文档库 最新最全的文档下载
当前位置:文档库 › 600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计
600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计

摘要

本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供

电。

电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。

关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源;

第1章绪论1.1 电力电子技术概况

电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和

控制技术的发展而发展的。

电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电

子器件运行的特点。

电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成

的。这一观点被全世界普遍接受。

电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换,

后者用于信息处理。

目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。并对开关电源提出了小型轻量要求,此外要求开关电源效率要更高、性能更好、可靠性更高等。当前,各国正在努力开新器件、新材料以及改进装连方法,进一步提高效率,缩小体积,降低价格,以解决开关电源面临的课题。随着电力电子技术的不断创新,开关电源产业会有更广阔的发展前景。

1.2 本文研究内容

开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要电源形式,受到人们的青睐。采用先整流滤波、后经高频逆变得到高频交流电压,然后由高频变压器降压、再整流滤波的方法。这种采用高频开关方式进行电能变换的电源称为开关电源。随着电子技术和应用迅速地发展,开关稳压电源的品种和类型也越来越多。按激励方式分为他激式和自激式;按调制方式分为脉宽调制型、频率调制型和混合调制型;按开关管电流的工作方式分开关型和谐振型;按开关晶体管的类型分为晶体管型和可控硅型;按储能电感与负载的连接方式分为串联型和并联型;按晶体管的连接方式分为单端式、推挽式、半桥式、全桥式。本文设计了一种半桥型开关稳压电源,它具有驱动电路简单,驱动功率小,开关速度快,开关频率高

等优点。具体设计技术参数如下:

1.输入电压单相170~260V;

2.输入交流电频率45~65HZ;

3.输出直流电压12V恒定;

4.输出直流电流10A;

5.最大功率:120W;

6.稳压精度:<直流输出电压整定值的1%;

本文分别从以下几个方面进行了设计:

1. 主电路设计;

2. 控制电路设计;

3. 驱动电路设计;

4. 保护电路设计;

5. 整体电路设计;

6. 元器件型号的选择;

第2章电路

设计 2.1 稳压电源总体设计方案

开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。开关电源的基本构成如下图所

示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。输出采样电路(R1、R2)检测输出电压变化,与基准电压Ur比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十瓦到千瓦都可以;开关管耐压要求较低;电路成本比全桥电路低等。这种电路常常被用于各种

稳压输出的DC变换器

DC/DC

变换器有多种电路形式,常用的有工作波形为方波的PWM变换器以及工作波形为准正弦波的谐振型变换器。

图2.1 主体方框图

随着电力电子技术的发展,电源技术被广泛应用于各个行业。对电源的要求也各有不同。本次设计的是一种功率较大,的开关电源。

设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节为有源功率因数校正电路、DC/DC电路、功率因数校正电路、PWM控制电路和保护电路等。采用UC3854A/B控制芯片组成功率因数校正电路来提高功率因数,用新型的芯片UC3825作为控制芯片来代替SG3525,不仅外围电路简单,而且具有有容差过压限流功能,还采用了新型IR2304作为驱动芯片,动态响应快,且自带死区,防止半桥

上下管直通。

该电路用高速双路PWM控制器UC3825为控制芯片,功率MOSFET 为开关器件而构成的推挽逆变器,逆变器输出

经高频LC滤波后输出1MHz/100W正弦波功率信号。实验证明电路产生的波形质量好,电路结构简单,控制方便,并具有体积小,效率高的

特点。

低频小功率信号源往往用线性功率放大电路,其电路比较简单,波形质

量好,易于实现。

而对于高频、中大功率信号源用线性功率放大电路难以实现,特别是对于要求1MHz/100W正弦波功率信号源,采用线性功率放大电路,其电路结构复杂,调整困难,不易实现。而采用高速双路PWM 控制器UC3825为控制芯片,功率MOSFET为开关器件,经LC高频滤波,

输出1MHz/100W正弦波功率信号源,其波形质量好,电路结构简单,

体积小,效率高

2.2 具体电路设计2.2.1 主电路设计

反激式电源一般用在100w以下的电路,而本电源设计最大功率达到500w,额定电流为10A左右。在功率较大的高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等。其中推挽电路用的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有6个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但需要的开关器件多(4个),驱动电路复杂;半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作

