文档库 最新最全的文档下载
当前位置:文档库 › 荧光探针设计原理

荧光探针设计原理

荧光探针设计原理
荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团,F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。

图1.1荧光探针的结构

1.1.1荧光探针的一般设计原理

(1)结合型荧光探针[21]

图1.2共价连接型荧光探针

结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a)受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500nm以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b)受体

分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c)荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光基团之间能通过连接基进行信号传递,对识别对象的识别信息(如荧光的增强或减弱、光谱的移动、荧光寿命的变化等)可以及时传递出去。

图1.3共价连接型锌离子荧光探针

DeSilva在1997年报道的化合物1[22]是一个典型的共价连接法设计的荧光探针。它分别以有优良光学性质的蒽作为荧光基团,以对Zn2+有特异性识别的基团双(2-吡啶甲基)氨(DPA)为识别基团,通过亚甲基将识别基团和荧光报告基团连接在一起。通过对比加锌前后荧光强度的不同实现了对锌离子的检测。

(2)置换型荧光探针

图1.4置换型荧光探针

利用该方法设计的荧光探针是通过识别基团分别与荧光指示剂和被分析物结合能力的强弱来实现对被分析物的检测。该类传感器对识别基团和荧光指示剂的要求都比较高,既要选择能和识别基团结合但结合能力又不是特别强的荧光指示剂,又要设计对被分析物能特异识别的识别基团。该类设计方法多用于阴离子传感器的设计。

2002年,Kim小组[23]设计了邻苯二酚紫作为荧光指示剂,双锌配合物为HPO42-识别基团,并将二者自组装成化合物2,用于中性条件下水溶液中HPO42-的检测。加入识别客体HPO42-后,由于HPO42-与双锌配位能力强于邻苯二酚紫,从而把邻苯二酚紫挤开,使之进入溶液,表现为其原来颜色。在识别过程中,溶液颜色从蓝色变为黄色,常见的Ac-、CO32-、NO3-、N3-、ClO4-、S2-、F-、Cl-、Br-都不影响HPO42-的检测,表现出较好的选择性。

图1.5置换型HPO42-化学传感器

(3)化学计量型荧光探针(chemodosimeter)

化学计量型荧光探针分子是利用探针分子与识别客体之间特异不可逆的化学反应前后产生荧光信号的不同而对分析对象进行检测的一类探针[24]。主要包括两种类型:一类是目标离子和探针分子发生化学反应后仍旧通过共价键相连接:另一类是目标离子催化了一个化学反应(图1.6)。

图1.6化学计量法的两种类型

一般而言,化学计量型荧光探针分子都具有专一性和不可逆性。尽管这类探针已有不少报道,但由于设计较为困难和反应不够灵敏等缺陷而进展较为缓慢。

图1.7氨基酸荧光分子探针

Kim和Hong等[25]设计的识别半胱氨酸及高半胱氨酸的荧光分子探针3,属于第一种类型。他们利用半胱氨酸及高半胱氨酸与醛生成五元噻唑环或六元噻嗪环的特异反应以及反应前后化合物3和4荧光性质的显着差异实现了对半胱氨酸及高半胱氨酸的高选择性检测。

化合物5[26]是较早应用化学反应原理实现检测客体的荧光探针,属于第二种类型。化合物5的乙腈溶液中加入汞离子后荧光显着增强(34倍)并红移,进一步用质谱检测发现生成了脱硫产物6。

图1.8基于汞脱硫原理的汞离子荧光探针

1.1.2荧光分子探针的响应机理

目前,荧光分子探针的响应机理主要有以下几种:光致电子转移(PET,photo-inducedelectrontransfer)、分子内电荷转移(ICT,intramolecularchargetransfer)、荧光共振能量转移(FRET,fluorescenceresonanceenergytransfer)等。

(1)光诱导电子转移原理(PET)

光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移的过程。典型的光致电子转移荧光探针体系是由具有电子给予能力的识别基团R通过连接基团S和荧光基团相连组成的功能分子。

一般情况下,荧光分子探针的识别基团是电子给体,荧光基团是电子受体,并且通常情况下多采用含有氨基的基团作为识别基团。具体PET工作过程如下:在识别基团与待测物种结合之前,当荧光基团受激发,具有给电子能力的识别基团能够使其处于最高占据轨道的电子转入激发态荧光团因电子激发而空出的电子轨道,使被光激发的电子无法直接跃迁到原基态轨道发射荧光,导致荧光基团的荧光猝灭。而识别基团与待测物种结合之后,由于降低了识别基团的给电子能力,光致电子转移过程被减弱或者不再发生,荧光基团的荧光发射得到恢复(如图1.9)。

图1.9荧光分子光致电子转移的“开”“光”过程示意图。

由于与待测物种结合前后的荧光强度差别很大,呈现明显的“关”、“开”状态,因此这类荧光分子探针又被称为荧光分子开关。PET荧光分子探针的作用机制可由前线轨道理论[2]来进一步说明(见图1.10)。从图可以看出,识别基团处于自由态时,其HOMO轨道上的电子可以向荧光基团的HOMO轨道上转移,致使荧光基团被激发到LUMO上的激发态电子不能返回基态而难以产生荧光,此过程对应于发生PET现象。在识别基团与待测物种结合后,识别基团上的HOMO电子已无法转移到荧光基团的HOMO轨道上,使PET过程无法进行,这时荧光基团的激发态电子可以返回基态,产生荧光。由此可见,利用识别基团对PET过程的控制可以实现对体系荧光发射状态的调控。

