文档库 最新最全的文档下载
当前位置:文档库 › 数学建模 绿色波浪红绿灯

数学建模 绿色波浪红绿灯

数学建模  绿色波浪红绿灯
数学建模  绿色波浪红绿灯

评分栏

1、设计"绿色波浪"红绿灯

摘要:

本文主要研究交通问题中的“绿色波浪”线控模型,把主干道相邻交通交通信号联

动起来,通过对其距离和信号周期的分析,给出“时间-距离”图,利用图解法对简单系

统优化求解;提出对复杂系统的数值计算法,用精确的数值进一步研究红绿灯控制问题,

并实地考察从哈尔滨秋林公司到太平桥各路口的实际情况,采集了数据,用此法给出了对

此路段的“绿色波浪”红绿灯的设计方案。从而政府可以逐渐改变道路的结构和尽可能多

地设置“绿色波浪”道路,大大节约整个行车组的汽油消耗,改善环境。

一、问题重述

随着全球温室效应的加剧和石油资源的逐渐减少,很多国家都将节能减排

提到了政府工作的重要议事日程之中。城市拥堵的交通是造成汽油消耗和大量

尾气排放的重要元凶,而汽车在反复刹车减速和提速的过程中不但耗油量是正

常行驶的数倍以至十多倍,所排放的有害气体也是成倍增加。哈尔滨秋林公司

到太平桥路线,该路段长约4公里,但是地处繁华地带,红绿灯密集,一路上

有大约10多处红绿灯,行车缓慢经常拥堵,行车时间长达20分钟。需要依照“绿色波浪”想法设计一套红绿灯系统。在保证安全的前提下尽可能实现顺畅

通行,并在最后向司机写一份推广文,介绍想法做法,和司机应该如何顺利实

现“绿色波浪”。

二、问题的分析与假设

1、假设从秋林公司到太平桥这一段,马路的宽度相等、各向车道数相等。

2、假设此路段上车总量大于与其他交叉的其他路口的车流量。

3、从各个路口进入此路段的车流量等于注入此路口的车流量。即各个路

口对此路段的车流量没有影响,此路段与它们相交叉时自身的车流量不会改变。

4、假设此路段从西到东的车流量相等,而且两个方向汽车的平均速度相等。

5、信号灯只有红灯、绿灯两种,不考虑黄灯。

6、各个路口的信号周期(红灯+绿灯时间)相等。

7、不考虑转盘等设施,认为在这些路口仍然使用红绿灯。

三、模型的建立与求解

在提出模型之前,现进行符号说明和参数解释。

T红绿灯显示一个循环所需时间

G一个周期中绿灯持续时间

R一个周期中红灯持续时间

V

e

交叉路口等效交通流量

g绿信比, 绿灯时间所占周期时间的比例百分比表示

i

t?相位差,即交叉路口绿灯信号开始时间与参考点绿灯开始时间之差

S相邻交叉口距离

v车辆行驶的平均速度

s?路口之间理想间距的最小单位长度

模型涉及到的基本参数主要有:周期、绿信比、相位差。它们是交通信号的三个主要控制参数。

1.周期

周期是指红绿灯显示一个循环所需要的时间:

R

G

T+

=

其中,G为绿灯持续的时间,R为红灯持续的时间。

增加周期时长可提高通行能力,但周期时长超过140s后,则将在红灯方

向造成严重阻车现象,且超过了司机的忍耐极限,故周期时长不宜超过140s。

周期时长也不宜过短,因为要考虑到车辆和行人安全通过交叉口所需最短时间,最短时间一般定为40s。

(1)单个交叉口的信号周期长度的计算:

以下的计算按“美国方法”的经验公式计算[3]。

先将货车、公共汽车换算成小汽车,将左转车折合成直行车。求出等效交

通量V

e

V

e =

n

L

H

V6.0

5.0+

+

其中, V

e

为等效交通流量(辆/h,直行),V为路口实际交通流量(辆/h),

H为公交车、货车辆数(辆/h),

L为左转车辆数(辆/h),

n为进口有效车道数

根据基本假设3,L=0,所以上面的公式变为:

V

e =

n

H V5.0

+

周期长度、等效交通量之间有以下关系:

T =e

V -?1333213330 由此便可以求出单个交叉路口的信号周期长度。

图1:T 与e V 的关系图

(2)多个交叉口的信号周期长度的计算:

为了达到系统协调,各交叉口必须采用相同的周期长度。为此,必须先按单个交叉口的信号计算方法,确定每个交叉口的信号周期长度,然后取最长的作为本系统的公共周期长度,其他交叉口也采用这个周期长度。

