文档库 最新最全的文档下载
当前位置:文档库 › 螺栓联接的静动态特性

螺栓联接的静动态特性

螺栓联接的静动态特性
螺栓联接的静动态特性

实验一 受轴向载荷螺栓联接的静态特性

螺栓联接是广泛应用于各种机械设备中的一种重要联接形式,受预紧力和轴向工作载荷的螺栓联接中,最常见的应用实例是气缸盖与气缸体的联接,如图1-1所示。螺栓受到的总拉力F 0除了与预紧力F '和工作载荷F 有关外,还受到螺栓刚度C 1和C 2被联接件刚度等因素的影响。图6-2为一螺栓和被联接件的受力与变形示意图。

图1-1 气缸盖与气缸体的联接 图1-2 螺栓和被联接件受力、变形情况

(a)螺母未拧紧 (b)螺母已拧紧 (c)螺栓承受工作载荷 图1-2(a)所示为螺栓刚好拧好到与被联接件相接触的的状态,此时螺栓和被联接件均未受力,因此无变形发生。

图1-2(b)所示为螺母已拧紧,但联接未受工作载荷的状态,此时螺栓受预紧力F '的拉伸作用,其伸长量为1δ;而被联接件则在力F '的作用下被压缩,其压缩量为2δ。

图1-2(c)所示为联接承受工作载荷F 时的情况,此时螺栓所受的拉力由F '增大至F 0

(螺栓的总拉力),螺栓的伸长量由1δ增大至11δδ?+;与此同时,被联接件则因螺栓伸长而被

放松,其压缩变形减少了2δ?,减小到2δ''(222δδδ?-='',2δ''为剩余变形量);被联接

件的压力由F '减少至F ''(剩余预紧力)。根据联结的变形协调条件,压缩变形的减少量2δ?应等于螺栓拉伸变形的增加量1δ?,即21δδ?=?。

一、 实验目的

本实验通过计算和测量螺栓受力情况及静动态特性参数达到以下目的: 1. 了解螺栓联接在拧紧过程中各部分的受力情况; 2. 计算螺栓相对刚度并绘制螺栓连接的受力变形图;

3. 验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响;

4. 通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。

二、 实验设备及工作原理

1. 单螺栓连接实验台(如图1-3所示)

图1-3 单螺栓连接实验台结构

1-电机2-箱体3-螺栓扭矩测点4-八角环5-螺栓拉力6-上板

7-千分表(被联接件)8-千分表(螺栓)9-螺栓、螺母、垫片10-八角环压力测点11-锥塞12-挺杆13-挺杆压力测点14-下板15-实心扳手16-手轮

1) 联接部分包括M16空心螺栓、大螺母和垫片组组成。空心螺栓贴有侧拉力和扭矩的两组应变片,分别测量螺栓在拧紧时所受预紧拉力和扭矩。空心螺栓的内孔中装有双头螺柱,拧紧或松开其上的小螺母即可改变空心螺栓的实际受载界面积,以达到改变联接件刚度的目的。

2) 被联接件部分有上板、下板和八角环组成,八角环上贴有应变片组,测量被联接件受力的大小,中部有锥形孔,插入或拔出锥塞即可改变八角环的受力,以改变被联接件系统的刚度。

3) 加载部分由蜗轮、蜗杆、挺杆和弹簧组成,挺杆上贴有应变片,用以测量所加工作载荷和大小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。

2. YJ-25静态电阻应变仪

实验台各被测件的应变量用电阻应变仪测量,通过标定或计算机可换算出各部分的大小。应变仪采用了包含测量桥和读数桥的双桥结构。各测点均采用箔式电阻应变片,其阻值为120 ,灵敏系数k=2.20。

三、实验方法及步骤

1. 捋线,顺各测点连线找到应变仪上对应点,并转动转换开关至相应测点,用螺丝刀调节电阻平衡电位器,使各测点的应变显示数字为零。

2. 取出八角环上两锥塞,转动手轮(单方向),使挺杆降下,处于卸载位置,手拧大螺母至刚好与垫片组接触,(预紧初始值)螺栓不能有松动的感觉。千分表调零,并保证千分

表长指针有一圈的压缩量。

3. 用测力扳手预紧大螺母,当扳手力矩为30N ·m 时,达到预紧力。此时转动静态应变仪的转换开关,测量各测点的应变值和千分表读数,记录数据、计算。

4. 转动手轮(单方向),使挺杆上升10mm 的高度,再次测量各测点的应变值和千分表读数,记录数据。

根据千分表的读数求出螺栓的变形变化量1δ?和被联接件的变形变化量2δ?,用八角

环的应变量求剩余预紧力P

Q ',由挺杆应变值求出工作载荷F ,由螺栓应变值求出总拉力Q ,并绘制在变形图上,用以验证螺栓受轴向载荷作用时符合变形协调规律,以及验证螺栓上总

拉力Q 与剩余预紧力P

Q '和工作载荷F 之间的关系。 四、 已知条件和计算公式

1. 螺栓参数:16M d = 27.142=d

2. 螺纹副摩擦力矩:()v P

d Q T ?λ+=tan 2

2

1 式中:254.2tan

2

1

==-d L

πλ 15.0tan 1-=v ? 3. 扳手力矩:d Q T P 2.0≈ 4. 螺栓相对刚度:

2

11

C C C +

式中:C 1—螺栓刚度 1

1δP

Q C = C 2—被联接件刚度 22δP

Q C =

5. 应变值与力的换算:标

测με=

F

实验报告实验名称:

姓名:班级:学号:一、实验目的

二、实验设备

三、实验数据

四、计算螺栓相对刚度

五、绘制螺栓连接变形图

六、简答题

1. 在拧紧螺母时,拧紧力矩要克服那些摩擦力?此时螺栓和被联接件各受怎样载荷?