图1.10光致电子转移机制机制的前线轨道理论解释。

化合物1是一个非常典型的PET机理荧光增强型的例子。锌离子不存在时,由于识别基团中氮原子上的孤对电子能够在荧光基团受激发态时占据激发态荧光团因电子激发而空出的电子轨道,使被光激发的电子无法直接跃迁到原基态轨道发射荧

光,导致荧光基团的荧光猝灭,即发生了光致电子转移(PET)。当Zn2+存在时,Zn2+离子与两个吡啶氮及氨基配位,束缚了氮上的孤对电子,使发生在氮原子和荧光团之间的PET过程被禁阻,荧光强度大幅度增强.实验结果也证实了此过程。在乙腈溶液中,加入Zn2+离子之前,化合物1的荧光量子产率仅为0.01;加入Zn2+离子之后,它的荧光量子产率为0.77,荧光增强了77倍。

(2)分子内电荷转移(ICT)机理

分子内电荷转移荧光探针分子通常由富电子基团(电子给体)和缺电子基团(电子受体)共轭相连,形成推-拉作用的共轭体系,没有PET探针分子那样明显的连接基。也就是说荧光团F和受体R通常融合在一起,识别过程二者同时参与。当受体结合被分析物后,作为受体的供电子部分或拉电子部分的供拉电子能力被改变,整个共轭体系的?电荷重新分布,荧光团的推-拉作用被抑制或强化,进而导致吸收光谱、激发光谱以致发射光谱发生红移或蓝移(如图1.11)[27]。

化合物7[28]两端分别含有羰基、苯并噻唑两个强拉电子基和两个氨基强供电子基团,激态时荧光团能够有效地实现了从供体到受体的整个体系?电荷分离,是典型的ICT机理的荧光分子探针。当汞离子存在时,四氨基识别基团捕获Hg2+离子,6,7位氮的供电子能力大大减弱,减弱了整个体系?电荷分离程度,引起吸收波谱和荧光光谱分别蓝移了60nm和92nm,荧光颜色由蓝色变为黄色,同时实现了比色及比率型Hg2+离子的检测。

图1.11识别基团分别为电子供体和电子受体的ICT过程光谱移动示意图

图1.12具有D-A结构的ICT汞离子荧光探针

(3)荧光共振能量转移(FRET)机理

荧光共振能量转移是指当一对合适的能量给体分子(Donor)和受体分子(Acceptor)相距一定距离(一般为2-5nm),且给体的发射光谱与受体的吸收光谱能有效重叠时,处于激发态的给体将把一部分或全部能量转移给受体,使接受体被激发

的过程。受体可以是荧光物质也可以是只有吸收而没有发射的荧光猝灭剂。根据F?rster 理论,共振能量转移效率可以用式1.5表示[29]:

6011

??????+=R R T φ(1.5)

式中R 为两个荧光基团的距离,R 0为F?rster 距离(供体-受体之间的临界转移距离)。

从这个方程可以看出,即使R 的微小变化都会导致能量转移的效率强烈改变[24-26]。

9

10

图1.13具有D-A 结构的FRET 汞离子分子荧光探针

利用FRET 效率对距离的强的依赖性,FRET 广泛应用于蛋白质和核酸的结构及动力学研究、分子结合的测定等领域[30]。同样,能量共振转移原理也被用于荧光分子探针的设计。

2004年,Ono 小组[31]设计了以荧光素为能量供体,以没有发射的荧光猝灭剂4-(4-二甲氨苯偶氮)苯甲酰基为受体,二者通过富含胸腺嘧啶的碱基连接在一起。当加入汞离子之前,供体受体之间的距离较长,二者不会发生能量共振转移,只发射荧光素的荧光;当加入识别客体Hg 2+后,含有多个T 的碱基发生特异性分子识别,拉近了荧光素和4-(4-二甲氨苯偶氮)苯甲酰基间的距离,发生荧光素向4-(4-二甲氨苯偶氮)苯甲酰基的能量转移,从而猝灭荧光素的荧光。

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

2017肿瘤检测相关公司汇总

厦门艾德 K-ras ;BRAF ;PIK3CA ;NPM1; 突变检测或多态性检测;荧光定量/毛细管电泳 EGFR ;EML4-ALK 有无医疗器械证 江苏为真 EGFR ;KRAS ;EML4-ALK ;KRAS ;BRAF ;PI3K ;C-kit ;P DGFRA Taqman-ARMS qPCR-HRM ERCC1; BRAC1; TUBB3; BRAC1; STMN1; RRM1; RRM1; EGFR 荧光定量PCR CYP19A1;UGT1A1;CYP2D6;MTHFR ;DPD ;ERCC1;GSTP1; XRCC1 荧光定量PCR+高分辨率熔点曲线 分析(HRM ) EML4-ALK 融合基因检测试剂盒 通过RT-PCR 方法检测EML4-ALK 的多种融合突变 武汉友芝友 人类EGFR 基因29种突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧 光定量技术 人类KRAS 基因7种突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧 光定量技术 人类BRAF V600E 突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧光定量技术 北京雅康博 人EGFR 基因突变检测试剂盒(荧光PCR 法) 采用荧光PCR 技术 人KRAS 基因突变检测试剂盒(荧光PCR 法) 采用荧光PCR 技术 人PIK3CA 基因突变检测试剂盒(荧光PCR 法) 人EML4-ALK 融合基因检测试剂盒(荧光PCR 法) 人VEGF 基因表达量检测试剂盒(荧光PCR 法) 人RRM1基因表达量检测试剂盒(荧光PCR 法) 人ERCC1基因表达量检测试剂盒(荧光PCR 法)

