文档库 最新最全的文档下载
当前位置:文档库 › 半桥型开关稳压电源设计

半桥型开关稳压电源设计

半桥型开关稳压电源设计
半桥型开关稳压电源设计

电力电子技术课程设计(论文)题目:半桥型开关稳压电源设计

院(系):

专业班级:

学号:

学生姓名:

指导教师:(签字)

起止时间:

课程设计(论文)任务及评语

院(系):电气工程学院 教研室:

注:平时:20% 论文质量60% 答辩20%以百分制计算 学 号

090303040 学生姓名 金 戈 专业班级 电气092班 设计题目 半桥型开关稳压电源设计

课程设计(论文)任务

课题完成的设计任务及功能、要求、技术参数

实现功能

为实验室电子设备提供24V 稳压范围宽、大功率直流电源,以取代低效率的

线性稳压电源。

设计任务于要求

1、方案的经济技术论证。

2、整流电路设计。

3、逆变电路设计。

4、确定高频变压器变比及容量;

5、通过计算选择器件的具体型号。

6、控制电路设计或选择。

7、绘制相关电路图。

8、在实验室进行模拟调试或matlab 仿真。

9、完成4000字左右说明书。

技术参数

1、输入电压单相1870~ 242V 。

2、输入交流电频率45~65HZ 。

3、输出直流电

压24V 恒定。4、输出直流电流10A 。5最大功率:250W 。6、稳压精度:±1% 工

第1天:集中学习;第2天:收集资料;第3天:方案论证;第4天:输入整流滤波电路设计;第5天:逆变电路设计;第6天:确定高频变压器变比及容量;第7天:输出整流滤波电路设计;第8天:控制电路设计;第9天:总结并撰写说明书;第10天:答辩 指导教师评语及成绩 平时: 论文质量: 答辩: 指导教师签字: 总成绩: 年 月 日

摘要

开关电源是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了250我半桥开关电源。整个系统包括主电路、控制电路和驱动电路三部分内容。系统主电路包括单相输入整流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。控制电路包括主电路开关管控制脉冲的产生和保护电路。论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计及实验过程,包括元器件的选取以及参数计算本文介绍一种半桥电路的开关电源,是输入为单相交流170~260v,输入频率45~65HZ,输出直流电压24v,输出直流电流10A ,最大功率250w。重点介绍该电源的构思、理论、工作原理及特点。

关键词:开关稳压电源;半桥;高频变压器

目录

第1章绪论 (1)

1.1电力电子发展史 (1)

1.2半桥型开关稳压电源概括 (2)

1.2.1开关电源的概念 (2)

1.2.2开关电源的分类 (2)

1.3本文设计内容 (2)

第2章半桥稳压电源设计 (4)

2.1总体设计方案 (4)

2.2电路设计 (4)

2.2.1 输入整流滤波电路设计 (4)

2.2.2逆变回路设计 (5)

1.高频开关变换器的基本原理 (5)

2.逆变回路的基本原理 (5)

2.2.3输出整流滤波设计 (6)

2.2.4主电路设计 (7)

2.2.5保护电路 (8)

2.2.6 控制电路 (8)

2.2.7总体电路图 (10)

第3章数据分析计算 (12)

3.1器件的选择 (12)

3.1.1输入整流器件 (12)

3.1.2输出整流器件 (12)

3.1.3元件选择 (12)

3.1.4保护电路器件选择 (13)

3.2具体参数设计 (14)

3.4MATLAB电路仿真 (14)

3.4.1MATLAB简介 (14)

3.4.2仿真电路图 (14)

第4章设计总结 (16)

第4章设计总结 (16)

参考文献 (17)

第1章绪论

开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。

随着开关电源在计算机、通信、家用电器等方面的广泛应用,人们对其需求量增长和效率、体积、重量及可靠性等方面要求更高。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。在半桥式变换器电路中,变压器初级在整个周期中都流过电流,磁芯利用得更加充分。它克服了推挽式电路的缺点,所使用的功率晶体管耐压要求较低;晶体管的饱和压降减少到了最小;对输入滤波电容使用电压要求也较低,半桥式变换器在高频开关电源设计中得到广泛的应用。