2. 拧紧后又加工作载荷的螺栓连接中,螺栓所受总拉力是否等于预紧力加工作载荷?应该怎样确定?

3. 从实验中可以总结出那些提高螺栓联接强度的措施?

机械设计作业第5答案

第五章螺纹联接和螺旋传动 一、选择题 5—1 螺纹升角ψ增大,则联接的自锁性C,传动的效率A;牙型角增大,则联接的自锁性A,传动的效率C。 A、提高 B、不变 C、降低 5—2在常用的螺旋传动中,传动效率最高的螺纹是 D 。 A、三角形螺纹 B、梯形螺纹 C、锯齿形螺纹 D、矩形螺纹 5—3 当两个被联接件之一太厚,不宜制成通孔,且需要经常装拆时,往往采用A 。 A、双头螺柱联接 B、螺栓联接 C、螺钉联接 D、紧定螺钉联接 5—4螺纹联接防松的根本问题在于C。 A、增加螺纹联接的轴向力 B、增加螺纹联接的横向力 C、防止螺纹副的相对转动 D、增加螺纹联接的刚度 5—5对顶螺母为A防松,开口销为B防松,串联钢丝为B防松。 A、摩擦 B、机械 C、不可拆 5—6在铰制孔用螺栓联接中,螺栓杆与孔的配合为B。 A、间隙配合 B、过渡配合 C、过盈配合 5—7在承受横向工作载荷或旋转力矩的普通紧螺栓联接中,螺栓杆C作用。 A、受剪切应力 B、受拉应力 C、受扭转切应力和拉应力 D、既可能只受切应力又可能只受拉应力 5—8受横向工作载荷的普通紧螺栓联接中,依靠A来承载。 A、接合面间的摩擦力 B、螺栓的剪切和挤压 C、螺栓的剪切和被联接件的挤压 5—9受横向工作载荷的普通紧螺栓联接中,螺栓所受的载荷为B;受横向工

作载荷的铰制孔螺栓联接中,螺栓所受的载荷为A;受轴向工作载荷的普通松螺 栓联接中,螺栓所受的载荷是A;受轴向工作载荷的普通紧螺栓联接中,螺栓所 受的载荷是D。 A、工作载荷 B、预紧力 C、工作载荷+ 预紧力 D、工作载荷+残余预紧力 E、残余预紧力 5—10受轴向工作载荷的普通紧螺栓联接。假设螺栓的刚度C b与被联接件的刚度C 相等,联接的预紧力为F0,要求受载后接合面不分离,当工作载荷F等于预紧力F0 m 时,则D。 A、联接件分离,联接失效 B、被联接件即将分离,联接不 可靠 C、联接可靠,但不能再继续加载 D、联接可靠,只要螺栓强度足够,工作载荷F还可增加到接近预紧力的两 倍 5—11重要的螺栓联接直径不宜小于M12,这是因为C。 A、要求精度高 B、减少应力集中 C、防止拧紧时过载拧断 D、 便于装配 5—12紧螺栓联接强度计算时将螺栓所受的轴向拉力乘以,是由于D。 A、安全可靠 B、保证足够的预紧力 C、防止松脱 D、计入 扭转剪应力 5—13对于工作载荷是轴向变载荷的重要联接,螺栓所受总拉力在F0与F2之间变 化,则螺栓的应力变化规律按C。 A、r = 常数 B、 =常数C、min=常数 m 5—14对承受轴向变载荷的普通紧螺栓联接,在限定螺栓总拉力的情况下,提高 螺栓疲劳强度的有效措施是B。 A、增大螺栓的刚度C ,减小被联接件的刚度C m B、减小C b,增大C b m

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

机械设计_连接部分习题答案

机械设计-连接部分测试题 一、填空: 1、按照联接类型不同,常用的不可拆卸联接类型分为焊接、铆接、粘接和过盈量大的配合。 2、按照螺纹牙型不同,常见的螺纹分为三角螺纹、梯形螺纹、矩形螺纹和锯齿形螺纹等。 其中三角螺纹主要用于联接,梯形螺纹主要用于传动。 3、根据螺纹联接防松原理的不同,它可分为摩擦防松和机械防松。螺纹联接的防松, 其根本问题在于防止螺纹副转动。 4、对于螺纹联接,当两被联接件中其一较厚不能使用螺栓时,则应用双头螺柱联接 或螺钉联接,其中经常拆卸时选用双头螺柱联接。 5、普通螺栓联接中螺栓所受的力为轴向(拉)力,而铰制孔螺栓联接中螺栓所受的 力为轴向和剪切力。 6、在振动、冲击或变载荷作用下的螺栓联接,应采用防松装置,以保证联接的可靠。 7、在螺纹中,单线螺纹主要用于联接,其原因是自锁,多线螺纹用于传动,其原因 是效率高。 8、在螺纹联接中,被联接上应加工出凸台或沉头座,这主要是为了避免螺纹产生附加弯 曲应力。 楔键的工作面是上下面,而半圆键的工作面是(两)侧面。平键的工作面是(两)侧面。 9、花键联接由内花键和外花键组成。 10、根据采用的标准制度不同,螺纹分为米制和英制,我国除管螺纹外,一般都采用米制螺纹。圆柱普通螺纹的公称直径是指大径,强度计算多用螺纹的()径。圆柱普通螺纹的牙型角为60 度,管螺纹的牙型角为()度。 二、判断: 1、销联接属可拆卸联接的一种。(√) 2、键联接用在轴和轴上支承零件相联接的场合。(√) 3、半圆键是平键中的一种。(×) 4、焊接是一种不可以拆卸的联接。(√) 5、铆接是一种可以拆卸的联接。(×)

