ,过点A 作A D ⊥BF 于D (1)求证:DA 为⊙O 的切线 (2)若BD=1,⊙O 的半径为2 5 ,求tan ∠BAD F A D B O C (2)通过计算角的度数找垂直 如果以下题型 D C O A B E

10.已知,A 是⊙O 上一点,半径的延长线与过点A 的直线交于B 点,OC=BC,AC= 2 1 OB 。 (1)求证:AB 是⊙O 的切线 (2)若∠ACD=45°,OC=2,求弦CD 的长 D O C A B 已知如图,点D 是⊙O 的直径延长线上一点,点B 在⊙O 上,且OA=AB=AD (1)求证:BD 是⊙O 的切线 (2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且BE=8,tan ∠BFA= 2 5 ,求⊙O 的半径 B F E D A O C 已知:如图,在⊿ABC 中,D 是AB 边上一点,⊙O 过 A,B,C 三点,∠DOC=2∠ACD=90° A (1)求证:直线AC 是⊙O 的切线; D (2)如果∠ACB=75°,⊙O 的半径为2,求BD 的长 B C O (3)根据角与角的关系推导 已知:如图,AB 是O 的直径,BC 切O 于B ,AC 交O 于P ,D 为BC 边的中点,连结DP . (1) DP 是O 的切线; (2) 若3 cos 5 A , O 的半径为5, 求DP 的长. 如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO . (1)求证:BD 是⊙O 的切线; (2)若E 是劣弧BC 上一点,AE 与BC 相交于点F , O P C D B A

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

圆的切线证明及有关计算

圆切线的证明及有关计算(一) 一、课标要求 了解切线的概念:探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线。会过圆上一点画圆的切线。 二、教学目标 1.归纳直线与圆相切的性质和判定方法以及切线长定理,并能运用这些知识进行计算和证明;2.在计算与证明中培养学生的分析问题、解决问题以及综合运用知识的能力。 三、教学重点 运用切线的性质和判定方法进行计算与证明。 四、教学难点 灵活运用所学知识解决有关切线问题。 五、【基础知识回顾】 (一).切线的定义: (二).切线性质: 圆的切线______于过切点的半径. 提醒:根据这一定理,在圆中遇到切线时,常连接圆心和切点,即可得垂直关系 (三).切线判定: (1) 和圆有唯一公共点的直线是圆的切线.(定义) (2) 经过半径的外端且______这条半径的直线是圆的切线.(判定定理) (3) 如果圆心到一条直线的距离等于______,那么这条直线是圆的切线. 提醒:1、在切线的判定中,当直线和圆的公共点标出时,用判定定理证明(连半径,证垂直). 2、当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切(作垂直,证半径). (四).切线长 (1)切线长定义: 经过圆外一点作圆的切线,这点和切点之间的,叫做这点到圆的切线长. (2)切线长定理: 从圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线两条切线的夹角 六.【典型例题解析】 考点一:与切线性质有关的计算 例1、(九上P122 1(4))如图,P A、PB切⊙O于A、B两点,且

∠P=70°,则∠C=_______. 分析:连接OA、OB,则OA⊥PA,OB⊥PB, 易得四边形 APBO的内角∠AOB的度数,从而可得∠C。 (变式)如图,P A、PB切⊙O于A、B两点,点C在⊙O上, 且∠ACB=50°,则∠P=_______. 例2、如图,在等腰直角三角形ABC中,AB=AC=8,O为BC 的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分 别为D,E,则⊙O的半径为() A.8B.6 C.5 D.4 分析:连接OD、OE,则OD⊥BA,OE⊥AC,根据切线长定理 得AD=AE,易得正方形ADOE;若设OD=x,根据勾股定理可得OD2+BD2=BO2从而得到方程,通过解方程既得⊙O的半径。 【备考指导】解决与切线有关的求角度或线段问题的方法:当已知切线时,常作辅助线连接切点与圆心或寻找直径所对的圆周角,构造直角三角形,然后利用勾股定理或相关的三角函数知识计算线段长度;而在求角度时,往往与圆周角、圆心角有关,求解过程中有时需要作出合适的辅助线,构造与所求角有关的圆心角或直角三角形进行求解。 考点二:与切线判定有关的证明 例3.已知:如图, AB是⊙O的直径, ⊙O过BC的中点D, 且DE⊥AC于点E. (1)求证: DE是⊙O的切线; (2) 若∠C=30°,CD=10 cm, 求⊙O的直径. 分析:(1)若所证直线与圆的交点字母标出,则连接这条半径,证明这 条半径________所证直线; (2)利用等腰三角形和直角三角形知识可求. 【备考指导】证明直线是圆的切线的方法:①可以利用定义判定, 与圆只有一个公共点的直线是圆的切线;②若已知直线与圆有公 共点,连接过这点的半径,证明这条半径与直线垂直即可,可简述为:有切点,连圆心,证垂直;③若未知直线与圆的交点,过圆心作直线的垂线段,证明垂线段的长等于圆的半径.可简述为:无切点、作垂直、证相等. 七、中考链接 (一)基础达标训练 1.(13.河池)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点, 则PA=.