2.绿信比

是指在一个周期内,绿灯时间所占周期时间的比例百分比表示

T

G g =×100% 每个交叉路口交通信号绿信比是根据主干道的交通量和与其交叉的道路的交通量决定的。

先计算绿灯时间G , r

g V V R G = 其中,g V 为绿灯通行方向的车流量,r V 为红灯禁行的两个方向的车流量。 又因为已经计算出信号周期,∴G T R -=

由以上两式可知: g r g V V T V G +=

所以绿信比可以确定。 在多个路口的系统中,各交叉口的绿信比根据交叉口的各方向交通量来确定,一般不相等。

3.相位差

我们以一个交叉路口为参考点,其他交叉路口绿灯信号开始时间与参考点绿灯信号开始时间之差称为相位差,它是一个相对值。将第i 个交叉路口的相位差记做i t ?:

0t t t i i -=?

其中,0t 是作为参考点的交叉路口的绿灯信号开始时间。

主干道相位差是保证交通流在主干道各交叉路口遇到红灯信号尽可能少的关键参数。相位差由交通量、主干道交叉路口之间的距离以及规定车速来确定。如果相位差选取的合适,那么汽车就可能畅通无阻地通过主干道,而极少遇到红灯。

模型一、单行“绿色波浪”模型

在此我们提出 “绿色波浪”这个概念。所谓“绿色波浪”,就是指车流沿某条主干道行进过程中,连续得到一个接一个的绿灯信号,畅通无阻地通过沿途所有交叉口。这种连续绿灯信号“波”是经过沿线各交叉口信号配时的精心协调来实现的。

1.1单行绿色波浪模型的提出

根据假设,我们认为此路段相对与和它交叉的其他道路来说车流量很大,它是一条主干道。

“绿色波浪”线控制系统是指一条主干道中若干个交叉路口交通信号之间的协调控制。目的是使行驶在主干道协调控制的交叉路口的车辆形成车队可以不遇红灯或少遇红灯而通过这个线控制系统中的各交叉路口。“少遇红灯”是指车队有时由于各种原因比如速度没有控制好。从被控制的主干道各交叉路口的信号灯色来看,绿灯像波浪一样地向前行进而形成“绿波”。因此,我们称此为“绿色波浪”线控制模型。

图2:单行的“时间――距离图”

主干道的“绿色波浪”线控制系统的交通灯控制可以用一个“时间――距离图”来描述,如图2所示。

根据图2我们作以下说明:

(1)绿波带

由一对平行速度线在“时间――距离图”上所形成的空间叫绿波带,即以带速运行的车辆可以顺利地通过主干道各交叉路口而不通红灯。

(2)带速

即通过带内车队的速度,在“时间――距离”图上是用绿波带斜率的倒数来描述的,如果绿波带越陡,斜率越大,则车队速度越小,反之亦然。

(3)带宽

即绿波带的宽度,用秒表示。用它描述交通处在绿波带内所利用的时间。由图1可以看出,带宽越宽,通过主干道时一次都不遇红灯的车辆越多。

1.2单行“绿色波浪”模型的求解

由于单行绿波带模型有不完善之处,所以我们只给出单行绿波带模型求解的理论公式,而不去实际求解。

(1)计算信号周期

根据交通量的预测和公式T =

e

V -?1333213330,计算出所有交叉路口交通信号的周期。为了便于统筹规划,我们使各个路口的信号周期相同。考虑到信号周期最长的路口,在整条路中起关键作用,我们取它的信号周期为所有路口的信号周期: )(max 1i n

i T T ≤≤=

其中,i T 为第i 个路口的信号周期。

(2)计算绿信比

由上面的公式 T G g =

与 g r g V V T V G +=,可以计算出绿信比。 (3)确定相位差

合适的相位差是实现“绿波带”的关键。单行街道相位差是以在交叉路口之间的通行时间来确定的,从图1中就能看出:

v d t i

i ?=? 其中,v 是主干道上汽车的平均速度,i d ?是第i 个路口与参考点之间的距离。

利用以上的模型,可以求解出理想的“绿色波浪”。完全意义的“绿色波浪”只有在单向交通干线上才能实现,实现“绿波”的关键是精确设计相邻交叉口之间的相位差。图2所示的就是一个理想的“绿色波浪”。