为主电路。如图2.2即为主电路图。

图2.2 主电路图

图2.2中S1、S2、C1、C2和主变压器T1构成了半桥DC/DC变换电路。MOSFET采用11NC380。电路的工作频率为80 kHz。变压器采用E55的铁氧体磁芯,无须加气隙。绕制时采用“三段式”绕法,以减小漏感。R1和R2用以保证电容分压均匀,R3、C3和R4、C4为MOS管两端的吸收电路。C5为隔直电容,用来阻断与不平衡伏秒值成正比的直流分量,平衡开关管每次不相等的伏秒值。C5采用优质CBB无感电容。Ct是电流互感器,作为电流控制时取样用。D3、D4采用快恢复二极管,经过L1和C6、C7平波滤波后输出OUT2给控制芯片供电,Rs、R6则是反馈电压的采样电阻。主变压器的输出OUT3为高频低压交流电。如图2所示,反馈电压和输出电压同一绕组,样,可以在负载变化时最大限度地保证输出电压的稳定。后级可接一个或多个多路输出的变压器,然后通过整流电路整流,这样既能保证每路输出都是独立的,又可以得到任意大小的电压。故可满足DSP等需要多路不同电压供电且

精度较高的要求。

2.2.2 控制电路设计

系统的控制电路采用高速双路的PWM控制器UC3825,如图2.3所示即为所选电路,其内部电路主要由高频振荡器、PWM比较器、限流比较器、过流比较器、基准电压源、故障锁存器、软启动电路、欠压锁定、PWM锁存器、输出驱动器等组成。它比SG3525具有以下优点:

1)改进了振荡电路,提高了振荡频率的精度,并且具有更精确的死区控

制;

2)具有限流控制功能,且门槛电流有5%的容差;

3)低启动电流(100MA);

4)UC3825关断比较器是一个高速的过流比较器,它具有1.2v的门槛值,保证芯片重新启动前软启动电容完全放电,在超过门槛值时,输出为低电平状态,防止上下桥臂同时导通而引起短路。下图为主电路的控

制电路

前级的R808和R809与稳压管构成一个启动电路,触发UC3825开始工作后,由反馈输出OUT1自供电。PWM的调制波由R1和CT振荡产生,RT、CT一般按式(1)及式(2)选取。

RT=3V/{(10mA)*(1-Dmax)} (1)

CT=(1.6*Dmax)/(Rt*f) (2)

式中:f=80kHz,为所取的频率

脚1(INV)、脚2(E/A)和脚3(HI)构成一误差放大器,做为电压反馈用,脚9(ILIM)为限流,脚8(SS)为软启动,脚11(0UTA)及脚14(0UTB)为输出驱动信号。从图中可看出,UC3825功能比较全,外围电路简单,可有效减少PCB的布线与外围元器件,提高了系统的可靠性。

图2.3 高速双路PWM控制器UC3825电路图

2.2.3 驱动电路设计

MOSFET的驱动可采用脉冲变压器,它具有体积小,价格低的优点,但直接驱动时,脉冲的前沿与后沿不够陡,影响MOSFET的开关速度。在此,采用了IR2304芯片,它是IR公司新推出的多功能600v高端及低端驱动集成电路,它具有以下优点。

1)芯片体积小(DIP8),集成度高(可同时驱动同一桥臂的上、下两只开关

器件)。

2)动态响应快,通断延迟时间220/220 ns(典型值)、内部死区时间

1000ns、匹配延迟时间50ns。

3)驱动能力强,可驱动600v主电路系统,具有61 mA/130mA输出驱

动能力,栅极驱动输入电压宽达10~20V。

4)工作频率高,可支持100 kHz或以下的高频开关。

5)输入输出同相设计,提供高端和低端独立控制驱动输出,可通过两个兼容3.3v、5v和15v输入逻辑的独立CMOS或LSTFL输入来控制,

为设计带来了很大的灵活性。

6)低功耗设计,坚固耐用且防噪效能高。IR2304采用高压集成电路技术,整合设计既降低成本和简化电路,又降低设计风险和节省电路板的空间,相比于其它分立式、脉冲变压器及光耦解决方案,IR2304更能节省组件数量和空间,并提高可靠性。

7)具有电源欠压保护和关断逻辑,IR2304有两个非倒相输入及交叉传导保护功能,整合了专为驱动电机的半桥MOSFET或IGBT电路而设的保护功能。当电源电压降至4.7v以下时,欠压锁定(UVL0)功能会立即关掉两个输出,以防止直通电流及器件故障。当电源电压大于5v 时则会释放输出(综合滞后一般为0.3v)。过压(HVIC)及防闭锁CMOS 技术使IR2304非常坚固耐用。另外,IR2304还配备有大脉冲电流缓冲级,可将交叉传导减至最低;同时采用具有下拉功能的施密特(Sohmill)触发式输入设计,可有效隔绝噪音,以防止器件意外开通。