专题椭圆的切线方程

“椭圆的切线方程”教学设计 马鞍山二中刘向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观:通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切

设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1)根据椭圆的特征,可以得到特殊的切线方程 如 x y =±= (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

实用圆切线方程的证明

关于圆的切线方程及相关公式的证明 一、点P(x 0,y 0)在圆上 1、在圆的标准方程(x-a) 2+(y-b) 2=r 2上,则过点P(x 0,y 0)的切线方程为 (x 0-a) (x-a) +(y 0-b) (y-b) =r 2或 (x 0-a) (x-x 0) +(y 0-b) (y-y 0) =0 证明:∵P(x 0,y 0)在圆上,(x 0-a) 2+(y 0-b) 2=r 2 ,圆心O(a,b),OP 的斜率a x b y k --=00 ∴切线的斜率为k 1 - ,切线方程)(0000 x x b y a x y y ----=- 0))(())((0000=--+--y y b y x x a x ① (x 0-a) 2+(y 0-b) 2=r 2 ② ①+②得出(x 0-a )(x -x 0+x 0-a)+(y 0-b)(y -y 0+y 0-b)= r 2 (x 0-a) (x -a) +(y 0-b) (y -b) =r 2 2、在圆的特殊方程x 2+y 2=r 2上,则过点P(x 0,y 0)的切线方程为 x 0x + y 0y ==r 2 (当a=0,b=0) 3、在圆的一般方程x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F >0)上,则过点P(x 0,y 0)的切线方程为x 0x + y 0y + D ×(2 x x + )+ E ×( 2 y y + )+ F =0 证明:x 2+y 2+Dx+Ey+F=0 化成圆的标准方程 44)2()2(222 2 F E D E y D x -+= + ++ ∵P(x 0,y 0)在圆上,4 4)2 ()2 (222020F E D E y D x -+= + ++ ,OP 的斜率 2 2 00D x E y k + += ∴切线的斜率为 k 1 - ,切线方程

【通用版】2018届中考数学专题提升(12)与圆的切线有关的计算与证明(含答案)

专题提升(十二)与圆的切线有关的计算与证明 类型之一与切线的性质有关的计算或证明 【经典母题】 如图Z12-1,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P =30°,⊙O的半径为1,则PB的长为__1__. 图Z12-1 经典母题答图 【解析】如答图,连结OC. ∵PC为⊙O的切线,∴∠PCO=90°, 在Rt△OCP中,∵OC=1,∠P=30°, ∴OP=2OC=2, ∴PB=OP-OB=2-1=1. 【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径;(2)已知圆的切线,常作过切点的半径,得到切线与半径垂直. 【中考变形】 [2017·天津]已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D. (1)如图Z12-2①,求∠T和∠CDB的大小; (2)如图②,当BE=BC时,求∠CDO的大小.

图Z12-2 解:(1)如答图①,连结AC, ∵AT是⊙O的切线,AB是⊙O的直径, ∴AT⊥AB,即∠TAB=90°, ∵∠ABT=50°,∴∠T=90°-∠ABT=40°, 由AB是⊙O的直径,得∠ACB=90°, ∴∠CAB=90°-∠ABC=40°,∴∠CDB=∠CAB=40°; 中考变形答图①中考变形答图② (2)如答图②,连结AD, 在△BCE中,BE=BC,∠EBC=50°, ∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°, ∵OA=OD,∴∠ODA=∠OAD=65°, ∵∠ADC=∠ABC=50°, ∴∠CDO=∠ODA-∠ADC=65°-50°=15°. 【中考预测】 [2017·宿迁]如图Z12-3,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.