【CN109942508A】一种比率型一氧化碳荧光探针及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910299561.9 (22)申请日 2019.04.15 (71)申请人 内蒙古大学 地址 010000 内蒙古自治区呼和浩特市赛 罕区大学西路235号 (72)发明人 王建国 姜国玉 李纯斌  (74)专利代理机构 北京高沃律师事务所 11569 代理人 瞿晓晶 (51)Int.Cl. C07D 277/64(2006.01) C07D 455/04(2006.01) C09K 11/06(2006.01) G01N 21/64(2006.01) (54)发明名称 一种比率型一氧化碳荧光探针及其制备方 法和应用 (57)摘要 本发明提供了一种比率型一氧化碳荧光探 针及其制备方法和应用,涉及生物化学材料领 域。本发明提供的比率型一氧化碳荧光探针具有 式I所示结构,该比率型一氧化碳荧光探针具有 合成原料易得,合成简单,目标化合物荧光量子 产率高,抗光漂白能力强及比率型响应等优点, 避免了传统荧光探针不宜在高浓度下检测及单 一发射在检测过程中易受浓度、温度、pH值及仪 器等外界因素干扰的缺点,并且能够用于检测细 胞内一氧化碳。权利要求书2页 说明书10页 附图5页CN 109942508 A 2019.06.28 C N 109942508 A

1.一种比率型一氧化碳荧光探针,其特征在于, 具有式I所示结构: 式I中,R为 2.权利要求1任一项所述比率型一氧化碳荧光探针的制备方法,其特征在于,包括以下步骤: 将化合物1、烯丙基溴、碱性化合物和第一有机溶剂混合,进行取代反应,得到化合物2;所述化合物1为 所述化合物2为R -CHO;R为 将所述化合物2与苯并噻唑-2-乙腈、有机碱、有机酸和第二有机溶剂混合,在保护气氛下进行Knoevenagel反应,得到具有式I所示结构的比率型一氧化碳荧光探针。 3.根据权利要求2所述的制备方法,其特征在于,所述化合物1、烯丙基溴和碱的摩尔比为1:(1.5~2.5):(2.5~ 4.0)。 4.根据权利要求2所述的制备方法,其特征在于,所述取代反应的温度为60~100℃。 5.根据权利要求2所述的制备方法,其特征在于,所述取代反应完成后,将所得取代产物体系进行后处理,所述后处理包括以下步骤: 将取代产物体系进行固液分离,得到液态混合物; 将所述液态混合物萃取后干燥、浓缩,得到浓缩物; 将所述浓缩物进行柱层析,得到化合物2。 6.根据权利要求2所述的制备方法,其特征在于,所述化合物2与苯并噻唑-2-乙腈、有 权 利 要 求 书1/2页2CN 109942508 A