如下图所示为IR2304的连线图

图2.4 驱动电路图

可以看出,IR2304具有连线简单,外围元器件少的优点。其中VCC由主电路中OUT自供电,LIN和HIN分别接UC3825的两个输出端,VD要采用快恢复二极管,C1为滤电容,C2为自举电容,最好采用性能好的钽电容,R1和R2为限流电阻。

2.2.4 保护电路设计

对于DC/DC电源产品都要求在出现异常情况(如过流、过载)时,系统的保护电路工作,使变换器及时停止工作。UC3825的保护电路设计也

比较简单,如图2.5所示。

通过电流互感器得到的采样电流,经过转换后送到UC3825脚

9(ILJIM),当电流超过预定值时,UC3825自动封锁输出脉冲,起到保

护作用

图2.5 保护电路

2.2.5 整体电路设计

为了提高系统的功率因数,整流环节不能采用二极管整流,采用了UC3854A/B控制芯片组成功率因数校正电路。UC3854A/BUnitrode 公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进,其特点是采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%。图2.6是由UC3854A/B控制的有源功率因数校

正电路。

图2.6 整体电路图

该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,Cs,S等元器件构成Boost升压电路。开关管S选择西门康公司的SKM75GBl23D模块,其工作频率选在35 kHz。升压电感L2为2mH/20A。C5采用两个450V /470μF的电解电容并联。为了提高电路在功率较小时的效率,所设计的PFC电路在轻载时不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D5导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B 工作。D6接到SS(软启动端),在负载轻时D6导通,使SS为低电平;

当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。如图2.7中各图所示即为各种元

件在电路中的波形。

图2.7 各种元件的波形图

2.3 元器件型号选择

1.输入整流二极管的选择

设输入交流电压为:

则经过桥式整流后的平均电压为:

二极管两端承受的最大反相电压为:

所以根据实际情况即可选择整流二极管:IN4005 600V/1A

2.变压器的设计

(1)变比K T

选最大占空比为0.85,电路中压降ΔU=2V,半桥式电路变压器原边绕组所加电压等于输入电压的一半即U i(min)=98V

则根据公式:

(2)铁心的选择

A e为铁心磁路截面积;A w为铁心窗口面积;P T为变压器传输的功率;

f s为开关频率;ΔB为铁心材料所允许的最大磁通密度的变化范围;d c 为变压器绕组导体的电流密度;k c为绕组在铁心窗口中的填充因数。若铁心材料为铁氧体则ΔB=0.2T,d c=4A/mm2,k c=0.5。根据SG3525的控制选择开关频率为100HZ。根据公式:

根据具体情况可选择型号为DE25的铁心则A e=40.00mm2,

A w=78.2mm2,A e *A w=3128可以满足要求。

(3)变压器的绕组结构设计:由于铁磁材料的相对磁导率μr很大,因此励磁电感通常也较大。如果铁心未夹紧,磁路中有气隙,则励磁电感会急剧下降,励磁电流成倍增加,导致变压器性能严重劣化。变压器的漏感同一次、二次绕组互相耦合的紧密程度密切相关,耦合不够紧,则漏感会增加。漏感对电路工作带来的影响主要是负面的,给开关器件造成过电压、形成较大的损耗,过大的漏感还会造成占空比的损失。因此变压器的设计应尽量减小漏感。减小漏感的办法主要是提高一次、二次绕组耦合的紧密程度,如采

用间隔绕组等。

3.输出滤波电感的设计

ΔI为允许的电感电流最大纹波峰峰值,取最大输出电流的20%即2A。

根据公式电感量为

选定电感铁心:I1=10+10*20%*0.5=11A

4.输出滤波电容的设计

根据标准,输出电压的峰峰值ΔV opp<200mV,考虑到功率开关管开关和输出整流二极管开关时造成的电压尖峰以及直流电压残留的100HZ 纹波,可令输出电压的交流纹波为ΔV opp=50mV,ΔU=2V,根据公式根据具体情况可以选择两个4.7μF/25V铝电解电容并联使用。