圆的切线计算与证明题

圆的切线证明与计算专题训练 1.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于E,B为切点的切线交OD 延长线于F. 求证:EF与⊙O相切. 2.如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 3.如图,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DM⊥AC于M. 求证:DM与⊙O相切. 4.如图,已知AB是⊙O的直径,点C在⊙O上,且∠CAB=30O,BD=OB,D在AB的延长线上. 求证:DC是⊙O的切线.

5.如图,AB=AC,D为BC中点,⊙D与AB切于点E. 求证:AC是⊙D的切线. 6.如图,AB是⊙O的直径,AC是弦,点D是弧BC的中点,DP⊥AC,垂足为点P. 求证:PD是⊙O的切线. 7.已经⊙O中,AB是直径,过B点作⊙O的切线,连接CO,若AD//OC交⊙O于D. 求证:CD是⊙O的切线. 8.如图,⊙O是Rt△ABC的外接圆,∠ABC=90O,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线与点E. 求证:BE是⊙O的切线.

9.如图,在△ABC中,∠C=90O,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点 D. (1)求证:BC是⊙O的切线; (2)若BD=5,求AC的长. 10.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点. (1)求证:GE是⊙O的切线; (2)若OC=5,CE=6,求AE的长. 11.如图,在Rt△ABC中,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径作圆. (1)求证:AC是⊙D的切线; (2)求证:AB+EB=AC. 12.如图,AB=BC,以AB为直径的⊙O交AC于D,作DE⊥BC于E. (1)求证:DE为⊙O的切线; (2)作DG⊥AB交⊙O于G,垂足为F,∠A=30O,AB=8,求DG的长.

与圆的切线有关的计算与证明(2)

与圆的切线有关的计算与证明(1) 类型之一与切线的性质有关的计算或证明 【经典母题】 如图Z12- 1,0 O的切线PC交直径AB的延长线于点P, C为切点,若/ P =30°,0 O的半径为1,贝U PB的长为1 . 图Z12- 1 经典母题答图 【解析】如答图,连结0C. ??PC 为O O 的切线,.?./PC0 = 90 在RtSCP 中,??OC= 1,/P = 30°, ??0P= 20C= 2, ??PB= OP- 0B= 2- 1= 1. 【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径;⑵已知圆的切线,常作过切点的半径,得到切线与半径垂直. 【中考变形】 [2017天津]已知AB是O 0的直径,AT是O 0的切线,/ ABT= 50°, BT交O0于点C, E是AB上一点,延长CE交O 0于点D. (1) 如图Z12-2①,求/ T和/CDB的大小; (2) 如图②,当BE= BC时,求/ CD0的大小.

解:⑴如答图①,连结AC , ??AT 是。O 的切线,AB 是。O 的直径, ??AT 丄 AB ,即/ TAB = 90°, ? 50°,?d 90°-/ ABT = 40 由AB 是O O 的直径,得/ ACB = 90° ? Q AB = 90°』ABC = 40°,/-CDB =/CAB = 40°; ⑵如答图②,连结AD , 在厶 BCE 中,BE = BC ,/ EBC = 50 ? / BCE =/BEC = 65°, ?/ BAD = /BCD = 65 ? OA = OD ,?/ ODA =/ OAD = 65 ? / ADC =/ ABC = 50°, ? / CDO =/ ODA -/ADC = 65°- 50°= 15 【中考预测】 [2017宿迁]如图Z12-3, AB 与。O 相切于点B , BC 为。O 的弦,OC 丄OA , OA 与BC 相交于点 P. 图 Z12- 2 中考变形答图① 中考变形答图②