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

荧光比率探针及其应用研究进展

7 前 言 荧光比率技术是荧光分析中的一项重要技术。该技术在生物染色剂中,可被紫外线或蓝紫光(短波长光)激发而发射荧光的染料,称为荧光染料(荧光色素)。可被长波长光激发,这些荧光色素常称为荧光探针。荧光探针通常用于固定组织和细胞的染色,以及或活细胞中的应用, 此外还包括应用于体内荧光探针。 分子荧光探针按用途分类包括离子探针、极性探针、粘度探针、PH值探针、膜荧光探针、细胞活性探针、细胞器探针、位点特异性荧光探针等等。探针通过与分析物(如生命金属离子)进行结合后,引起荧光特性发生变化,通过测定荧光的激发波长、发射波长、荧光强度、峰位、荧光寿命、荧光量子产率和各向异性等,获得相关信息。 荧光方法测定中,荧光探针在与反应物结合后,出现激发或发射光谱移位的探针,可使用在两个不同波长测定的荧光强度比率进行测定,称为比率测量。因为通过二个选择性的波长的荧光强度变化可作为定量的依据, 通常指在波长范围内有荧光强度明显的变化。同普通荧光探针相比,比率测量探针可以被分为两部分。 一种是荧光比率效果是通过原来荧光谱的迁移。通常,这些迁移的背景是荧光探针激发态的电子转移。它被激发通过改变发色团同周围分子或原子交互作用的能量改变(溶剂化显色迁移),同外部电场的交互作用(电致显色迁移)和在发色团中的双电弛豫(双电弛豫迁移)。 另外一种结合探针,荧光谱包括2个或更多的谱带。通常,是这些谱带相对强度的改变,激发态同荧光探针发色团反应。这些反应在不连续的能量状态。 荧光比率探针及其应用研究进展 杨柳* ,郭成海,张国胜 (防化研究院第四研究所,北京 102205) 摘要 本文介绍了荧光比率探针,包括阳离子探针、阴离子探针、pH值探针、极性探针、氧化性和分子的比率测量探针的应用及近几年的研究进展。关键词 荧光分析,比率测量 *作者简介:杨柳(1975-),男,助理研究员,博士研究生,E-mail:yangliujinjin@sina.com 所以在初始和产物状态都随着能量转移而发射荧光。 荧光比率测定法可消除光漂白和探针负载和留存及设备因素(照明稳定性)引起的数据的失真。如阴离子探针可通过有机离子载体从细胞排除,如AM酯可被P糖蛋白多药载体排出荧光比率测定法可减少探针渗漏对实验结果的影响。探针与离子结合后,出现激发或发射光谱移位的探针可使用在两个不同波长测定的荧光强度比率校准,可克服由于离子浓度的变化而造成的荧光信号人工假象。 Bright等(1989)发现比率测量减少或消除几种决定因素的变化对测量荧光强度的影响,包括探针浓度、激发光的光路长度、激发强度、和检测效率。消除的人工假象包括光漂白、探针渗漏、细胞厚度、探针在细胞内(区室化作用引起)或不同细胞群之间(负载效率差异造成)的不均匀分布。 比率测量探针已经应用于不同的测量领域:离子探针(阳离子探针Ca2+、Mg2+,Zn2+,Ag+等)阴离子探针(Cl-,CN-,F-等),膜探针、活性氧和一氧化氮探针,极性探针、PH值探针等等。 1应用比率测量的阳离子探针: 各种各样的阳离子在生命活动中起重要的作用, 如构成细胞和生物体某些结构的重要成分,参与并调节生物体的代谢活动等,荧光方法通常用来测定阳离子在生物体不同组织的含量和分布。阳离子比率测量探针也在不断发展。 1.1 Ca2+检测的比率测量探针: 探针与Ca2+结合后出现光谱移位的探针可进行比率测量。主要包括:Fura-2、双- Fura-2、Fura-4F、Fura-5F、Fura-6F、 indo-1、indo-5F、mag-Fura-2

荧光探针汇总

精心整理 1. Fluo-3AM (钙离子荧光探针) 原理Fluo-3AM 是一种可以穿透细胞膜的荧光染料。Fluo-3AM 的荧光非常弱,进入细胞后可以 被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2. Mag-fura-2AM (钙离子荧光探针) 原理Fura-2AM 是一种可以穿透细胞膜的荧光染料。Fura-2 AM 进入细胞后可以被细胞内的酯 3 4. 成5. 原理本身无荧光,在超氧化酶存在时可被过氧化氢(H2O2)氧化,转变成发射绿色荧光的罗丹明 123(Rhodamine123),因此广泛应用于检测细胞内活性氧(ROS),如过氧化物,次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6. RhodamineI23(线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料,能够迅速被活线粒体摄取,而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515~575nm (绿色) 生理意义检测线粒体膜电位

备注正在使用 7.Hoechst33342(DNA荧光探针) 原理Hoechst33342是一种可对DNA染色的细胞核染色试剂,常用于细胞凋亡检测。Hoechst 染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强 烈的蓝色荧光。 生理意义标记双链DNA 激发波长355nm发射波长465nm(蓝色) 备注正在使用 8.FDA 原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。 生理意义反映细胞膜完整性和细胞活力 9.PI( 倍。 10.EB 11.DAPI 20 12.CalceinAM 原理Calcein-AM由于在Calcein(钙黄绿素)的基础上加强了疏水性,因此能够轻易穿透活细胞膜。当其进入到细胞质后,酯酶会将其水解为Calcein(钙黄绿素)留在细胞内,发出强绿色 荧光,且细胞毒性很低,适合用于活细胞染色。 生理意义检测细胞膜完整性 激发波长494nm发射波长517nm(绿色) 备注跟FDA功能类似,细胞毒性很低,可以长时间标记细胞,但价格比较贵 13.BCECF-AM(pH荧光探针) 原理BCECF-AM是一种可以穿透细胞膜的荧光染料,BCECF-AM没有荧光,进入细胞后被细胞内的酯酶水解成BCECF,从而被滞留在细胞内。BCECF在适当的pH值情况下可以被激发 形成绿色荧光。 生理意义检测细胞内pH