本文将介绍一款半桥式开关电源,所用开关器件为功率MOSFET管, 开关工作频率为45 ~65 Hz,具有体积小、重量轻、成本低等特点。

1.1电力电子发展史

最早的开关电源出现在60年代,出现的是串联型开关电源,功率晶体管用于开关状态,后来脉宽调制(PWM)控制技术有了发展,用以控制开关变换器,得到PWM 开关电源,PWM开关电源效率可达65%-70%,1974年研制成了工作频率达到20kHz 的开关电源,在电源技术发展史上誉为20kHZ革命。1976年,美国硅通用公司首次生产出世界上第一片集成脉宽调制器,使开关电源的控制器得到简化,系统的可靠性也大为增强。八十年代,国内高频开关电源只在个人计算机、电视机等若干设备上得到应用。由于开关电源在重量、体积、用铜、用铁及能耗等方面都比线性电源和相控电源有显著减少,对整机多相指标有良好影响,因此它的应用得到了推广。近年来越来越多领域应用开关电源,取得显著效益。

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。

现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。

它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的

直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。

1.2半桥型开关稳压电源概括

1.2.1开关电源的概念

电源是将各种能源转换成为用电设备所需要的装置,是所有靠电能工作的装置的动力源泉。直流开关电源是一种由占空比控制的开关电路构成的电能变换装置,用于交流→直流或者直流→直流电能变换,通常称其为开关电源。

开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。开关电源的这一技术特点使得它具有,效率高、体积小、重量轻、频率高、电感、电容等滤波元件和变压器体积小。

1.2.2开关电源的分类

开关电源可分为AC/DC和DC/DC两大类,DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波

斩波器的工作方式有两种:

一、脉宽调制方式Ts不变,改变ton(通用)。

二、频率调制方式,ton不变,改变Ts(易产生干扰)。

其具体的电路由以下几类:

(1)Buck电路——降压斩波器。

(2)Boost电路——升压斩波器。

(3)Buck-Boost电路——降压或升压斩波器。

(4)Cuk电路——降压或升压斩波器。

AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC 变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为单项、三相、多相。按电路工作象限可分为一象限、二象限、三象限、四象限。

1.3本文设计内容

随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中的需

要。需要提供不同的稳压电源。本文为实验室电子设备提供24V稳压范围宽、大功率直流电源,以取代低效率的线性稳压电源。

首先进行总体方案的分析,整流电路的设计,逆变电路的设计,主电路和输出整流回路的设计。由工频交流经桥式整流电路得到直流电流,再由半桥开关逆变得到高频交流电,经整流滤波后得到所需直流电。可供电子设备使用。其中桥式整流采用四个二极管,逆变电路由两个串联的电容和两个串联的MOS管构成,输出回路由电容电感和二极管构成。为确保电路的可靠运行本文增加保护电路设计。过压保护采用电阻电感串联吸收网络。过流保护采用快速熔断器保护。

其次是参数计算,分析各性能指标,选择器件,通过仿真分析波形。确定最终结论。

上述过程可为实验设备提供24V范围的电压,可以取代线性的不稳定电压,为实验的可靠进行提供确实保障。

第2章半桥稳压电源设计

2.1总体设计方案

整个课题的设计,分为三部分。

一、主电路的设计,包括整流输入滤波、半桥式逆变电路、输出整流、输出滤波。

二、开关管的驱动电路。

三、控制电路的设计,包括控制逆变电路开关管工作的脉冲输出、软启动、调占

空比以及保护电路。

半桥型开关稳压电源设计方案遵循开关电源的变换框图。如2.1图所示:

图2.1开关电源变换

由工频交流经桥式整流电路得到直流电流,再由半桥开开关逆变得到高频交流

电,经整流滤波后得到所需直流电。可供电子设备使用。

首先,电源流入输入整流滤波回路将交流电通过整流模块变换成含有脉动成分的

直流电,然后通过输入滤波电容将脉动直流电变为较平滑的直流电。

其次,功率开关桥由控制电路提供触发脉冲把滤波得到的直流电变换为高频的方

波电压,通过高频变压器传送到输出侧。

最后,输出整流滤波回路将高频方波电压滤波成为所需的直流电压或电流。

2.2电路设计

2.2.1 输入整流滤波电路设计

整流滤波回路是开关电源的重要组成部分,它可以提高电压、电流的稳定度,减

小干扰。按其所在的位置不同,分为输入和输出整流滤波回路。

本文研究的电源额定工作状态的技术要求为:输出电压24V,输出电流10A ,输出

功率约240w ,为了减小电源的输入滤波电容等原因,本文实验用电源电路采用单相

输入整流电路 输入滤波电路 半桥逆变电路 输出整流滤波

桥式整流。

由工频170~260V,45~65HZ交流电,如图2.2所示。

图2.2输入整流滤波电路图

输入整流滤波电路,主要有两部分组成,

(1)整流桥;