圆的切线之经典练习题

圆的切线之----- A 班经典练习题 班级 姓名 一、选择题: 1、“圆的切线垂直于经过切点的半径”的逆命题是( ) A 、经过半径外端点的直线是圆的切线; B 、垂直于经过切点的半径的直线是圆的切线; C 、垂直于半径的直线是圆的切线; D 、经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、如图,在Rt △ABC 中,∠A =900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F , 若AB =a ,AC =b ,则⊙O 的半径为( ) A 、ab B 、 ab b a + C 、b a ab + D 、2 b a + 3、如图,正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF ∶FD =( ) A 、1∶2 B 、1∶3 C 、1∶4 D 、2∶5 4、如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD =BE ,BD =AF ,连结DE 、DF 、EF ,则∠EDF =( ) A 、900-∠P B 、900- 21∠P C 、1800-∠P D 、450-2 1 ∠P ? 第3题图 O F E D C B A ? 第4题图 P O F E D B A ?第6题图 C O E D B A 二、填空题: 5、已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB =780,点C 是⊙O 上异于A 、B 的任一点,则∠ACB = 。 6、如图,AB ⊥BC ,DC ⊥BC ,BC 与以AD 为直径的⊙O 相切于点E ,AB =9,CD =4,则四边形ABCD 的面积为 。 7、如图,⊙O 为Rt △ABC 的内切圆,点D 、E 、F 为切点,若AD =6,BD =4,则△ABC 的面积为 。 8、如图,已知AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,过⊙O 上A 点的直线AD ∥OC , 若OA =2,且AD +OC =6,则CD = 。

求圆的切线方程的几种方法

1 求圆的切线方程的几种方法 在直线与圆的位置关系中,相切是一个重要的位置关系.众所周知,在圆上的点可以作一条直线与该圆相切,过圆外一点可以作二条直线与该圆相切.本文就如何求圆的切线方程的方法展开讨论,供同学们参考. 1.利用几何性质来求切线方程 当直线与圆相切时,圆心到直线的距离等于半径.因此,利用点到直线的距离公式即可以求出切线方程. 例1 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (3,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,显然不是圆的切线. 设所求的直线的斜率为k ,直线方程为y -2=k (x -3), 化为一般形式为kx -y -3k +2=0. 由于直线与圆相切,故圆心到直线的距离d 等于半径2,即 d =|-1-3k +2|k 2+1=|3k -1|k 2+1 =2, 解得k =3±265 . 所以切线方程为y -2=3±265 (x -3). 点评:求切线方程时,点到直线的距离公式相当重要,不能记错.设直线方程时,一定要考虑直线的斜率不存在时的情况,避免漏解. 2.利用方程的判别式来求切线方程 当直线与圆相切时,直线与圆只有一个公共点,此时圆的方程与直线联立,利用判别式等于零即可以求出切线方程. 例2 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (2,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,直线x =2是圆的切线. 当过P 的直线的斜率存在时,设所求的直线方程为y -2=k (x -2). 直线方程与圆的方程联立,整理,得(1+k 2)x 2+2k (1-2k )x +4k 2-4k -3=0, 因为直线与圆只有一个公共点,故Δ=4k 2(1-2k )2-4(1+k 2)(4k 2-4k -3)=0. 解得k =-34 . 所以所求的切线方程是x =2或y -2=-34 (x -2). 点评:利用判别式求解时计算量比较大,本题注意不能漏解了x =2. 3.利用垂直关系求切线方程 当已知切点时,我们可以利用圆心与切点的连线与直线垂直、斜率之积为-1来求出切线方程. 例3 已知圆C 的方程是x 2+(y -1)2=4,求以P (3,2)为切点的切线方程. 解:由已知得圆心O (0,1),点P 在圆C 上,显然x =3不是圆的切线. 设切线方程为l :y -2=k (x -3). 由直线OP ⊥l 得k ·k OP =-1,所以k =-1k OP =-3. 所以切线方程为y -2=-3(x -3)即y =-3x +5. 点评:由直线垂直求出切线的斜率,可以避免繁杂的计算. 小结:在求圆的切线方程时,先判断切线方程有几条,再是注意特殊情况(如斜率不存在),三是注意使用哪种方法计算最简捷.

关于圆的切线的练习题经典

圆的切线 1、直线和圆的位置关系有三种:相交、相切、相离 用数量关系表示是:如果O 0的半径为r,圆心0到直线I的距离为d,那么: (1)直线I和O O相交1 dr. 2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 3、切线的性质定理及其推论切线的性质定理圆的切线垂直于经过切点的半径 推论1 经过圆心且垂直于切线的直线必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 、1、直线和圆的位置关系 2、切线的判定定理 例1、已知如图所示,AB为O O的直径,C D是直径AB同侧圆周上两点,且「_一二」,过D作DEL AC于点E,求证:DE是O 0的切线. 例2、( 1)如图所示,△ ABC内接于O 0,如果过点A的直线AE和AC所成的角/ EACN B, 那么EA是O 0的切线. 3、切线的性质及其推论 例3如图,已知AB是O 0的直径,AC是弦,CD BO 0于点C,交AB ?的延长线于点D, / ACD=120 ° , BD=10 . ( 1)求证:CA=CD ;(2)求O 0的半径.