基于EET机理比率型荧光探针的研究进展

有机化学 Chinese Journal of Organic Chemistry ARTICLE * E-mail: yuhaibo@https://www.wendangku.net/doc/2f5624898.html, Received September 23, 2014; revised November 18, 2014; published online December 2, 2014. Project supported by the National Natural Science Foundation of China (21302080). Program Funded by Liaoning Province Education Administration (L2014010). 国家自然科学基金(No.21302080),辽宁省教育厅科研项目(No.L2014010)资助项目. DOI: 10.6023/cjo201409036 研究论文 基于EET 机理比率型荧光探针的研究进展 陈忠林a 李红玲a 韦驾a 肖义b 于海波a ,* (a 辽宁大学 环境学院 沈阳 110036) (b 大连理工大学 精细化工国家重点实验室 大连 116024) 摘要 激发态能量转移(Excitation Energy Transfer, EET )作为一类重要的光物理现象,被广泛用于比 率型荧光探针和分子灯标的设计以及DNA 检测等多个领域。影响EET 效率的两个重要因素是供受体间的空间距离和光谱交盖,通过调节供受体间的空间距离或光谱重叠程度来调控能量转移过程,实现对目标客体的双波长比率检测。本文综述了基于不同供受体荧光团的EET 体系、供受体间的连接方式对能量转移效率的影响,以及通过调控供受体间光谱重叠程度或空间距离,获得识别不同客体的比率型荧光探针,并对EET 机理的比率型荧光探针的设计以及未来在生物成像和医学检测等领域的应用进行了展望。 关键词 荧光探针; 激发态能量转移; F?rster 能量转移; 比率型荧光探针; 荧光发色团 Recent Progress in Ratiometric Fluorescent Probes Based on EET Mechanism Chen Zhonglin a Li Hongling a Wei Jia a Xiao Yi b Yu Haibo a * (a College of Environmental Sciences, Liaoning University, Shenyang) (b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian) Abstract Excitation Energy Transfer (EET) is one of the vital photophysical phenomenons, which is wide-ly used in many applications, such as the design of ratiometric fluroesent probes, molecular beacon and DNA analysis, and so on. The process of energy transfer from donor to acceptor can be regulated by two factors: the spatial distance between donor and acceptor, and the spectral overlaps between donor’s emission and acceptor’s absorption, which results that there is a wide variety in the ratio at two different wavelengths of ratiometric fluo-rescent probes. In this review, noticeable EET systems with different donor fluorophore, connection form and energy transfer efficiency between donor and acceptor, and the modulation of spatial distance or spectral overlap are summarized. Finally, as a promising tool, the future developing prospects of EET fluorescent probes in bioi-maging and medical diagnostics are discussed and highlighted. Keywords Fluorescent probe, Excitation energy transfer, F?rster resonance energy transfer, Ratiometric probe, Fluorophore 随着荧光显微成像技术和时间分辨技术的迅速发展,基于超分子化学和有机染料的荧光探针现已成为研究生物学和医学领域相关问题的重要工具。荧光探针在与目标客体相互作用过程中荧光信号会发生改变,借助于荧光信号的变化,荧光探针能够对目标客体进行实时在线的检测或监测,并被广泛用于分析化学,生物化学,医学和环境监测等多个领域[1]。荧光探针主要有三种类型:淬灭型、增强型和比率型。由于增强型荧光探针在与目标客体作用后,荧光输出信号增强,在荧光显微成像中比淬灭型荧光探针更为灵敏,故增强型荧光探针是目前荧光探针领域设计的主流[2]。 与增强型荧光探针相比,比率型荧光探针在定量检测方面具有明显的优势,近些年来,比率型荧光探针的设计

SNP检测方法汇总

现在SNP的常用检测方法主要有:Taqman法、质谱法、芯片法、测序法。Taqman法:准确性高,适合于大样本、少位点,价格比较贵;质谱法:准确性高,适合于大样本、多位点(能检测25个位点);芯片法:准确性较低,适合于超多位点分析;测序法:非常准确,但是价格也非常的高,但是对于少样本、超多位点还是非常好的选择。 SNP检测方法汇总 分析SNP的方法有许多种,本文收集目前还在用的方法,按通量从高到低排列: 全基因组测序 这是最贵的方法,但也是看SNP最全的方法 大概一个人样本,花2万元 外显子组测序 外显子组测序,也可以得到较全面的SNP信息 大概一个人样本,花1.5万元 随着人全基因组测序的价格降到2万元左右,外显子组测序会很快退出市场 全基因组SNP芯片 原理,核酸杂交,荧光扫描

Illumina和Affymetrix都有很著名的全基因组SNP芯片,例如: Affymetrix: CytoScan,SNP 6.0, Illumina: 660,中华,450K等 SNP芯片,在2000~5000元每样本,还是比全基因组测序的2万元一个样本的价格要低质谱法 原理,精确测量PCR产物的分子量,就可以知道SNP位点上是A/C/G/T中的哪一个Sequenome MassArray法测中等通量的SNP位点是十分准确的 单个位点、单个样本的费用约2元人民币 无需预制芯片、预订荧光探针,只要合成常规的PCR引物就可以做实验了 如果测几十个点,到上百个点,是很方便的方法 SNPseq法 此方法为天昊公司所创,一次测几百个位点 原理: 用Goldgate法做出针对某些位点的多重PCR片段