(2)输入滤波电路。

2.2.2逆变回路设计

1.高频开关变换器的基本原理

用一个半导体功率器件作为开关,使带有滤波器(L或/和C)的负载线路与直流电压一会相接,一会断开,则负载上也得到另一个直流电压。这就使DC-DC的基本手段。一个周期T s内,电子开关接通时间t on所占整个周期T s的比例,称作接通占空比D。很明显,接通占空比越大,负载上电压越大; 1∕TS=fs称作开关频率,fs越高,负载上电压也越高。这中DC-DC变换器中的开关都在某一固定的频率下工作,这种保持开关频率恒定但改变接通时间长短(即脉冲的宽度),使负载变化时,负载上电压变化不大的方法,称脉宽调制法〔Pulse Width Modulation)。由于电子开关按外加控制脉冲而通断,控制本身流过的电流、二端所加的电压无关,因此,电子开关称为硬开关。

2.逆变回路的基本原理

在半桥式逆变电路中,变压器一次侧的两端分别连接在电容C1,C2的中点和开关S1, S2中点。电容C1,C2的中点电压为2

Ui。S1与S2交替导通,使变压器一次侧形成幅值为2

Ui的交流电压,改变开关的占空比,就可以改变二次侧整流电压Ud的平均值,也就改变了输出电压Uo。半桥式电路的结构如图2.3所示。

S1导通时,二极管VD1处于通态;S2导通时,二极管VD2处于通态,当两个开关都关断时,变压器绕组W1中的电流为零,根据变压器的磁势平衡方程,绕组W2和W3中的电流大小相等,方向相反,所以VD1和VD2都处于通态,各分担一

半的电流。S1或S2导通是电感L的电流逐渐上升,两个开关都关断时,电感L的电流逐渐下降。S1和S2断态时承受的峰值电压均为Ui。由于电容的隔直作用,半桥型电路对由于两个开关管导通时间不对称而造成的变压器一次电压的直流分量具有自动平衡作用,因此该电路不容易发生变压器偏磁和直流磁饱和的问题,无须另加隔直电容。值得注意的是,在半桥电路中,占空比定义如2--1公式

D=错误!未找到引用源。(2—1)

图 2.3逆变电路图

2.2.3输出整流滤波设计

电源的能量输出通过高频变压器实现,其主要作用是电压变换、功率传递和实现输入输出之间的隔离,与普通电力变压器的功能相仿。因此,在绕制高频变压器时要尽量减小原、副边的漏感,从而减小功率开关管关断时的尖峰电压,降低损耗,提高效率。在副边使用全波整流的方式,然后由滤波电感和滤波电容共同完成输出滤波功能,使输出达到设计要求。

图2.4输出整流滤波电路图

输出滤波电路包括电感、电容和两个二极管。经过整流滤波后即可得到所需直流稳压电源。

输出整流滤波电路是通过快恢复整流二极管的整流和滤波电感及滤波电容将高频变压器输出的高频交变电压或电流变换成符合要求的输出电压或电流。高频变压器副边选用全桥式整流,以提高安全可靠性。

2.2.4主电路设计

半桥式开关电源主电路如图所示。图中开关管Q1、Q2选用MOSFET。因为它是电压驱动全控型器件,具有驱动电路简单、驱动功率小、开关速度快及安全工作区大等优点。半桥式逆变电路一个桥臂由开关管Q1、Q2组成,另一个桥臂由电容C1、C2组成。高频变压器初级一端接在C1、C2的中点,另一端接在Q1、Q2的公共连接

端,Q1、Q2中点的电压等于整流后直流电压的一半,开关Q1、Q2交替导通就在变压

Vi的交流方波电压。通过调节开关管的占空比,就能改变变压器的次级形成幅值为2

器二次侧整流输出平均电压V o。Q1、Q2断态时承受的峰值电压均为Vi,变压器原边并联的R7、C3、VD1组成RCD吸收电路,C5和R9用来吸收高频尖峰。

2.5主电路图

2.2.5保护电路

1.过压保护

过压护要根据电路中过压产生的不同部位,加入不同的保护电路,当达到—定电压值时,自动开通保护电路,使过压通过保护电路形成通路,消耗过压储存的电磁能量,从而使过压的能量不会加到主开关器件上,保护了电力电子器件。