一般联接多用细牙螺纹。(×) 6、圆柱普通螺纹的公称直径就是螺纹的最大直径。(√) 7、管螺纹是用于管件联接的一种螺纹。(√) 8、三角形螺纹主要用于传动。(×) 9、梯形螺纹主要用于联接。(×) 10、金属切削机床上丝杠的螺纹通常都是采用三角螺纹。(×) 11、双头螺柱联接适用于被联接件厚度不大的联接。(×) 12、平键联接可承受单方向轴向力。(×) 13、普通平键联接能够使轴上零件周向固定和轴向固定。(×) 14、键联接主要用来联接轴和轴上的传动零件,实现周向固定并传递转矩。(√) 15、紧键联接中键的两侧面是工作面。(×) 16、紧键联接定心较差。(√) 17、单圆头普通平键多用于轴的端部。(√) 18、半圆键联接,由于轴上的键槽较深,故对轴的强度削弱较大。(√) 19、键联接和花键联接是最常用的轴向固定方法。(×) 20、周向固定的目的是防止轴与轴上零件产生相对转动。(√) 三、选择: 1、在常用的螺旋传动中,传动效率最高的螺纹是( D )。 A 三角形螺纹; B 梯形螺纹; C 锯齿形螺纹; D 矩形螺纹 2、当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆卸时,往往采用( B )。 A 螺栓联接; B 螺钉联接; C 双头螺柱联接; D 紧定螺钉联接 3、在常用的螺纹联接中,自锁性能最好的螺纹是( A )。 A 三角形螺纹; B 梯形螺纹; C 锯齿形螺纹; D 矩形螺纹

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

仪表的特性有静态特性和动态特性

仪表的特性有静态特性和动态特性 仪表的特性有静态特性和动态特性之分,它们所描述的是仪表的输出变量与输入变呈之间的对应关系。当输人变量处于稳定状态时,仪表的输出与翰人之间的关系称为睁态特性。这里仅介绍几个主要的静态特性指标。至于仪表的动态特性,因篇幅所限不予介绍,感兴趣的读者请参阅有关专著。 1.灵敏度 灵饭度是指仪表或装置在到达稳态后,输出增量与输人增量之比,即K=△Y/△X式中K —灵教度,△Y—输出变量y的增量,△X—输人变量x的增量。 对于带有指针和标度盘的仪表,灵敏度亦可直观地理解为单位输入变量所引起的指针偏转角度或位移盈。 当仪表的“输出一输入”关系为线性时,其灵放度K为一常数。反之,当仪表具有非线性特性时,其灵敏度将随着输入变量的变化而改变。 2线性度 一般说来,总是希望侧贴式液位开关具有线性特性,亦即其特性曲线最好为直线。但是,在对仪表进行校准时人们常常发现,那些理论上应具有线性特性的仪表,由于各种因素的影响,其实际特性曲线往往偏离了理论上的规定特性曲线(直线)。在高频红外碳硫分析仪检测技术中,采用线性度这一概念来描述仪表的校准曲线与规定直线之问的吻合程度。校准曲线与规定直线之间最大偏差的绝对值称为线性度误差,它表征线性度的大小。 3.回差 在外界条件不变的情况下,当输入变量上升(从小增大)和下降(从大减小)时,仪表对于同一输入所给出的两相应输出值不相等,二者(在全行程范围内)的最大差值即为回差,通常以输出量程的百分数表示回差是由于仪表内有吸收能量的元件(如弹性元件、磁化元件等)、机械结构中有间隙以及运动系统的魔擦等原因所造成的。 4.漂移 所谓漂移,指的是在一段时间内,仪表的输人一愉出关系所出现的非所期望的逐渐变化,这种变化不是由于外界影响而产生的,通常是由于在线微波水分仪弹性元件的时效、电子元件的老化等原因所造成的。 在规定的参比工作条件下,对一个恒定的输入在规定时间内的输出变化,称为“点漂”。 发生在仪表测量范围下限值七的点漂,称为始点漂移。当下限值为零时的始点漂移又称为零点漂移,简称零漂。 5重复性 在同一工作条件下,对同一输入值按同一方向连续多次测量时,所得输出值之间的相互一致程度称为重复性。 仪器仪表的重复性用全测量范围内的各输入值所测得的最大重复性误差来确定。所谓重复性误差,指的是对于高频红外碳硫分析仪全范围行程、在同一工作条件下、从同方向对同一输人值进行多次连续测量时,所获得的输出值的两个极限值之间的代数差或均方根误差。重复性误差通常以量程的百分数表示,它应不包括回差或漂移。