荧光定量pcr法原理汇总

我们前面比较详细地介绍了荧光染料法做定量PCR的有关技术和产品,显然,作为定量PCR的初期阶段的荧光染料法还是有局限性的,比如,由于染料不能区分特异性PCR产物和引物二聚体等非特异产物,也不能区分不同探针,所以检测的特异性始终不如后来出现的探针法;需要在PCR后进行熔链曲线分析;也不能做多重PCR检测(Multiplex)。 上个世纪90年代原美国Perkin Elmer( PE)公司开发出了Taqman荧光探针定量技术,将定量PCR带入了更广阔的应用空间。Taqman探针法的出现是定量PCR技术的重要里程碑,之后在此基础上发展出了杂交探针法,以及荧光引物法,是对探针法的不断改进和简化。如果希望全面掌握定量PCR技术的研究人员就不能错过这些定量检测技术。 要提到荧光探针或者荧光引物,有一个基础概念需要首先明确,那就是荧光共振能量转移(fluorescence resonance energy transfer, FRET):一对合适的荧光物质可以构成一个能量供体 (donor) 和能量受体 (acceptor) 对, 其中供体的发射光谱与受体的吸收光谱重叠,当它们在空间上相互接近到一定距离(1—10 nm)时,激发供体而产生的荧光能量正好被附近的受体吸收,使得供体发射的荧光强度衰减,受体荧光分子的荧光强度增强。能量传递的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等有关。定量PCR所涉及的荧光探针和荧光引物的检测都这个FRET原理相关。 实时荧光PCR中另一个很重要的概念,即Ct值.C代表循环(Cycle),T代表阈值(Threshold).Ct值是指每个反应管内的荧光信号到达设定的阈值时所经历的循环数.。一般取PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光阈值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍。研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可做出标准曲线.因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 一:水解探针法 TaqMan技术

分子荧光的机理和荧光探针原理

1.3荧光分子探针识别机理 1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET) 典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。 图1-1 PET荧光探针的一般原理图LUMO 图1-2 PET荧光探针的前线轨道原理图 已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。de Silva研究小组利用类似于EDTA

PCR和定量PCR的引物和探针设计

引物和探针设计 – PCR 和定量PCR 基本原理 引物设计的重要因素 针对特殊应用的其他提示 引物的质量和纯度目录 1247

基本原理 引物是短的寡核苷酸,充当DNA复制的起始点。因为几乎所有DNA聚合酶都不能从头合成,所以它们需要一个3'-羟基作为DNA合成的起始点。这个3'-羟基由相配的引物提供。引物在体内由RNA聚合酶(称为引物酶)生成。这些引物(在此为小RNA)由DNA聚合酶用作延长的起始点。在延长过程中,RNA引物降解并由DNA取代。 体外扩增反应,如聚合酶链反应(PCR)或逆转录(RT),需要引物。通过选择特异的引物序列,DNA 片段的所需区域可得到扩增。 对于大多数PCR反应,决定整个反应成功与否的最重要因素是引物的序列和质量。 在开始引物设计之前,必须弄清以下几点: PCR的目的(例如定量检测、克隆、基因分型) PCR类型(定量PCR、RT-PCR、长片段PCR) 样品材料(基因组DNA、RNA、微小RNA) 可能的问题(例如假基因、SNP) 1

引物设计的重要因素 2 有一些不同的软件工具可用于引物设计和序列分析。它们能简化相配引物对的搜索,一般考虑以下标准。 最流行的软件为Primer 3(https://www.wendangku.net/doc/2f5624898.html,),它是大多数基于网络引物设计应用的基础。典型的引物长度为18-30个碱基。 短的引物(15个核苷酸以下)能非常高效地结合---但是它们的专一性不够。 非常长的引物能提高专一性,但是退火效率低,从而导致PCR 产物量低下。 应避免编码单一序列和重复序列的引物。 引物长度和专一性 引物的GC 含量应介于40%和60%之间。应避免聚-(dC )-或聚(dG )-区域,因为它们会降低退火反应的专一性。聚-(dA )-和聚(dT )-也应避免,因为这会生成不稳定的引物-模板复合物,从而降低扩增效率。 平衡GC含量,避免GC-和AT-富集区域 退火温度是基于引物的解链温度(Tm )计算。最常用的解链温度计算公式显示如下。“2+4”法则,亦称华莱士法则,对于极短的寡核苷酸(最多14个碱基)有效,该法则提出每个AT 对能将双链DNA 的解链温度提高2°C ,每个GC 对则能提高4°C 。 GC 法则(适用于长于13个碱基的序列)也是一种简单但同时相当不准确的方法。 两种法则都假设退火发生于以下标准条件下: 50 nM 引物、50 mM Na + 和pH 7.0。 “盐调整”法稍微准确一些,考虑到了反应缓冲液中的Na+离子浓度。 最复杂的方法称为“碱基堆积”法。这里的计算中包括了杂交期间的焓(H )和熵(S )。 计算出的解链温度可用于估算最佳退火温度。 但是,经常需要经验性地估算最佳温度。 所选引物的解链温度应允许退火温度介于55°C 和65°C 之间。一个引物对的两条引物都应具有相同或极相近的解链温度。 退火温度 Tm = 2 °C ? (A + T) + 4 °C ? (G + C) Tm = 64.9 °C + 41 °C ? (G + C -16.4)(A + T + G + C) Tm = 100.5 °C + 41 °C ? ? 16.6 ? log 10([Na + ]) C + G A + C + G + T 820A + C + G + T 提示