例4、已知:如图所示,AB为半圆0的直径,直线 MN于点E, BE交半圆于点F, AD=3cm BE=7cm (1 )求0 0的半径; (2)求线段DE的长. 例5、如图所示,AB为O 0的直径,BC CD为O 0的切线, 求证:AD// 0C 例6、已知如图所示,在梯形ABCD中, AD// BC, / D=90°, AD+ BC=AB以AB为直径作O 0, 求证:O 0和CD相切. 例7如图,AB是半圆0的直径,AD为弦, (1)求证:BC是半圆0的切线; (2)若0C // AD , 0C 交BD 于E, BD=6 , 例8、如图,AB为O 0的直径,弦CD丄AB于点M,过点B作BE // CD,交AC?的延长线于点E,连结BC. (1) 求证:BE为O 0的切线; 1 (2) 如果CD=6 , tan/ BCD= ,求O 0 的直径. 2 例9如图,AB为O 0的直径,BC切O 0于B, AC交O 0于P, CE=BE , E在BC上.求证:PE是O 0的切线. B E

圆的有关切线证明和计算

圆的有关切线证明和计算 D 1如图,已知:△ ABC内接于O 0,点D在0C的延长线上, (1)求证:AD是O 0的切线; (2)若AC = 6,求AD的长。 A 2、如图,以△ ABC的直角边AB为直径的半圆O 0与斜边AC交于点D, E是BC边的中点,连接DE。 (1)求证:DE与O 0相切; (2)若AD、AB的长是方程x2—10x+ 24= 0的一个根,求直角边BC的 长。 3、如图,Rt△ ABC中,/ B = 90度,C是AB上的一点,以0为圆心,0B为半径的圆与AB交于点E,交AC于点D,其中DE // 0C (1)求证:AC为O 0的切线; (2) 若AD = 23,且AB 径、CD的长。 4、如图,AB是O 0的直径,延长线于点D, 交AB的延长线于点C。 (1)求证:CD是O 0的切线; 10 20 (2)若CB = — , CE=—,求AE 的长。 3 3

5、已知,如图,AB是O O的直径,O O过AC的中点D,过D作DE丄BC交BC于点E。 (1) 求证:DE是O O的切线; (2) 如果CD = 4, CE= 3,求O O的半径。 C 6、如图,等腰△ ABC中,AC = BC = 10, AB = 12,以BC为直径作O AB 于点D,交AC于点G, DF丄AC ,垂足为F,交CB的延长线于点 (1)求证:直线EF是O O的切线; (2)求DF、DE的长。 C 7、已知如图,直角梯形ABCD中,AD // BC, AD丄AB,且满 足AD + BC = CD,以AB为直径作O 0。 (1)求证:CD是O 0的切线; (2)若AD = 2, BC = 6,求O 0 的半径。 C与AE切于点E,过 8、如图, Rt△ ABC中,/ ACB = 90° CD丄AB于D,以CD为半径作O 点 B 作BM // AE。 (1)求证:BM是O C的切线; (2)作DF丄BC 于F,若AB = 16,/ DBM = 60° 求EF 的长。 B 9、如图,直角梯形ABCD中,/ A =/ B = 90° AD // B C , E为AB上一点,DE平分/ ADC , CE 平 分/ BCD。 (1)以AB为直径的圆与边CD有怎么样的关系? (2)该题材中以CD为直径的圆与AB的位置关系如何,请证明你的猜想。 A E

初中数学-证明圆的切线经典例题

初中数学-证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE,

∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC, ∴∠1=∠2. ∵DM⊥AC, ∴∠2+∠4=900 ∵OA=OD, ∴∠1=∠3. ∴∠3+∠4=900. D C