为了达到保护效果,可以使用阻容保护电路来实现。将电容并联在回路中,当电路中出现电压尖峰电压时,电容两端电压不能突变的特性,可以有效地抑制电路中的过压。与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电感与电容产生振荡,过电压保护电路如图2.7所示。

图2.6 RC阻容过电压保护电路图

2.过流保护

当电力电子电路运行不正常或者发生故障时,可能会发生过电流。当器件击穿或短路、触发电路或控制电路发生故障、出现过载、直流侧短路、可逆传动系统产生环流或逆变失败,以及交流电源电压过高或过低、缺相等,均可引起过流。由于电力电子器件的电流过载能力相对较差,必须对变换器进行适当的过流保护。本文采用快速熔断保险丝在输入端进行保护。

2.2.6 控制电路

控制电路是整个电源系统重要部位,由它控制整个电源的工作并实现相应的保护功能。一般来说,控制电路应具有以下功能:控制脉冲产生电路、电压反馈控制电路、、占空比可调、软启动及各种保护电路等。

根据电路功能的分工可将控制电路分为几大部分:脉冲产生电路、触发电路、电压反馈控制电路、软启动电路、保护电路等。

脉冲产生电路是控制电路的核心。脉冲产生电路根据电压反馈控制电路信号产生出所需的脉冲信号保护电路以及软启动电路等提供的控制。

电压反馈控制电路通过检测输出电压的大小,对输出电压进行分压采样,然后将

采样电压和参考电压相比较得出误差信号来调节输出脉冲的脉宽达到调节输出电压的目的。

设计电路的控制电路是整个电路的主要部分。目前实际产品应用中有各种典型的控制电路,鉴于对电源和驱动的要求,结合本次毕业设计选择SG3525。

SG3525A的内部结构见图2.6。由基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软起动电路、输出电路构。

SG3525的特点SG3525脉宽调制型控制器是美国通用电气公司的产品。它的主要特点是:

1、输出级采用推挽输出,双通道输出。

2、占空比0-50%可调。

3、每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管。

4、工作频率高达400KHz。

5、具有欠压锁定、过压保护和软启动等功能。

6、可正常工作的温度范围是0-700℃。

7、基准电压为5.1 V士1%。

8、工作电压范围很宽,为8V到35V。

图2.7 SG3525内部结构图及其外部元件2.2.7总体电路图

由具体电路可得总体电路图(2.8)

图2.8总电路图

第3章数据分析计算

3.1器件的选择

3.1.1输入整流器件

输入为45~65Hz交流电,电压为170~260V ,下面计算取电压为170V。

1. 二极管的耐压:

整流二极管的峰值电压可用公式计算如下。

U=170×1.414=240.38V

额定电压:错误!未找到引用源。

2. 二极管的额定电流:

因为电源的输入功率随效率变化,所以应取电源效率最差时的值。在此,我们按一般开关电源的效率取值,取=0.8电源的输入功率可用(3—1)公式计算:

P in =p/ηmin (3—1)

错误!未找到引用源。 W

错误!未找到引用源。 (3—2)错误!未找到引用源。

流过每个二极管的有效值错误!未找到引用源。(3—3)

错误!未找到引用源。

额定电流:错误!未找到引用源。

3.1.2输出整流器件

电感选择100μH;

电容选择1000μF /50V;

二极管选择;