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

基因组学总结

Roche 454(GS FLX Titanium System)超高通量测序技术原理 2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序的先河。2007年又推出了性能更优的第二代基因组测序系统——Genome Sequencer FLX System。2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。 GS FLX 测序原理:GS FLX系统的测序原理和GS 20一样,也是一种依靠生物发光进行DNA序列分析的新技术;在DNA 聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来(图1)。通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。 Roche GS FLX System是一种基于焦磷酸测序原理而建立起来的高通量基因组测序系统。在测序时,使用了一种叫做“Pico TiterPlate”(PTP)的平板,它含有160多万个由光纤组成的孔,孔中载有化学发光反应所需的各种酶和底物。测序开始时,放置在四个单独的试剂瓶里的四种碱基,依照T、A、C、G的顺序依次循环进入PTP板,每次只进入一个碱基。如果发生碱基配对,就会释放一个焦磷酸。这个焦磷酸在各种酶的作用下,经过一个合成反应和一个化学发光反应,最终将荧光素氧化成氧化荧光素,同时释放出光信号。此反应释放出的光信号实时被仪器配置的高灵敏度CCD捕获到。有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列。 测序实验流程: 1、文库制备:根据样品的种类和实验目的,将基因组DNA/cDNA片段化处理至400-800bp间,经末端修复与特异性接头连接等修饰后变性处理回收单链的DNA(sstDNA); 2、Emulsion PCR:特定比例的单链DNA文库被固定在特别设计的DNA捕获磁珠上,使大部分磁珠磁珠携带了一个独特的单链DNA片断。磁珠结合的文库被扩增试剂乳化,形成油包水的混合物,每个独特的片断在自己的微反应器里进行独立的扩增,而不受其他的竞争性或者污染性序列的影响。整个片段文库的扩增平行进行。扩增后产生了几百万个相同的拷贝。随后,乳液混合物被打破,扩增后仍结合在磁珠上的片段既可被回收纯化用于后续的测序实验; 3、测序反应:携带DNA的珠子与其他反应物混合物,随后放入PTP板中进行后继的测序。PTP孔的直径(29um)只能容纳一个珠子(20um)。然后将PTP板放置在GS FLX中,测序开始。每一个与模板链互补的核苷酸的添加都会产生化学发光的信号,并被CCD照相机所捕获; 4、数据分析:GS FLX系统在10小时的运行当中可获得100多万个读长,读取超过4-6亿个碱基信息,通过GS FLX系统提供两种不同的生物信息学工具对测序数据进行分析。 技术特点:? 速度快,一个测序反应耗时10个小时,获得4-6亿个碱基对。比传统的Sanger测序的方法快100倍;? 读长长,单个序列的读长更长,平均可达到450个碱基左右;? 通量高,每个反应可以得到超过100万个序列读长,成本大大降低;? 准确度高,读长超过400bp时,单一读长的准确性可以超过99%;? 一致性好,测序结果一致性超过99.99%;? 可以进行Pair-End测序研究;? 简便高效,不需要进行建库、克隆挑取、质粒提取等工作,一个人可以在一天内完成一个微生物物种的测序工作。 GS FLX系统的应用:自从2005年底GS 超高通量基因组测序系统问世以来,已经相继在世界上各大测序实验室成功落户。这项技术的第一个“试验品”就是来自有“DNA之父”之称的James D Waston,他向454公司提供了自己的血液样本。目前GS系统的用户在Nature,Science,PNAS等世界顶级的期刊杂志上已经发表了五十多篇的学术论文。(详细列表请查询https://https://www.wendangku.net/doc/2f5624898.html,/sis/sequencing/genome/index.jsp)。与GS 20系统相比较,硬件配置和软件系统方面的革新改进,使得GS FLX系统具有了广泛的应用:全基因组测序;多达120 Mb的未知基因组的测序;-生成基因组结构概图;-研究DNA序列的组织,分布和信息;-基因筛查:寻找新基因,定位和功能;-和其他基因组进行比较研究;全基因组进行从头鸟枪法测序,例如微生物基因,BAC和YAC克隆测序。比较基因组研究;-识别单碱基突变;-识别突变热点和保守区域;-识别插入或者缺失的基因;-断定基因型和表型之间的相关关系(比如,研究药物抗性的遗传基础);-基于基因测序变化进行毒性预测;-进行流行病学分析;-了解工业生产菌株和它们的亲代菌株序列上的差异作为进行工业生产菌株开发的遗传基础;-进行宏基因组(metagenomics)研究;-古代化石DNA 测序研究;利用配对末端方法(Pair-End Tag)将Contigs拼接成Scaffolds。转录组和基因调节研究;基于短Tags,ESTs, ChIP,或者GIS-PET序