磁芯材料的静动态特性测量方法

软磁材料测量measurement of soft magnetic material 反映软磁材料磁特性的各种磁学参量的测量,是磁学量测量的内容之一。软磁材料一般指矫顽力Hc≤1000A/m的磁性材料,主要有低碳钢、硅钢片、铁镍合金、一些铁氧体材料等。软磁材料的各种磁性能决定了由该材料制成的磁性器件或装置的技术特性,因此,软磁材料测量在磁学量测量中占有重要位置。 表征软磁材料的磁特性有各种曲线,可按工业应用要求来选择。这些曲线主要是:工作在直流磁场下的静态磁特性曲线和反映磁滞效应的静态磁特性回线;工作在变化磁场(包括周期性交变磁场,脉冲磁场和交、直流叠加磁场等)之下、包括涡流效应在内的动态磁特性曲线和动态磁特性回线等。这些磁特性曲线的横坐标是加在被测材料上的磁场强度H,纵坐标是材料中的磁通密度B。这种表示方式使这些曲线只反映材料的性质,与材料的形状、尺寸无关。此外,软磁材料的动态磁特性还包括复数磁导率和铁损。 (1)静态磁特性测量 测量材料的静态磁特性曲线和磁特性回线,主要测量方法有冲击法和积分法两种。 ①冲击法:用以测量静态磁特性曲线,测量线路见图1。材料试样制成镯环形,并绕以磁化线圈和测量线圈。前者通过换向开关、电流表和调节电流的可变电阻接到直流电源上;后者接到冲击检流计上(见检流计)。开始测量时,通过电流表将磁化线圈中的电流调到某一数值,由电流表的读数、磁化线圈的匝数,以及材料试样的磁路几何参数,可计算出磁场强度H值。然后,利用换向开关、快速改变磁化线圈中的电流方向,使材料试样中的磁通密度的方向突然改变,于是在测量线圈中感应出脉冲电动势e,e使脉冲电流流过冲击检流计。检流计的最大冲掷与此脉冲电流所含的电量Q,也就是磁通的变化(△φ)成比例。△φ在数值上等于材料试样中磁通的两倍。由冲击检流计的读数和冲击常数(韦伯/格),以及材料试样的等效截面,可计算出相应的磁通密度B值。改变磁化电流,可测出静态磁特性曲线所需的所有数据。此种方法的准确度约为1%。 此主题相关图片如下:

第八章(焊缝、螺栓连接)--钢结构习题参考解答

8.4 有一工字形钢梁,采用I50a (Q235钢),承受荷载如图8-83所示。F=125kN ,因长度不够而用对接坡口焊缝连接。焊条采用E43型,手工焊,焊缝质量属Ⅱ级,对接焊缝抗拉强度设计值2205/w t f N mm =,抗剪强度设计值2120/w v f N mm =。验算此焊缝受力时是否安全。 图8-83 习题8.4 解: 依题意知焊缝截面特性: A=119.25cm 2,Wx =1858.9cm 3,Ix=46472cm 4,Sx=1084.1cm 3 ,截面高度h=50cm ,截面宽度b=158mm ,翼缘厚t=20mm ,腹板厚tw=12.0mm 。 假定忽略腹板与翼缘的圆角,计算得到翼缘与腹板交点处的面积矩S 1=20×158×(250-10) =7.584×105mm 3 。 对接焊缝受力:125V F kN ==;2250M F kN m =?=? 焊缝应力验算: 最大正应力:622 3 25010134.5/205/1858.910w t x M N mm f N mm W σ?===<=? 最大剪应力:33 224125101084.11024.3/120/464721012 w x v x w VS N mm f N mm I t τ???===<=?? 折算应力: 22127.2/205/w zs t N mm f N mm σ=<= 故焊缝满足要求。 8.5 图8-84所示的牛腿用角焊缝与柱连接。钢材为Q235钢,焊条用E43型,手工焊,角焊缝强度设计值2f 160/w f N mm =。T=350kN ,验算焊缝的受力。

螺栓联接的静动态特性

实验一 受轴向载荷螺栓联接的静态特性 螺栓联接是广泛应用于各种机械设备中的一种重要联接形式,受预紧力和轴向工作载荷的螺栓联接中,最常见的应用实例是气缸盖与气缸体的联接,如图1-1所示。螺栓受到的总拉力F 0除了与预紧力F '和工作载荷F 有关外,还受到螺栓刚度C 1和C 2被联接件刚度等因素的影响。图6-2为一螺栓和被联接件的受力与变形示意图。 图1-1 气缸盖与气缸体的联接 图1-2 螺栓和被联接件受力、变形情况 (a)螺母未拧紧 (b)螺母已拧紧 (c)螺栓承受工作载荷 图1-2(a)所示为螺栓刚好拧好到与被联接件相接触的的状态,此时螺栓和被联接件均未受力,因此无变形发生。 图1-2(b)所示为螺母已拧紧,但联接未受工作载荷的状态,此时螺栓受预紧力F '的拉伸作用,其伸长量为1δ;而被联接件则在力F '的作用下被压缩,其压缩量为2δ。 图1-2(c)所示为联接承受工作载荷F 时的情况,此时螺栓所受的拉力由F '增大至F 0 (螺栓的总拉力),螺栓的伸长量由1δ增大至11δδ?+;与此同时,被联接件则因螺栓伸长而被 放松,其压缩变形减少了2δ?,减小到2δ''(222δδδ?-='',2δ''为剩余变形量);被联接 件的压力由F '减少至F ''(剩余预紧力)。根据联结的变形协调条件,压缩变形的减少量2δ?应等于螺栓拉伸变形的增加量1δ?,即21δδ?=?。 一、 实验目的 本实验通过计算和测量螺栓受力情况及静动态特性参数达到以下目的: 1. 了解螺栓联接在拧紧过程中各部分的受力情况; 2. 计算螺栓相对刚度并绘制螺栓连接的受力变形图; 3. 验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响; 4. 通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、 实验设备及工作原理 1. 单螺栓连接实验台(如图1-3所示)