二极管的峰值电压,u=24*错误!未找到引用源。=33.9v

额定电压:错误!未找到引用源。

额定电流:错误!未找到引用源。

3.1.3元件选择

1.开关器件选择。

表3.1几种功率器件的优缺点比较表

器件优点缺点

GTR 耐压高,电流大,开开关速度低,为电流

关特性好,通流能力强,饱和压降低驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题

GTO

电压、电流容量大,

适用于大功率场合,具有

电导调制效应,其通流能

力很强

电流关断增益很小,

关断时门极负脉冲电流

大,开关速度低,驱动功

率大,驱动电路复杂,开

关频率低

MOSFET

开关速度快,输入阻

抗高,热稳定性好,所需

驱动功率小且驱动电路

简单,工作频率高,不存

在二次击穿问题

电流容量小,耐压

低,一般只适用于功率不

超过10kW的电力电子装

IGBT

开关速度高,开关损

耗小,具有耐脉冲电流冲

击的能力,通态压降较

低,输入阻抗高,为电压

驱动,驱动功率小

开关速度低于电力

MOSFET,电压,电流容量

不及GTO

在高频的开关电源设计中用的功率器件种类有IGBT和MOSFET,但是考虑到工作在高频的IGBT成本较高,在本次设计选用MOSFET器件。型号为IRFP450,主要参数选择,额定电流16A,额定电压500V,通态电阻0.4欧姆。

在功率半导体器件中,MOSFET以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。在低压领域,MOSFET没有竞争对手,但随着MOS的耐压提高,导通电阻随之以2.4-2.6次方增长,其增长速度使MOSFET 制造者和应用者不得不以数十倍的幅度降低额定电流,以折中额定电流、导通电阻和成本之间的矛盾。即便如此,高压MOSFET在额定结温下的导通电阻产生的导通压降仍居高不下,耐压500V以上的MOSFET的额定结温、额定电流条件下的导通电压很高,耐压800V以上的导通电压高得惊人,导通损耗占MOSFET总损耗的2/3-4/5,使应用受到极大限制。

3.1.4保护电路器件选择

1.过压保护电路

由3.1.1节可知输入电流为1.176A,即流过MOS管的电流为1.176A。查表可得保护电路的电容为:0.04 μF电阻为:500欧姆

2.过流保护

错误!未找到引用源。>=(1.2~1.5)错误!未找到引用源。(3--4)

则错误!未找到引用源。=错误!未找到引用源。/2=0.7056~0.7644A

3.2具体参数设计

1)变压器变比

错误!未找到引用源。(3—5)设占空比为错误!未找到引用源。0.5

则0.5k=24/170*1.2

K=0.235

即变压器的变比为0.235

2)变压器容量

错误!未找到引用源。=UI=14*10w=240W

3.4MATLAB电路仿真

3.4.1MATLAB简介

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。本文采用matlab进行仿真观测。

3.4.2仿真电路图

图3.1 输入电压波形

图3.2仿真图

第4章设计总结

十天的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,和同学们相互探讨,相互学习,相互监督。学会了合作,学会了运筹帷幄,学会了如何查找第一手资料,如何整理材料等相关知识。

课程设计是我们专业课程知识综合应用的实践训练,这是我们迈向社会,从事职业工作前一个必不少的过程。”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义。我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。

通过这次开关稳压电源的设计,我在多方面都有所提高。通过这次设计,综合运用本专业所学课程的理论知识、培养和提高学生独立工作能力,巩固与扩充所学的内容,掌握电子电路设计的方法和步骤,掌握电子设计的基本的技能,怎样确定方案,了解了基本结构,提高了计算能力,绘图能力,熟悉了规范和标准,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

在这次设计过程中,体现出自己单独设计的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。

在此感谢我们的老师,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;同时老师的耐心的指导让我顺利的完成本次课程设计。

同时感谢对我帮助过的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。

由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,我将万分感谢。

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

半桥型开关稳压电源设计

电力电子技术课程设计(论文)题目:半桥型开关稳压电源设计 院(系): 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语院(系):电气工程学院教研室: 注:平时:20% 论文质量60% 答辩20%以百分制计算 摘要

开关电源是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了250我半桥开关电源。整个系统包括主电路、控制电路和驱动电路三部分内容。系统主电路包括单相输入整流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。控制电路包括主电路开关管控制脉冲的产生和保护电路。论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计及实验过程,包括元器件的选取以及参数计算本文介绍一种半桥电路的开关电源,是输入为单相交流170~260v,输入频率45~65HZ,输出直流电压24v,输出直流电流10A ,最大功率250w。重点介绍该电源的构思、理论、工作原理及特点。 关键词:开关稳压电源;半桥;高频变压器 目录 第1章绪论1 1.1电力电子发展史1 1.2半桥型开关稳压电源概括2 1.2.1开关电源的概念2 1.2.2开关电源的分类2 1.3本文设计内容2 第2章半桥稳压电源设计3 2.1总体设计方案3 2.2电路设计4 2.2.1 输入整流滤波电路设计4 2.2.2逆变回路设计4 1.高频开关变换器的基本原理4 2.逆变回路的基本原理5 2.2.3输出整流滤波设计6 2.2.4主电路设计6 2.2.5保护电路7 2.2.6 控制电路8 2.2.7总体电路图9 第3章数据分析计算10