求圆的切线方程一题三法

求圆的切线方程一题三法 在直线与圆的位置关系中,求过定点的圆的切线方程问题是一类很重要的题型.我们都知道有这样的结论:过圆x2+y2=r2上一点A(x0,y0)的切线方程为xx0+yy0=r2,在运用这个结论的时候要注意些什么呢? 【例题】求过点A(2,1)向圆x2+y2=4所引的切线方程. 解法一:设切点为B(x0,y0),则x02+y02=4, 过B点的切线方程为x0x+y0y=4. 又点A(2,1)在切线上,∴2x0+y0=4. 将x0,y0的值代入方程x0x+y0y=4得所求切线方程为x=2或3x+4y-10=0. 解法二:设切线方程为y-1=k(x-2),即kx-y-2k+1=0. ∵圆心(0,0)到切线的距离是2, ∴=2,解得k=-. ∴所求切线方程为-x-y++1=0,即3x+4y-10=0. 当过点A的直线的斜率不存在时,方程为x=2,也满足条件. 故所求圆的切线方程为3x+4y-10=0或x=2. 解法三:设切线方程为y-1=k(x-2)与方程x2+y2=4联立,消去y,整理得(k2+1)x2-2k(2k-1)x+4k2-4k-3=0. ∵直线与圆相切,上述方程只能有一个解,即Δ=0,即[2k(2k-1)]2-4×(k2+1)(4k2-4k-3)=0,解得k=-. ∴所求切线方程为y-1=-(x-2),即3x+4y-10=0. 又过点A(2,1)与x轴垂直的直线x=2也与圆相切. 故圆的切线方程为3x+4y-10=0或x=2. 【误区警示】大家做题的时候必须按照所述认真求解,稍有马虎就可能造成一些不必要的错误.就本题而言,可能出现的错解1:由过圆x2+y2=r2上一点A(x0,y0)的切线方程为xx0+yy0=r2.从而直接得出切线方程为2x+y=4.出现错误的原因是凭直观经验,误认为点A(2,1)在圆上;错解2:设切线方程为y-1=k(x-2),即kx-y-2k+1=0, 由圆心(0,0)到切线的距离是2得,=2,解得k=-,故所求切线方程为- x-y++1=0即3x+4y-10=0.这里出现错误的原因主要是考虑问题不周全,漏掉了直线斜率不存在的情况. 【知识小结】求过定点的圆的切线问题,应首先判断该点是否在圆上,若点在圆x2+

[全]中考数学与圆的切线相关的证明与计算

中考数学与圆的切线相关的证明与计算 圆的切线:经过半径的外端并且垂直于这条半径的直线是圆的切线. 一、圆的切线的判定及相关计算 1.如图,以△ABC 的边AB 为直径作⊙O,与BC 交于点D,点E 是弧BD 的中点, 连接AE 交BC 于点F,∠ACB=2∠BAE . 求证:AC 是⊙O 的切线. 例题1图 【分析】连接AD,利用等弧所对圆周角相等及∠ACB=2∠BAE 可得到∠BAD =∠BCA, 再结合直径所对圆周角为直角即可得证. 证明:如解图,连接AD.

例题1解图 ∵点E 是弧BD 的中点, ∴弧BE =弧DE, ∴∠1=∠2 . ∵∠BAD=2∠1, ∠ACB=2∠1, ∴∠ACB=∠BAD. ∵ AB为⊙O 直径, ∴∠ADB=∠ADC=90°. ∴∠DAC+∠C=90°. ∵∠C=∠BAD, ∴∠DAC+∠BAD=90°. ∴∠BAC=90°,即AB⊥AC. 又∵ AB 是⊙O 的直径, ∴ AC 是⊙O 的切线. 证明切线的常用方法: 1.直线与圆有交点,“连半径,证垂直”. (1) 图中有90°角时,证垂直的方法如下: ① 利用等角代换: 通过互余的两个角之间的等量代换得证; ② 利用平行线性质证明垂直: 如果有与要证的切线垂直的直线,则证明半径与这条直线平行即可;

③ 利用三角形全等或相似: 通过证明切线和其他两边围成的三角形与含90°的三角形全等或相似得证. (2)图中无90°角时: 利用等腰三角形的性质,通过证明半径为所在等腰三角形底边的中线或角平分线, 再根据“ 三线合一” 的性质得证. 2.直线与圆无交点,“作垂线,证相等”. 2.如图,在Rt△ABC 中,∠C=90°,⊙O 是△ABC 的外接圆,点D 在⊙O 上,且弧AD=弧CD , 过点D 作CB 的垂线,与CB 的延长线相交于点E,并与AB 的延长线相交于点F . (1) 求证:DF 是⊙O 的切线; (2) 若⊙O 的半径R=5,AC=8,求DF 的长. 例题2图 【解析】 (1) 证明:如解图,连接DO 并延长,与AC 相交于点P. 例题2解图

相关文档
相关文档 最新文档