什么是汽轮机调节系统的静态特性和动态特性

1.什么是汽轮机调节系统的静态特性和动态特性? 答:调节系统的工作特性有两种,即动态特性和静态特性。在稳定工况下,汽轮机的功率和转速之间的关系即为调节系统的静态特性。从一个稳定工况过渡到另一个稳定工况的过渡过程的特性叫做调节系统的动态特性,是指在过渡过程中机组的功率、转速、调节汽门的开度等参数随时间的变化规律。 2.汽封的作用是什么?轴封的作用是什么? 答:为了避免动、静部件之间的碰撞,必须留有适当的间隙,这些间隙的存在势必导致漏汽,为此必须加装密封装置----汽封。根据汽封在汽轮机中所处位置可分为:轴端汽封(简称轴封)、隔板汽封和围带汽封(通流部分汽封)三类。 轴封是汽封的一种。汽轮机轴封的作用是阻止汽缸内的蒸汽向外漏泄,低压缸排汽侧轴封是防止外界空气漏入汽缸。 3.低油压保护装置的作用是什么? 答:润滑油油压过低,将导致润滑油膜破坏,不但要损坏轴瓦。而且能造成动静之间摩擦等恶性事故,因此,在汽轮机的油系统中都装有润滑油低油压保护装置。 低油压保护装置一般具备以下作用: ⑴润滑油压低于正常要求数值时,首先发出信号,提醒运行人员注意并及时采取措施。 ⑵油压继续下降至某数值时,自动投入辅助油泵(交流、直流油泵),以提高油压。 ⑶辅助油泵起动后,油压仍继续下跌到某一数值应掉闸停机,再低时并停止盘车。 当汽轮机主油泵出口油压过低时,将危及调节及保护系统的工作,一般当该油压低至某一数值时,高压辅助油泵(调速油泵)自起动投入运行,以维持汽轮机的正常运行。 4.直流锅炉有何优缺点? 答:直流锅炉与自然循环锅炉相比主要优点是: (1)原则上它可适用于任何压力,但从水动力稳定性考虑,一般在高压以上(更多是超高压以上)才采用。 (2)节省钢材。它没有汽包、并可采用小直径蒸发管,使钢材消耗量明显下降。 (3)锅炉启、停时间短。它没有厚壁的汽包,在启、停时,需要加热、冷却的时间短.从而缩短了启、停时间。 (4)制造、运输、安装方便。 (5)受热面布置灵活。工质在管内强制流动.有利于传热及适合炉膛形状而灵活布置。

某装备结构动态特性分析

技术篇 2007年 第十期 某装备结构动态特性分析 霍 红 (中北大学,太原 030051) 摘 要:利用试验模态分析法获得了某机枪结构的模态参数,分析了机枪的动态特性,并通过基于模态试验的灵敏度分析方法,获得了影响该机枪动态特性的敏感部位,为改善机枪动态特性提供了依据. 关键词:机枪;灵敏度分析;动态特性;分析 中图分类号:TP302.7 文献标识码:A 文章编号:1005 8354(2007)10 0001 02 Analysis on structural dyna m ic characteristics for certai n equi p m e nt HUO H ong (N orth U n i ve rs i ty o f Ch i na ,T a i yuan 030051,Chi na) Abstract :A ccor ding to modal analysism etho d,modal parametersw ere derived and structural dynam ic charac teristics were analyzed.U sing sensitivit y analysis of model test ,t he dyna m ic characteristics and sensitive p oints of a m achine gun were obt ained.These woul d be used to i m prove dyna m ic propert y of t hemachine gun. K ey words :machine gun;sensitivity analysis ;struct ural dyna m ic characteristics ;analysis 收稿日期:2007 08 22 作者简介:霍红(1968 ),女,实验师,研究方向:火炮、自动武器与弹药工程. 0 引 言 当今为提高自动武器的机动性,广泛采用弹性枪架,但随着重量的减轻,武器系统的振动加剧.而武器系统的振动又直接影响到射击精度,特别是弹丸出膛 口时的横向位移、横向速度以及弹丸初始扰动等对武器射击精度影响尤其明显 [1] .为此,需掌握武器系统 的固有特性,为分析和优化机枪的动力学特性提供依据,以提高其射击精度.而系统固有特性一般可由理论分析方法和试验方法获得,前者是利用有限元分析法,后者是利用试验模态分析法,随着试验技术的发展和测量仪器精度的提高,利用试验模态分析法得到的结果越来越受到重视,并且常常作为验证有限元模型正确性的主要依据,所以,常采用理论分析和试验两种方法相结合建立模型 [1,2] ,以获得接近实际的结 果,为进一步分析如结构修改设计及结构动力特性优化设计提供良好的基础.本文以某机枪为例,采用试验模态分析法识别机枪系统的模态参数和分析其动 态特性,并在此基础上进行了灵敏度分析,获得机枪动力学特性对各参数变化的灵敏度,为机枪的动力学特性优化设计提供依据. 1 机枪结构试验模态分析 1.1 模态测试系统 模态测试系统基本由以下几部分组成:激励部分、信号测量和数据采集部分、信号分析和频响函数 估计部分 [3] .其测试系统框图见图1所示. 图1 机枪模态试验系统框图 1

螺纹连接习题解答(讲解)(试题题目)

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力: [σ]= σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: F′=[σ]πd2 /(4×1.3)=178 ×π×8.3762/5.2 N 1 =7535 N (2)求牵引力F R:

由式(11—25)得F R=F′fzm/K =7535×0.15×2× f =1.2) 1/1.2N=1883.8 N (取K f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、=