5.功率管的选择

额定电压

考虑到功率器件的开关速度和驱动电路的简洁,本电源拟选用MOSFET作为功率开关管来构成半桥电路。

整流滤波后的最大电压值为368V,功率开关管的额定电压一般要求高于直流电压的两倍,则功率开关管的额定电压选为800V。

额定电流

输出滤波电感电流的最大值为11A,那么变压器原边电流最大值为11A/6=1.8A,这也是功率开关管中流过的最大电流。考虑到2倍余量

2*1.8A=3.6A。

根据实际情况选择IRFBE30,其参数为800V/4.1A。

6.变压器二次侧整流二极管的设计

(1)额定电压

变压器副边是双半波整流电路,加在整流二极管上的反相电压为

在整流管开关时,有一定的电压震荡,因此要考虑2倍余量,可以选用

2*123V=246V的整流管。

(2)额定电流

在双半波整流电路中,在一个开关周期内,整流管

的开关情况是:当变压器副边有电压时,只有一个整流管导通;当变压器副边电压为零时,两个整流管同时导通,可近似认为它们流过的电流相等,即为平均负载电流的一半,可近似计算整流

管的电流为:

整流管中流过的最大电流:

第3章课程设计总结

直流稳压电源是工农业设备、仪器仪表、实验室广泛应用的一种电源,研制高效率、稳定性好的稳压电源是人们一直追求的目标。近年来由于全控型、高频电力电子半导体器件和PWM 控制技术已发展到非常高水平, 从而实现开关稳压电源小型化、轻量化、高效率、高精度等优势, 并在很多方面取代传统的调整式直流稳压电源。高频开关稳压电源的变换电路形式有单端正激、单端反激、全桥和半桥等形式。本文设计的半桥型开关稳压电源采用性能稳定的常用PWM 芯片SG3525来进行反馈调整, 电路具有开关管承受的耐压低, 开关器件少, 驱动电路简单等优点。变压器初级在整个周期中都流过电流, 磁芯利用得更充分,它克服了推挽式电路的缺点, 所使用的功率半导体器件耐压要求低、功率半导体器件饱和压降减少到最小、对输入滤波电容使用电压要求也较低。

若能在变压器原边串入耦合电容能有效改善直流偏磁现象,可在100~500W 的中功率领域进行广泛应用。

本文所做的研究只是开关电源中的一小部分,在本文研究基础上,可继续研究。

直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。 3、了解掌握Proteus软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图2-3所示。 t

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

开关稳压电源设计报告

开关稳压电源设计报告 成员名字:方愿岭段洁斐梅二召 摘要:为提高电源的利用效率和缩小设计电源的尺寸,本文介绍一种含有MC3406集成芯片的开关稳压电源,并对成芯片内部结构和外部电路作简要介绍,最终给出一个完整的开关稳压电路设计电路并对电路作具体论证最终完成开关稳压电源的实物制作。 A switching power supply design report Abstract:In order to improve the efficiency in the use of the power supply and reduce the size of the power source design, this paper introduces a kind of contains MC34063 integrated chips of a switching power supply, and the integrated chip internal structure and external circuit is briefly introduced, finally give a complete a switching circuit design circuit to make concrete demonstration and circuit switching power supply finally complete the making of objects. 关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063 引言 电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。另外电子设计者不得不考虑的一个问题就是效率问题,所

半桥型开关稳压电源设计

电力电子技术课程设计(论文)题目:半桥型开关稳压电源设计 院(系): 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语院(系):电气工程学院教研室: 注:平时:20% 论文质量60% 答辩20%以百分制计算 摘要

开关电源是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了250我半桥开关电源。整个系统包括主电路、控制电路和驱动电路三部分内容。系统主电路包括单相输入整流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。控制电路包括主电路开关管控制脉冲的产生和保护电路。论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计及实验过程,包括元器件的选取以及参数计算本文介绍一种半桥电路的开关电源,是输入为单相交流170~260v,输入频率45~65HZ,输出直流电压24v,输出直流电流10A ,最大功率250w。重点介绍该电源的构思、理论、工作原理及特点。 关键词:开关稳压电源;半桥;高频变压器 目录 第1章绪论1 1.1电力电子发展史1 1.2半桥型开关稳压电源概括2 1.2.1开关电源的概念2 1.2.2开关电源的分类2 1.3本文设计内容2 第2章半桥稳压电源设计3 2.1总体设计方案3 2.2电路设计4 2.2.1 输入整流滤波电路设计4 2.2.2逆变回路设计4 1.高频开关变换器的基本原理4 2.逆变回路的基本原理5 2.2.3输出整流滤波设计6 2.2.4主电路设计6 2.2.5保护电路7 2.2.6 控制电路8 2.2.7总体电路图9 第3章数据分析计算10

直流稳压电源设计实验报告(模电)