开关稳压电源设计报告

开关稳压电源设计报告 成员名字:方愿岭段洁斐梅二召 摘要:为提高电源的利用效率和缩小设计电源的尺寸,本文介绍一种含有MC3406集成芯片的开关稳压电源,并对成芯片内部结构和外部电路作简要介绍,最终给出一个完整的开关稳压电路设计电路并对电路作具体论证最终完成开关稳压电源的实物制作。 A switching power supply design report Abstract:In order to improve the efficiency in the use of the power supply and reduce the size of the power source design, this paper introduces a kind of contains MC34063 integrated chips of a switching power supply, and the integrated chip internal structure and external circuit is briefly introduced, finally give a complete a switching circuit design circuit to make concrete demonstration and circuit switching power supply finally complete the making of objects. 关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063 引言 电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。另外电子设计者不得不考虑的一个问题就是效率问题,所

开关可调稳压电源的设计与制作

开关可调稳压电源的设计与制作 设计思想: 交直流转换,稳压:变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)变压器由铁芯(或磁芯)和线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器输送的电能的多少由用电器的功率决定. 将 220V 交流电压首先通过隔离变压器降压为 18V 的交流电压,隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点,从而抑制高频杂波传入控制回路。用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合,此时,系统的对地电容电流小得不足以对人身造成伤害。还有一个很重要的作用就是保护人身安全。足以对人身造成伤害。隔离危险电压.18V 交流电压经过滤波二极管和电容 C2 进行滤波,经过lm7818 输出稳定的 18V 电压,电容 C1C3 是为了滤掉直流电压的毛刺,使其输出稳定 设计方案: 方案中使用隔离变压器提高抗电磁干扰能力,使用脉宽调制电路控制电压输出,采用 DC-DC 变换器,提高电源效率。 设计原理图如下: 电路原理图如下:

电路仿真结果如下: 各元器件与模块: N7818 稳压芯片介绍: 共有三种外形封装形式,,管脚 1 是电压输入脚,2 是接地脚,3 是稳定电压输出脚,用于稳压,原件如图所示: DC—DC 升压模块,DC-DC 升压变换器的工作原理:DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的 DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的 DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等

W半桥型开关稳压电源设计

辽宁工业大学电力电子技术课程设计(论文)题目: 240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师:(签字)

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 应用即社会需求,社会需求是技术发展的原动力,开关电源的发展过程清楚地辨明了这一点。目前,计算机的发展十分迅速,以其为代表的小功率电子产品是开关电源的主要应用领域,而且正是由于在小功率领域的成功应用,似的软开关技术在小功率领域发展得最为成熟。本设计即为为实验室提供的大功率开关电源,主电路采用半桥型整流电路,先整流滤波、后经高频逆变得到高频交流电压,然后由高频变压器降压、再整流滤波的方法,该电源在开环时,它的负载特性较差,只有加入反馈,构成闭环控制后,当外加电源电压或负载变化时,均能自动控制PWM输出信号的占空比,故控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路。它采用恒频脉宽调制控制方案,它适用于各开关电源、斩波器的控制。用SG3525很好的解决了负载特性差的缺点,得到了想要的输出电压。 关键词:开关电源;PWM控制;整流电路;

目录 第1章绪论 (1) 1.1开关电源概况 (1) 1.2本文设计内容 (1) 第2章 240W半桥型开关稳压电源设计 (3) 2.1240W半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (3) 2.2.1 主电路设计 (3) 2.2.2 控制电路设计 (4) 2.2.3 保护电路设计 (5) 2.2.4 整体电路设计 (6) 2.3元器件型号选择 (7) 2.4系统调试或仿真、数据分析 (11) 第3章课程设计总结 (12) 参考文献 (13)