基于ANSYS的某型压力容器静态与动态特性分析

第33卷第3期2 0 18年8月青岛大学学报(工程技术版)JOURNAL OF QINGDAO UNIVERSITY (E&T) Vol. 33 No. 3 Aug. 2 0 18文章编号 # 1006 - 9798(2018)03 -0120 - 05; DO * 10.13306/1 1006 - 9798.2018.03.022 基于ANSYS 的某型压力容器静态与动态特性分析 黄妮,戴作强 (青岛大学机电工程学院,山东青岛266071) 摘要:针对压力容器容易发生强度失效和稳定失效等问题,本文基于A N S Y S 软件对某型压力容 器的静态与动态特性进行研究,获取了其应力集中危险位置。在三维建模软件S o lid W o rk s 中,建 立压力容器的三维几何模型,使用自由边划分中面进行网格划分,并给出了载荷及边界条件,将前 处理完成的压力容器模型以c d b 格式导人A N S Y S 软件中进行求解,并在空罐状态下对压力容器 进行动力学特性分析。分析结果表明,该压力容器的静强度具有一定的余量,不会发生强度失效; 在空罐状态下,压力容器筒体和封头容易发生共振,可以在筒体位置适当增加阻尼和约朿,以加强 其稳定性,或者在振型最大处增大厚度以提高刚度,防止和避免共振带来的危害。该研究保障了压 力容器在操作工况下安全可靠。 关键词:压力容器;A N S Y S #静强度分析;模态分析 中图分类号:T H 49 文献标识码:A 压力容器是化工生产中极为重要的一类储运设备[1],随着存储介质质量和种类的变化,压力容器产生失效事 故的可能性在不断增加,所以对压力容器进行静态和动态特性研究,分析其结构可靠性具有重要意义。近年来, 对压力容器可靠性的研究有许多。郑云虎等人)]采用静强度和模态分析结合的方法,对立式圆柱薄壁容器的振 动特性进行了研究,获得了压力容器的强度和刚度薄弱位置;张自斌等人)]对压力容器的宏观力学响应进行了分 析,并作出应力安全评定,同时运用子模型技术对压力容器接管区域进行了更为精确的应力分析;赵积鹏等人)] 采用特征值屈曲分析方法,得出了压力容器屈曲模态形状和临界外压,提出了压力容器安全使用的临界条件;朱 国樑)]应用A N S Y S 分析了立式厚壁压力容器筒体与封头的应力分布特点,提出了优化措施;马言等人)]针对压 力容器分层缺陷的扩展问题,从动力学角度对压力容器进行模态分析,找到了分层缺陷扩展的原因。基于此,本 文从静态和动态两方面研究某型压力容器的静强度薄弱环节和抗振性能不足之处,根据有限元分析结果,对其进 行安全性能评价及动力学特性分析,保障压力容器在操作工况下安全可靠。该研究对分析压力容器的结构可靠 性具有重要意义,具有一定的实际应用价值。 1三维模型的建立 液体干燥器的容积约为51 m 3,由筒体、封头和裙座等组成。压力容器总长约为15 900 mm ,其中,筒体高度 10 BOOmm ,筒体前段厚度为26 mm ,筒体后段厚度为34 m m ,封头为标准椭圆形,其内径A =2 B O O mm ,两端封头厚度 为29. 62 m m ,裙座厚度为20 m m ,个地脚螺栓对称分布于裙座底端。压力容器材料为Q 345R ,材料性能如表1所示。 在三维建模软件S o lid W o rk s 中,建立压力容器三维几何模 型,压力容器三维图如图1所示。在有限元分析中,微小的结构 可能导致建模时间和计算量大幅增加,因此应抓住模型主要影 响因素,忽略其次要影响因素,对其进行简化处理78]。对该压力 容器焊缝、温度计热电偶口、露点仪口、放空口、公用工程口及小倒角等进行简化,压力容器简化模型如图2所示。2 有限元前处理2.1中面处理及网格划分 H y p e rM e sh 是一个高质量高效率的有限元前处理器,其强大的几何清理功能大大简化了对复杂几何进行仿收稿日期# 2017-12-10;修回日期# 2018 - 02 - 20 基金项目:黄妮(1994 -),女,湖南常德人,硕士研究生,主要研究方向为电动汽车智能化动力集成技术。 作者筒介:戴作强(1962 -),男,硕士,教授,主要研究方向为锂离子电池材料与系统。Email: daizuoqiangqdu@https://www.wendangku.net/doc/262875546.html, 表1材料性能杨氏弹性密度/屈服极材泊松比模量/Pa k g /m 3限/ M P a Q 345R 2. 1X 1011 0.37 890345

(完整版)螺纹联接练习试题与答案9

螺纹连接练习 第一节 螺纹基础知识 1、标记为螺栓GB5782-86 M16×80的六角头螺栓的螺纹是 形,牙形角等于 60 度,线数等于 1 ,16代表 公称直径 , 80代表 螺栓长度 。 2、双头螺柱的两被联接件之一是 螺纹 孔,另一是 光 孔。 3、采用螺纹联接时,若被联接件之一厚度较大,且材料较软,强度 较低,需要经常装拆,则一般宜采用 B 。 A 、螺栓联接 B 、双头螺柱联接 C 、螺钉联接 4、螺纹副在摩擦系数一定时,螺纹的牙型角越大,则 D 。 A 、当量摩擦系数越小,自锁性能越好 B 、当量摩擦系数越小,自锁性能越差 C 、当量摩擦系数越大,自锁性能越差 D 、当量摩擦系数越大,自锁性能越好 5、螺纹的公称直径是指螺纹的 大 径,螺纹的升角是指螺纹 中 径处的升角。螺旋的自锁条件为 ?< ?v ,拧紧螺母时效率公式为) tan(tan v ???+。 6、三角形螺纹主要用于 连接 ,而矩形、梯形和锯齿形螺纹主 要用于 传动 。