直流稳压电源的设计实验报告 一、实验目的 1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源 2.掌握直流稳压电源的调试及主要技术指标的测量方法 二、实验任务 利用7812、7912设计一个输出±12V 、1A 的直流稳压电源; 三、实验要求 1)画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形; 2)输入工频220V 交流电的情况下,确定变压器变比; 3)在满载情况下选择滤波电容的大小(取5倍工频半周期); 4)求滤波电路的输出电压; 5)说明三端稳压器输入、输出端电容的作用及选取的容值。 四、实验原理 1.直流电源的基本组成 变压器:将220V 的电网电压转化成所需要的交流电压。 整流电路:利用二极管的单向导电性,将正负交替的交流电压变换成单一方向的直流脉动电压。 滤波电路:将脉动电压中的文波成分滤掉,使输出为比较平滑的直流电压。 稳压电路:使输出的电压保持稳定。 4.2 变压模块 变压器:将220V 的电网电压转化成所需要的交流电压。 4.2 整流桥模块 整流电路的任务是将交流电变换为直流电。完成这一任务主要是靠二极管的单向导电作用,因此二极管是构成整流电路的关键元件。管D 1~D 4接成电桥的形式,故有桥式整流电路之称。 由上面的电路图,可以得出输出电压平均值:2)(9.0U U AV o ≈ ,由此可以得V U 152=即可 即变压器副边电压的有效值为15V 计算匝数比为 220/15=15 2.器件选择的一般原则 选择整流器 流过二极管的的平均电流: I D =1/2 I L 在此实验设计中I L 的大小大约为1A 反向电压的最大值:Urm=2U 2 选择二极管时为了安全起见,选择二极管的最大整流电路I DF 应大于流过二极

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

W半桥型开关稳压电源设计

辽宁工业大学电力电子技术课程设计(论文)题目: 240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师:(签字)

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 应用即社会需求,社会需求是技术发展的原动力,开关电源的发展过程清楚地辨明了这一点。目前,计算机的发展十分迅速,以其为代表的小功率电子产品是开关电源的主要应用领域,而且正是由于在小功率领域的成功应用,似的软开关技术在小功率领域发展得最为成熟。本设计即为为实验室提供的大功率开关电源,主电路采用半桥型整流电路,先整流滤波、后经高频逆变得到高频交流电压,然后由高频变压器降压、再整流滤波的方法,该电源在开环时,它的负载特性较差,只有加入反馈,构成闭环控制后,当外加电源电压或负载变化时,均能自动控制PWM输出信号的占空比,故控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路。它采用恒频脉宽调制控制方案,它适用于各开关电源、斩波器的控制。用SG3525很好的解决了负载特性差的缺点,得到了想要的输出电压。 关键词:开关电源;PWM控制;整流电路;

目录 第1章绪论 (1) 1.1开关电源概况 (1) 1.2本文设计内容 (1) 第2章 240W半桥型开关稳压电源设计 (3) 2.1240W半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (3) 2.2.1 主电路设计 (3) 2.2.2 控制电路设计 (4) 2.2.3 保护电路设计 (5) 2.2.4 整体电路设计 (6) 2.3元器件型号选择 (7) 2.4系统调试或仿真、数据分析 (11) 第3章课程设计总结 (12) 参考文献 (13)

稳压电源设计报告1

全国大学生电子设计大赛 稳 压 电 源 设 计 报 告

稳压电源 摘要: 本稳压电源,由变压器次级绕组接入,通过桥式整流和电容滤波,经过 LM7812、LM7912稳压,形成典型的双电源稳压电路,输出±12V 100mA电流。桥式整流后的电压,经过LM2576降压后,输出+5V电压,给后一级的LDO稳压电路供电,AS1117在满载(800mA)时,压差仅1.2V。用+5V供电,可以保证其工作在线性状态,3.3V输出稳定。 关键字: LM7812、LM7912、LM2576、AS1117 Abstract: The regulated power supply, the transformer secondary windings access, through the bridge rectifier and capacitor filter, through the LM7812, LM7912 voltage regulator, the formation of double power supply circuit, the output current of the 100mA + 12V. After the bridge rectifier voltage, through the LM2576 step-down, output +5V voltage, LDO voltage regulator circuit power level to, AS1117 at full load (800mA), pressure difference is only 1.2V. With +5V power supply, can ensure that the work in the linear state, the 3.3V output stability. Keywords: LM7812、LM7912、LM2576、AS1117

直流稳压电源设计实验报告

电气工程系电子信息工程技术专业 题目:直流稳压电源设计 学生姓名:刘现华班号:电信一班学号: 100222101013 指导教师:

一、设计题目 题目:直流稳压电源设计 二、设计任务: 设计并制作用晶体管、电阻器、电容组成的直流稳压电源。 指标:1、输入电压: 2、输出电压:3- 6V、6-9V、9-12V三档直流电压; 3、输出电流:最大电流为1A; 4、保护电路:过流保护、短路保护。 三、理电路和程序设计: 一电路原理方框图: 图1.1 四、原理说明: (1)选用集成稳压器构成的稳压电路, 选用可调三端稳压器LM317,其特性参数V o=(1.2V~37V),Iomax=1.5A,最大输入、输出电压差(Vi-V o)max=40V。符合本任务的基本要求。

(2)选电源变压器 集成稳压电源的输出电压V o即是此电路的输出电压。稳压器的最大允许电流ICM〈Iomax,输入电压根据公式 V omax+(Vi-V o)min≤Vi≤V omin+(Vi-V o)max可求出其范围为12V≤Vi ≤43V。故副边电压取V2=12V,副边电流取I2=1A变压器的副边输出功率为P2≥V2 I2 =12W,由下表可得变压器的效率为0.7。则原边输入功率P1>P2/η=17W。为留有余地,选取功率为20W的变压器。 图1.2 (3)选整流二极管及波电容 整流二极管D选IN4001,其极限参数为VRM≥50V,IF=1A,满足要求。滤波电容C可由纹波电压△V op-p和稳压系数来确定。由式Vi=△V op-pVi /V oSv得△Vi =2.2V,由式C=Ict/△Vi=Iomaxt/△Vi 得C=3636μF。电容C的耐压应大于17V,故取2只2200μF/25V的电容相并联。 (4)电阻RP1的取值 由式V o=(1+Rp1/R1)1.25,取R1=240Ω,则RP1=336Ω时输出电压为3V,RP1=1.49Ω时输出电压为9V ,故取4.7KΩ精密线绕可调电位器。当RP1阻值调至最小端时输出电压为1.25V,当阻值大于1.5KΩ后输出电压不会继续增大,使用Multisim9仿真时为13V,但实际测试时为10V

直流稳压电源课程设计报告(1)

模拟电路课程设计报告设计课题:直流稳压电源的设计班级:电子1101 学号: 姓名:刘广强 指导老师:董姣姣 完成日期:2012年6月19

目录 一、设计任务及要求 (3) 二、总体设计思路 (3) 1.直流稳压电源设计思路 (3) 2.直流稳压电源原理 (3) 3、滤波电路——电容滤波电路 (5) 4、稳压电路 (7) 5、设计的电路原理图 (8) 三、.设计方法简介 (8) 四、软件仿真结果及分析 (10) 五、课程设计报告总结 (12) 六、参考文献 (13)

一、设计任务及要求 1、设计一个连续可调的直流稳压电源,主要技术指标要求: ①输出直流电压:U0=9→12v; ②纹波电压:Up-p<5mV; ③稳压系数:S V≤5% (最大的波动不能超过5%) 2、设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 3、自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量。 4、在实验室MultiSIM8-8330软件上画出电路图,并仿真和调试,并测试其主要性能参数。 二、总体设计思路 1.直流稳压电源设计思路 (1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。 (3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。 (4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给电压表。 2.直流稳压电源原理 1、直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成。 直流稳压电源方框图

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

直流稳压电源课程设计报告.

直流稳压电源课程设计报告 设计任务及要求 1.设计任务 设计一直流稳压电源,满足: (1)当输入电压在220V交流时,输出直流电压为6-9V; (2)输出纹波电压不于5mv (3),稳压系数<=0.01; (4)具有短路保护功能; (5)最大输出电流为:Imax=0.8A 2.要求通过设计学会; (1)如何选择变压器、整流二极管、滤波电容及调整三极管或集成稳压块;(2)合理选择电路结构,并完成全电路元器件参数设计、绘制电路图;(3)短路保护实现方法 (4)掌握直流稳压电源的调试及主要技术指标的测试方法 (5)撰写设计报告。 3.设计注意: (1)电源变压器、整流二极管、滤波电容、调整三极管或集成稳压块等元件只做选择性设计; (2)完成全电路元器件参数设计、绘制出整体电路图; (3)撰写设计报告要符合下列格式并按时上交,逾期将延与下届。 一、书写要求 二、上交时间要求 上交书面及电子稿发至邮箱:

撰写设计报告格式:(仅供参考,不要全部抄龚) 见附录一 集成直流稳压电源的设计与制作 姓名 1 绪言 随着半导体工艺的发展,稳压电路也制成了集成器件。由于集成稳压器具有体积小,外接线路简单、使用方便、工作可靠和通用性等优点,因此在各种电子设备中应用十分普遍,基本上取代了由分立元件构成的稳压电路。集成稳压器的种类很多,应根据设备对直流电源的要求来进行选择。对于大多数电子仪器、设备和电子电路来说,通常是选用串联线性集成稳压器。而在这种类型的器件中,又以三端式稳压器应用最为广泛。 2 设计要求

1.初始条件: (1)集成稳压器选用LM317与LM337或其他芯片,性能参数和引脚排列请查阅集成稳压器手册。 (2)电源变压器为双15V/25W。 (3)其参考电路之一如图1所示 图1 ±1.25V-±15V连续可调直流稳压器参考电路原理图 2.主要性能指标:(1)输出电压Vo:±1.25 - ±12V连续可调。 (2)最大输出电流Iomax=800mA (3)纹波电压ΔVop-p≤5mV (4)稳压系数Sv≥3X10-3 3.设计要求:(1)依据已知设计条件确定电路形式。 (2)计算电源变压器的效率和功率。 (3)选择整流二极管及计算滤波电容 (4)安装调试与测量电路性能,画出实际电路原理图。 (5)按规定的格式,写出课程设计报告。 3 总体设计思路 在本次课程设计中我准备采用串联型稳压电路,集成稳压器选用LM317与LM337,电源变压器选用双15V/25W。 由于输入电压u1发生波动、负载和温度发生变化时,滤波电路输出的直流电压U I会随着变化。因此,为了维持输出电压U I稳定不变,还需加一级稳压电路。

高频开关稳压电源的设计

电子设备离不开电源,电源供给电子设备所需要的能量,这就决定了电源在 电子设备中的重要性。电源的质量直接影响着电子设备的工作可靠性,所以电子设备对电源的要求日趋增高。 现有的电源主要由线性稳压电源和开关稳压电源两大类组成。这两类电源由于各自的特点而被广泛应用。线性稳压电源的优点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,是电源的效率大大降低,一般情况均不会超过50%。但它的优良的输出特性,使其在对电源性能要求较高的场合仍得到广泛的应用。相对线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求,从20世纪中期开关电源问世以来,由于它的突出优点,使其在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。 本课题是设计一种基于SG3525 PWM控制芯片为核心构成的高频开关电源电 路。 关键词:高频开关稳压电源、SG3525、PWM

1高频开关稳压电源概述 (1) 1.1高频开关稳压电源简介 (1) 1.2高频开关稳压电源的发展状况 (2) 1.3高频开关稳压电源的基本原理 (3) 2设计任务与分析 (4) 2.1任务要求 (4) 2.2任务分析 (4) 3 系统设计方案 (5) 3.1系统总体方案设计 (5) 3.2功率变换器电路设计 (6) 3.2.1全桥功率变换器工作原理 (6) 3.2.2全桥功率变换器控制方式 (7) 3.3控制电路设计 (8) 3.3.1 SG3525结构和功能介绍 (8) 3.3.2控制电路的设计 (9) 3.4驱动电路设计 (10) 3.5辅助电源电路设计 (11) 3.6过流检测及保护电路设计 (13) 3.6.1电力电子器件的缓冲电路 (13) 3.6.2电力电子器件的保护电路 (13) 3.7整流器输出电路设计 (15) 小结与体会 (16) 附录 (18)

开关稳压电源-电力电子毕业设计论文资料

开关稳压电源 摘要:本设计应用隔离型回扫式DC-DC电源变换技术完成开关稳压电源的设计及制作。系统主要由整流滤波电路,DC-DC变换电路,单片机显示与控制电路三部分组成。开关电源的集成控制由脉宽调制控制芯片UC3843及相关电路完成,利用单片机进行D/A转换,完成对输出电压的键盘设定和步进调整,同时由单片机A/D采集数据利用数码管显示出输出电压和电流。系统具有输出电压可调范围宽、噪声纹波电压低和DC-DC变换效率高等特点。此外,该系统还具有过流保护功能,排除过流故障后,电源能自动恢复为正常状态。 关键字:DC- DC,整流滤波,脉宽调制,A/D采集,D/A转换Abstract:The stabilized voltage switching supply is designed and manufactured by DC-DC power transfer with isolation and feedback. The supply includes rectification and filtering circuit, DC-DC transfer unit, controller controlling circuit and liquid crystal display module. The swiching supply is controlled by pulse width modulation IC UC3843. The output voltage can be regulated step by step by a microcontroller, a key and a D/A converter. The output voltage and current of the switching supply are collected by a A/D converter and displayed in Nixie tubes. The switching supply have some advantage such as wide output voltage, low noise ripple, high transfer efficiency. In addition, the swiching supply can realize current foldback. Keyword:DC-DC transfer, rectification and filtering, , microcontroller, A/D collecting dat a,D/A converting 一、方案论证 图1为开关电源系统的结构图,从图中可以看出,系统分为三个部分:电路电源、控制回路和显示设定部分。