稳压电源设计报告1

全国大学生电子设计大赛 稳 压 电 源 设 计 报 告

稳压电源 摘要: 本稳压电源,由变压器次级绕组接入,通过桥式整流和电容滤波,经过 LM7812、LM7912稳压,形成典型的双电源稳压电路,输出±12V 100mA电流。桥式整流后的电压,经过LM2576降压后,输出+5V电压,给后一级的LDO稳压电路供电,AS1117在满载(800mA)时,压差仅1.2V。用+5V供电,可以保证其工作在线性状态,3.3V输出稳定。 关键字: LM7812、LM7912、LM2576、AS1117 Abstract: The regulated power supply, the transformer secondary windings access, through the bridge rectifier and capacitor filter, through the LM7812, LM7912 voltage regulator, the formation of double power supply circuit, the output current of the 100mA + 12V. After the bridge rectifier voltage, through the LM2576 step-down, output +5V voltage, LDO voltage regulator circuit power level to, AS1117 at full load (800mA), pressure difference is only 1.2V. With +5V power supply, can ensure that the work in the linear state, the 3.3V output stability. Keywords: LM7812、LM7912、LM2576、AS1117

基于UC3875的高频开关电源的设计

引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压, T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容 C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

大功率移相全桥软开关电源的设计

工程硕士学位论文 大功率移相全桥软开关电源的设计 THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE 雷连方 哈尔滨工业大学 2006年12月

国内图书分类号 : TM92 国际图书分类号: 621.38 工程硕士学位论文 大功率移相全桥软开关电源的设计 硕士研究生:雷连方 导师:刘瑞叶 教授 副导师:肖连存 高工 申请学位:工程硕士 学科、专业:电气工程 所在单位:中国科工集团第三总体设计部 答辩日期:2006年12 月 授予学位单位:哈尔滨工业大学

Classified Index: TM92 U.D.C: 621.38 Dissertation for the Master Degree in Engineering THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE C a n d i d a t e:Lei Lianfang Supervisor:Prof. Liu Ruiye Associate Supervisor:Senior Engineer Xiaolianchun Academic Degree Applied for:Master of Engineering Speciality:Electrical Engineering Affiliation:The 3rd Headquarters of China Aerospace Science Industry Company Date of Defence:December,2006 Degree-Conferring-Institution:Harbin Institute of technology

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

开关稳压电源-电力电子毕业设计论文资料

开关稳压电源 摘要:本设计应用隔离型回扫式DC-DC电源变换技术完成开关稳压电源的设计及制作。系统主要由整流滤波电路,DC-DC变换电路,单片机显示与控制电路三部分组成。开关电源的集成控制由脉宽调制控制芯片UC3843及相关电路完成,利用单片机进行D/A转换,完成对输出电压的键盘设定和步进调整,同时由单片机A/D采集数据利用数码管显示出输出电压和电流。系统具有输出电压可调范围宽、噪声纹波电压低和DC-DC变换效率高等特点。此外,该系统还具有过流保护功能,排除过流故障后,电源能自动恢复为正常状态。 关键字:DC- DC,整流滤波,脉宽调制,A/D采集,D/A转换Abstract:The stabilized voltage switching supply is designed and manufactured by DC-DC power transfer with isolation and feedback. The supply includes rectification and filtering circuit, DC-DC transfer unit, controller controlling circuit and liquid crystal display module. The swiching supply is controlled by pulse width modulation IC UC3843. The output voltage can be regulated step by step by a microcontroller, a key and a D/A converter. The output voltage and current of the switching supply are collected by a A/D converter and displayed in Nixie tubes. The switching supply have some advantage such as wide output voltage, low noise ripple, high transfer efficiency. In addition, the swiching supply can realize current foldback. Keyword:DC-DC transfer, rectification and filtering, , microcontroller, A/D collecting dat a,D/A converting 一、方案论证 图1为开关电源系统的结构图,从图中可以看出,系统分为三个部分:电路电源、控制回路和显示设定部分。

开关稳压电源设计word文档

编号:E甲0904 2007全国大学生电子设计竞赛题目E: 《开关稳压电源》 参赛学生:李泉泉、满中甜、董学峰 指导教师:刘晓军、郑亚民、周强 学校:山东大学威海分校 院系:信息工程学院 2007年9月6日