(1)普通螺栓连接 1)螺栓安装方向不对,装不进去,应掉过头来安装;

2)普通螺栓连接的被联接件孔要大于螺栓大径,而下部被连接件孔与螺栓杆间无间隙; 3)被连接件表面没加工,应做出沉头座并刮平,以保证螺栓头及螺母支承面平整且垂直于螺栓轴线,避免拧紧螺母时螺栓产生附加弯曲应力; 4)一般连接;不应采用扁螺母; 5)弹簧垫圈尺寸不对,缺口方向也不对; 6)螺栓长度不标准,应取标准长z=60 mm; 7)螺栓中螺纹部分长度短了,应取长30 mm。 (2)螺钉连接 主要错误有: 1)采用螺钉连接时,被连接件之一应有大于螺栓大径的光孔,而另一被连接件上应有与螺钉相旋合的螺纹孔。而图中上边被连接件没有做成大于螺栓大径的光孔,下边被连接件的螺纹孔又过大,与螺钉尺寸不符,而且螺纹画法不对,小径不应为细实线; 2)若上边被连接件是铸件,则缺少沉头座孔,表面也没有加工。 (3)双头螺柱连接 主要错误有: 双头螺柱的光杆部分不能拧进被连接件的螺纹孔内,M12不能标注在光杆部分; 锥孔角度应为120。,而且应从螺纹孔的小径(粗实线)处画锥孔角的两边;

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

螺纹联接练习题

连接 一、判断 01. 一个双线螺纹副,螺距为4mm,则螺杆相对螺母转过一圈时,它们沿轴向相对移动的距离应为4mm。( ) 02. 三角形螺纹由于当量摩擦系数大,强度高,所以是常用的连接螺纹。( ) 03. 设计外载荷是轴向变载荷的紧螺栓连接,除考虑螺栓的静强度外,还必须验算其疲劳强度。 ( ) 04. 普通螺栓连接的强度计算,主要是计算螺栓的剪切强度。( ) 05. 对受轴向变载荷的普通螺栓连接适当增加预紧力可以提高螺栓的抗疲劳强度。( ) 06. 受横向载荷的螺栓组连接中的螺栓必须采用有铰制孔的精配合螺栓。( ) 07. 受轴向载荷的紧螺栓连接的螺栓所受的总拉力是预紧力与工作拉力之和。( ) 08. 在受轴向变载荷的紧螺栓连接中,使用柔性螺栓,其主要作用是降低螺栓的应力幅。( ) 09. 受翻转(倾覆)力矩作用的螺栓组连接中,螺栓的位置应尽量远离接合面的几何形心。( ) 10. 在受轴向变载荷的紧螺栓连接结构中,在两个被连接件之间加入橡胶垫片,可以提高螺栓疲劳强度。( ) 二、选择 1.常见的连接螺纹是_________。 A.左旋单线 B.右旋双线 C.右旋单线 D.左旋双线 2. 相同公称尺寸的三角形细牙螺纹和粗牙螺纹相比,因细牙螺纹的螺距小,小径大,故细牙螺纹的_______。 A.自锁性好,钉杆受拉强度低 B.自锁性好,钉杆受拉强度高 C.自锁性差,钉杆受拉强度高 D.自锁性差,钉杆受拉强度低 (强度——指螺纹杆的承载能力。) 3. 用作调节或阻塞的螺纹,应采用_____。 A.三角形粗牙螺纹 B.矩形螺纹 C.锯齿形螺纹 D.三角形细牙螺纹 4. 标注螺纹时______。 A.右旋螺纹不必注明 B.左旋螺纹不必注明 C.左、右旋螺纹都必须注明 D.左、右旋螺纹都不必注明 5. 连接用的螺母、垫圈的尺寸(型号)是根据螺栓的______选用的。A.中径d2 B.小径d1 C.大 径d D.钉杆直径 6. 管螺纹的公称直径是指______。 A.螺纹的外径 B.螺纹的内径 C.螺纹的中径 D.管子的内径 三、填空 1. 普通螺栓的公称直径为螺纹______径。

螺纹连接重要习题

螺纹连接重要习题

————————————————————————————————作者: ————————————————————————————————日期: ?

《螺纹连接练习题》 一、单选题(每题1分) 1. 采用凸台或沉头座其目的为。 A 便于放置垫圈B避免螺栓受弯曲力矩 C 减少支承面的挤压应力D增加支承面的挤压应力 2.联接螺纹要求自锁性好,传动螺纹要求。 A平稳性B效率高 C 螺距大 D 螺距小 3. 连接用的螺纹,必须满足条件。 A 不自锁 B 传力 C 自锁 D 传递扭矩 4. 单线螺纹的螺距导程。 A 等于 B 大于 C 小于D与导程无关 5.同一螺栓组的螺栓即使受力不同,一般应采用相同的材料和尺寸,其原因是。 A 便于装配 B 为了外形美观C使结合面受力均匀 D 减少摩损 6. 用于联接的螺纹,其牙形为。 A 矩形B三角形C锯齿形 D 梯形 7. 螺纹的标准是以为准。 A大径B中径 C 小径 D 直径 8. 螺纹的危险截面应在上。 A 大径B小径 C 中径 D 直径 9、在常用的螺旋传动中,传动效率最高的螺纹是__________。