比率荧光探针的制备及其在汞离子检测中的应用

比率荧光探针的制备及其在汞离子检测中的应用重金属离子被用于在生产生活的各个领域,其带来的污染问题也日益严重。由于重金属离子毒性大、蓄积性和难以降解的特性,对人和生态系统都会造成安全风险。因此有必要对重金属离子的含量进行监测。比率荧光分析方法可通过两个荧光峰的比值消除误差获得更可靠的数据并提高检测的灵敏度,并且由于较为明显的荧光颜色变化,可实现目标物的荧光直观化检测,具有一定的发展前景。本研究构建了CDs-AuNCs比率荧光探针,利用该探针良好的光学性质并能对汞离子进行特异性的识别,建立了一种简便灵敏、裸眼识别的汞离子荧光传感器。主要研究内容如下:1.比率荧光探针元件的合成。通过一步水热法和模板法分别合成了以赖氨酸为前驱体的碳量子点(Lys-CDs)及鸡蛋清稳定的金纳米簇(CEW-AuNCs)。并对包括时间、温度及pH的反应条件进行了探索,确定了荧光材料的最佳制备条件。根据高分辨透射电镜的结果可知两种材料均呈球形,Lys-CDs和CEW-AuNCs的粒径分别为11 nm和6nm。并通过紫外吸收光谱和荧光光谱研究了两种荧光材料的光学特性,证明了Lys-CDs和CEW-AuNCs的成功合成。2.比率荧光探针的构建。将Lys-CDs和CEW-AuNCs通过简单混合,无需交联剂的方式制备了CDs-AuNCs比率荧光探针。该探针在单一波长(390 nm)激发下,在450nm和665 nm处有两个荧光发射峰,在紫外灯下显示粉色荧光。通过高分辨透射显微镜、傅里叶红外光谱、X射线光电子能谱、Zeta电位、紫外-可见光谱、荧光光谱对CDsAuNCs进行分析,表明在构建过程中没有形成共价键且不存在能量共振转移,

HPV检测技术及市场概况(完整资料).doc

【最新整理,下载后即可编辑】 HPV检测技术及市场概况 一、杂交法(达安19种分型、凯普21种、亚能23种、透景 26种);实时荧光PCR(达安8种、上海之江13种高危分型、港龙生物(可定量);第二代杂交捕获法(HC2)等 二、已获SFDA批准注册HPV试剂盒(详见附件)

2012年,国家临检中心以凯普21分型产品作为全国医院评估的标准产品,以凯普为标准检验医院检测水平,凯普成为国内HPV检测行业的标准。中国宫颈癌防治工程唯一指定使用HPV检测产品。扩增控制和杂交控制的双重质控技术。 2. 中山大学达安基因股份有限公司 核酸诊断试剂是达安基因的主要产品,占营业收入的50%左右,市场份额在60%。达安基因具备荧光探针和核心酶体系自给的核心竞争优势。参股公司安必平主要提供以宫颈癌检查为主的病理诊断产品,提出“HPV DNA+液基细胞”一站式解决方案,在“两癌筛查”大背景下取得了快速增长,2010年贡献净利润约446万。 3. 凯杰生物工程(深圳)有限公司(QINGEN) 目前唯一经美国食品和药品监督管理局(FDA)、欧洲CE 和中国食品药品监督管理局(SFDA)共同认证的检测技术,传统金标准。

4.港龙生物技术(深圳)有限公司 采用基因芯片法,是市场中检测分型种类最多的试剂盒,26种,包括HPV16、18、31、33、35、39、45、51、52、56、58、 59、68、6、11、40、42、43、44、53、54、55、57、66、67、 73。 五、HPV临床应用情况 三级医院一般均已开展人乳头瘤病毒(HPV)检测,主要在检验科、病理科、妇产科进行,以北京地区医院为例: 中国医学科学院肿瘤医院,检验科 北京军区总医院,病理科 北京大学第一医院,妇产科宫颈病变诊治中心 六、物价参考

荧光探针

荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益! 1、荧光纳米粒子的分类 荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1.量子点 量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由II-VI 族或者III-V 族元素组成的纳米颗粒。目前研究较多的主要是CdX(X = S、Se、Te)。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。由于量子点潜在的应用前景,研究者在量子点的制备方面展开了一系列的研究。 目前,量子点的制备方法根据其所用材料的不同,有以下两种方法:一、在有机体系中采用胶体化学方法以金属有机化合物为前体制备量子点,二、在水溶液中直接合成。在有机体系采用胶体化学方法制备量子点的研究中,Bawendi等将金属有机化合物注射入热的有机溶剂中,在高温下制备出具有单分散性的CdSe量子点。后来,人们使用无机物来钝化颗粒表面,发展了核壳结构的量子点。peng等人以CdO或Cd(Ac)2为原料,在一定条件下与S、Se、Te的储备液混合,一步合成了性能良好的CdS、CdSe、CdTe量子点。Nie等以此法合成了CdSeTe量子点,其荧光发射最大的波长为850 nm,量子产率高达60%。该法不但克服了先前合成方法中需要采用(CH3)2Cd作为原料的缺点,而且所合成的量子点荧光量子产率高、尺寸分布窄、波长覆盖范围广。此外,Reiss等人在Peng的基础上以CdO为前体在HDA-TOPO混合体系中合成CdSe,然后以硬脂酸锌为锌源,在CdSe的表面包覆一层ZnSe,首次合成了CdSe/ZnSe核壳结构的量子点,荧光量子产率高达85%。另外,也有研究者采用在水溶液中进行量子点的合成,Weller等人以六偏磷酸钠及巯基乙酸、巯基乙胺等巯基化合物为稳定剂,以Cd(ClO4)2?6H2O为镉源合成了水溶性的CdS、CdSe、CdTe量子点。该法操作简单、可制备的量子点种类多、所用材料价格低、毒性小,且量子点表面修饰有可直接与生物分子偶连的羧基或氨基等官能团。然而,采用在水溶液中合成量子点的方法存在着量子产率不高、尺寸分布较宽等缺点。所以,目前人们仍较多的采用在有机体系中进行量子

相关文档