开关稳压电源(E题) 摘要 该电源以单端反激式DC-DC变换器为核心。市电通过自耦式调压器,隔离变压器,整流滤波后产生直流电压,经DC-DC变换得到题目所需输出电压,实现了开关稳压电源的设计。DC-DC变换器采用脉宽调制器(PWM)UC3842,通过调节 在30V~36V范围内可调;微控制器与键盘显示构成了占空因数使得输出电压U O 控制显示模块,能对输出电压进行键盘设定和步进调整,并显示输出电压、电流的测量和数字显示功能,形成了良好的人机界面。 关键词:DC-DC变换器,脉宽调制器(PWM) 1方案论证 1.1DC-DC主回路拓扑 适合本系统的DC-DC拓扑结构为单端反激式DC-DC变换器,利用UC3824芯片作为控制核心,该芯片抗电压波动能力强,并可使负载调整率得到明显改善,而且其频响特性好,稳定裕度大,过流限制特性好,具有过流保护和欠压锁定功能。 1.2控制方法及实现方案 手动输出电压调节采用电位器改变取样回路的上下比电阻比值来改变输出电压,使其满足题目要求,该方案电路结构简单,实现方便。 键盘设定通过单片机改变模拟开关接通通道,选取取样回路的电阻节点位置,改变取样回路的上下比电阻比值来改变输出电压,实现发挥部分的键盘设定功能。 1.3提高效率的方法及实现方案 在DC-DC变换器中,主要消耗功率的元件有主回路的开关管、续流二极管、储能电感等部件。本设计中提高效率的措施主要有: 通过增加电感线径减小电感阻值; 采用低内阻的高效率MOSFET作为主回路的开关元件; 采用高速低正相压降的肖特基二极管降低其功耗。 2电路设计与参数计算 2.1电路整体设计 本设计以DC-DC变换器为核心,辅以隔离变压、整流滤波、控制显示等功能模块,完成开关稳压电源各项功能(见图1 系统框图)。

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

全桥式开关电源的研究与设计解读

研究生课程考试答题册 学号2009201370 姓名刘俊飞 考试科目现代电源变换技术 考时日期2010.1.8 西北工业大学研究生院

全桥式开关电源的研究与设计 摘要 电源是所有用电设备的心脏,用电设备的可靠工作离不开质量可靠的电源的支持。可一般情况下,电网电能并不能直接用于用电设备,而是要经过转换才能符合使用的需要。这就需要运用电力变换技术对电力进行变换,以获取满足使用要求的电能,其中将交流电变换成直流电是其中的一种。将交流电变换成直流电的技术叫做整流。现代开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。 本篇论文对PWM型全桥式开关电源进行研究,阐述其变换拓扑,分析其工作的原理,并对全桥式开关技术的实现进行探索。针对某一实际要求的开关电源技术指标,设计了一开关稳压电源电路,实现稳定的直流电压输出,并对开关电源技术的发展进行了展望。 关键词: 开关电源全桥式 PWM技术 SG3525A芯片

一、引言 现代开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源电路运用现代电力电子技术,由脉冲宽度调制(PWM)控制IC进行脉冲宽度控制,调节占空比,以对MOSFET或其他的全控型开关器件的开通与关断进行控制,从而调节输出的电压,实现输出电压的稳定。 电源是所有用电设备的心脏,用电设备的可靠工作离不开质量可靠的电源的支持。可一般情况下,电网电能并不能直接用于用电设备,而是要经过转换才能符合使用的需要。这就需要运用现代电力变换技术对电力进行转换,以获取满足使用要求的电能,其中将交流电变换成直流电是其中的一种。将交流电变换成直流电的技术叫做整流技术。随着电力电子技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电力电子设备都离不开可靠的电源。进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。因而开关电源技术十分重要。 但作为用电设备的动力源,电源的形式却并不单一。电源特性的参数有电压、功率、频率、噪声及所带负载参数的变化等;在同一参数要求下,又有体积、重量、形态、功率、可靠性等指标。那么在不同的领域,不同的工作场合,不同的设计指标下,如何进行电源的设计,以完美地满足客户的要求,是一个值得研究的课题。因而对现代开关电源技术的研究是十分必要的。 开关电源的种类很多,其中桥式开关稳压电源以其能适应输入电压较高和输出功率较大等优点,得到了广泛的应用。本文针对PWM型全桥式开关电源的变换方法进行研究。桥式开关稳压电源电路的核心实际上就是一个桥式直流变换器电路。桥式直流变换器电路主要包括半桥式直流变换器和全桥式直流变换器,他是由两个推挽式直流变换器电路组成的。由于这种变换器克服了推挽式直流变换器

相关文档
相关文档 最新文档