A三角形螺纹 B梯形螺纹 C锯齿形螺纹D矩形螺纹 10、在常用的螺纹联接中,自锁性能最好的螺纹是__________。 A三角形螺纹B梯形螺纹C锯齿形螺纹D矩形螺纹 11、当两个被联接件不太厚时,宜采用__________。 A双头螺柱联接B螺栓联接C螺钉联接 D紧定螺钉联接 12、当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用__________。 A螺栓联接B螺钉联接C双头螺柱联接D紧定螺钉联接 13、当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆装时,往往采用__________。 A螺栓联接B螺钉联接C双头螺柱联接D紧定螺钉联接 14、普通螺纹的牙型角α为60o,当摩擦系数μ=0.10时,则该螺纹副的当量摩擦系数μv=__________。 A0.105 B 0.115 C 0.1115D0.104 15、在拧紧螺栓联接时,控制拧紧力矩有很大方法,例如__________。 A增加拧紧力B增加扳手力臂C使用测力矩扳手或定力矩扳手 16、螺纹联接防松的根本问题在于__________。 A增加螺纹联接的轴向力B增加螺纹联接的横向力 C防止螺纹副的相对转动D增加螺纹联接的刚度 17、螺纹联接预紧的目的之一是__________。 A增强联接的可靠性和紧密性B增加被联接件的刚性 C减小螺栓的刚性

推进式堵水开关静动态特性分析

2012年12月第40卷第23期 机床与液压 MACHINE TOOL &HYDRAULICS Dec.2012Vol.40No.23 DOI :10.3969/j.issn.1001-3881.2012.23.013 收稿日期:2011-11-16 基金项目:中原石油勘探局资助项目(2011202) 作者简介:张俊亮(1976—),男,工程师,中原油田博士后工作站在站博士后,从事井下工具的研究工作。Email :zhangdzu @https://www.wendangku.net/doc/262875546.html, 。 推进式堵水开关静动态特性分析 张俊亮,韩进,张强德,曹海燕,李丽云 (中原油田采油工程技术研究院,河南濮阳457001) 摘要:推进式堵水开关是一种井下智能堵水工具。开关在打开和关闭状态下,活塞轴向受力平衡,在打开和关闭瞬间,因地层和油套环空压差造成活塞受轴向冲击。分析了活塞开、关时的液压冲击力,并结合AMESim 软件对活塞受冲击状况进行仿真,结果表明:增加活塞环空长度、降低电机转速、增加螺杆轴向限位轴肩等可减小瞬态液动力对开关的活塞产生的轴向冲击。为堵水开关结构优化提供设计了依据。 关键词:堵水开关;静动态分析;冲击;仿真中图分类号:TE931文献标识码:A 文章编号:1001-3881(2012)23-051-3 Static and Dynamic Characteristics Analysis of Push Type Switch for Water Blocking ZHANG Junliang ,HAN Jin ,ZHANG Qiangde ,CAO Haiyan ,LI Liyun (Petroleum Engineering Institute of ZYOF ,Puyang Henan 457001,China ) Abstract :Push type switch for water blocking is a type of intelligent blocking tool used in oil well.In the state of open or close ,the piston of the switch bearing balanced axial force ,but on the moment of opening and closing ,for the differential space pressure of annular of oil and stratum ,there was the axial impact to the piston.The hydraulic impact was analyzed at opening or closing of the pis-ton ,and AMESim software was used to simulate the impact states.The results show that lengthening the piston annular ,lowering motor speed and increasing axial limit shaft shoulder of screw rod ,the axial impact to the piston by moment hydra-dynamic force on opening and closing of the piston can be lightened.It provides design basis for optimal structure of the water blocking switch. Keywords :Water blocking switch ;Static and dynamic analysis ;Impact ;Simulation 推进式堵水开关是用于高含水油井堵水作业的井下工具,与封隔器等配套使用,每个油层对应一个开关,主要功能是关闭高含水层,打开低含水层,以实现提高采收率的目的。推进式堵水开关克服以往机械式堵水开关受地层压差影响的弊端,在打开和关闭状态下实现轴向压力平衡,但在开-关或关-开瞬间, 因地层压力与套压不同而产生瞬态液动力 [1-2] 。瞬态液动力对开关的活塞产生轴向冲击,影响开关的打开或关闭,严重时可能破坏开关的机械结构。因此通过分析开关静动态特性,以确定合理机械结构,确保推进式堵水开关可靠工作。 1推进式堵水开关结构 推进式堵水开关结构如图1所示,主要由上接头、传感器、控制电路、驱动电机、驱动螺杆、外套筒、活塞、活塞套、下接头等组成,电机安装在活塞套上端部,驱动螺杆一端与电机轴配合,另一端通过螺纹与活塞连接。传感器接收井口环空压力脉冲信号,控制电路根据信号情况控制驱动电机正反转,电机通过驱动螺杆将转动变为活塞的上下移动。电机正转推动活塞下行至下限位置打开该地层,电机反转推动活塞上行至活塞上限位置关闭该地层。推进式堵水开关采用侧进液模式,活塞装有密封圈,阻止液体流入活塞底部或顶部空间,使液体仅在活塞环形空间内流动,图1为开关处于打开状态,进液口与出液口连通 。 图1推进式堵水开关结构图

相关文档
相关文档 最新文档