直流稳压电源设计实验报告

实训报告 题目名称:直流稳压电源电路 系部:电气与信息工程系专业班级:机制14-3 学生姓名:郭欣欣 学号:2013211171 指导教师:刘岩 完成日期:2018年1月17日

摘要 随着电子技术的快速发展,高性能的电子电路对于电源供电质量的要求越来越高,如何设计出能满足高性能电路要求的高精度电源便成为一大课题。直流稳压源为电路提供直流电压和能量,其输出电压的品质直接决定的电源性能的好坏。 本实验旨在利用交流变压器、整流环节、滤波环节和集成元件稳压电路将交流电压转化为直流电压输出,并且对衡量稳压电路性能的几种主要参数进行了测试和分析。 随着电子技术的快速发展,高性能的电子电路对于电源供电质量的要求越来越高,如何设计出能满足高性能电路要求的高精度电源便成为一大课题。直流稳压源为电路提供直流电压和能量,其输出电压的品质直接决定的电源性能的好坏。本实验旨在利用交流变压器、整流环节、滤波环节和集成元件LM317稳压电路将220V交流电压转化为5V直流电压输出,并且对衡量稳压电路性能的几种主要参数进行了测试和分析。 关键词: 半波整流电容滤波稳压电路稳压系数纹波电压

目录 一、设计要求 (1) 二、原理分析与设计步骤 1.直流稳压电路结构的选择 (1) 2.交流变压器 (2) 3.整流电路 (2) 4.滤波电路 (2) 5.集成稳压电路 5.1集成稳压器件LM317 (3) 5.2 LM317典型接法 (4) 6.参数计算与器件选择 (4) 6.1电路参数计算 (4) 6.2元器件清单 (5) 三、实验步骤与测试结果 1.电路搭接与仪器调试 (6) 2.性能参数测试 2.1稳压系数的测量 (6) 2.2输出电阻的测量 (6) 2.3纹波电压的测量 (7) 2.4测量结果分析 (7) 四、实验小结 (7)

UC3842脉宽调制高频开关稳压电源设计正文

目录 第1章概述 (1) 第2章系统总体方案确定 (3) 2.1 工作原理 (3) 2.2 系统组成 (4) 第3章主电路设计 (5) 3.1 主电路的设计 (5) 3.2 主电路元器件的计算及选型 (6) 3.2.1 设计依据主要参数 (6) 3.2.2 高频变压器的选择 (6) 3.2.3 芯片选择 (7) 3.3 主电路保护环节的设计 (8) 第4章控制电路设计与分析 (10) 4.1 降压整流滤波电路 (10) 4.2 PWM脉冲控制驱动电路 (11) 4.3电路输出部分的设计 (13) 第5章实验与仿真 (15) 5.1 仿真电路图 (15) 5.2 实验结果及结论 (16) 第6章总结 (18) 附录 (19)

第1章概述 在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电源产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。 随着半导体技术和微电子的高速发展、集成度高、功能强的大规模集成电路的不断出现,使得电子设备的体积在不断的缩小,重量在不断的减轻。所有从事这方面研究和生产的人们对开关稳压电源中的开关变压器还感到不是十分理想,他们正致力于研制出效率更高、体积更小、重量更轻的开关变压器或者通过别的途径来取代开关变压器,使之能够满足电子仪器和设备为小型化的需要。 开关稳压电源的效率是与开关管的变换速度成正比的,并且开关稳压电源中由于采用了开关变压器以后,才能使之有一组输入得到极性、大小各不相同得多组输出。要进一步提高开关稳压电源的效率,就必须提高电源的工作频率。但是,当频率提高以后,对整个电路中的元件又有了新的要求。例如,高频电容、开关管、开关变压器、储能电感等都会出现新的问题。进一步研制适应高频率工作的有关电路元器件,是从事开关稳压电源研制的科技人员要解决的问题。 工作在线性状态的稳压电源,具有稳压和滤波的双重作用因而串联闲心稳压电源不产生开关干扰,且波纹电压输出较小。但是,在开关稳压电源中的开关管工作在开关状态,其交变电压和

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

相关文档
相关文档 最新文档