模型二、双行“绿色波浪”模型

2.1双行绿波带模型的提出

前面给出了对单行道进行红绿灯管理的方法,然而在实际中,此路段是双行干道,所以以上单行绿波带模型与现实不符。这样在考虑优化问题时,就不能仅仅只对一个方向的交通进行优化,而应该统筹兼顾,考虑两个方向的优化问题,做到全局优化。所以我们将其再改进为双行绿波带模型。

同样,双行绿波带模型也可以用“时间――距离图”来描述,如图3所示。双行绿波带模型与单行绿波带模型最大的不同的是:由于要求主干道从东到西、从西到东两方向都要实现“绿波带”,而且各个路口之间实际距离是不均匀的,所以“绿波交通”不再是理想的了,绿波带的带宽也会减小。

图 3:双行的主干道“时间――距离图”

2.2双行“绿波带”模型的求解

(1)信号周期

与单行绿波带模型完全相同。

根据2011年5月1日14:00~16:00测得的数据:

=V 2660辆/h, V

H =10%, ∴ V e =n

H V 5.0+=966 辆/h ∴ T =e

V -?1333213330=66 s 即主干道上所有交叉路口的信号周期取为:66s

(2)绿信比

与单行绿波带模型完全相同。

根据实际的测量,我们发现各个交叉口支路的车流量有较大差别。所以为了计算简单和数据采集的方便,我们将交叉口支路按车流量从大到小分为三类,认为在同一类中的交叉口支路的车流量相等。

● 第一类:红绿灯7

● 第二类:红绿灯4、9

● 第三类:红绿灯1、2、3、5、6、8

以下是2011年5月1日14:00~16:00测得的数据。

它们的车流量分别为:1r V =2400辆/h ,2r V =1900辆/h ,3r V =700辆/h. 又由==V V g 2660辆/h ,=T 66s 所以,利用公式g r g V V T

V G +=,算得

≈1G 35s ,≈2G 39s ,≈3G 52s

∴=1g 53%, =1g 59%, =1g 79%

这样,每个路口的绿信比也就确定了。

(3)相位差

由于双行绿波带模型与单行绿波带模型的不同,也导致了相位差求解方法的不同。单行绿波带模型很容易求出最优解,即理想的“绿波交通”,而且绿波带的带宽可以达到最大。

但是双行绿波带模型的求解稍显麻烦,其相位差需进行平衡,而且理想的信号配时是很难达到的,只能寻求最接近理想“绿波交通”的协调控制方式。我们提出了两种相位差求解的方法:一种为图解法,另一种为数解法。前一种方法简单,但不适用于交叉口太多的情况,因为作图难度会很大;后一种方法适用于交叉口较多的情况的求解。

图解法

图解法实际上就是利用作“时间――距离图”的方法求解出各个路口的相位差。作图时遵循以下规则:

●主干道上从东到西、从西到东两方向车辆的平均速度v相等。

取v=14m/s

●在“时间――距离”图上反映为绿波带斜率的倒数。

●所有路口信号周期相同。绿灯持续时间按上面计算出的结果分配。

●两个方向的绿波带带宽相差不要太大。

●使两个绿波带的带宽都尽可能地大。

作图后,从“时间――距离图”量出各个路口的相位差

数解法

为了建立起双向与单向之间的关系,我们考虑二者之间的联系于区别。在只考虑单向时,我们把车流看作是“绿波”流经各个路口。为了达到最优,我们使各个路口在“绿波”流经时都取绿灯,从而达到最优,而在双行线中,由于对两个方向的车来说,红绿灯具有相同的相位,对他们的通行有着相反的意义,这样的优化会影响相反方向的车流实现最优。为了实现目标,我们应尽可能的使红绿灯对两个方向的车的作用达到统一。

现在,考虑两种特殊的状态:

●状态一:红绿灯的变化保持一致,即处于同相关系。

●状态二:红绿灯的变化刚好相反,即一个红绿灯由红变绿时,另一个

由绿变红,反之亦然。

说明:对于状态一,很显然,由于其变换同步,则在双向车流看来是一样的;而对于状态二,虽然并非同步,但正好完全相反,对于双向车流,其效果也是一样的。

这样就产生两种协调控制方式:

a、同步式协调控制:

即同一时刻,主干道方向所有信号显相同灯色。

b、交互式协调控制:

即同一时刻,主干道方向相邻信号显相反灯色。

经过上面的分析,如果可使红绿灯处在前述状态之一,则可将两个方向的车统一起来,但这样作并不意味着方案达到了优化。我们必须在这两种状态的基础上,找到一种优化的方法。

经分析,我们发现对于第一种协调控制方式,如果满足关系

T v k S ??=

其中:S 为相邻交叉口距离,k 自然数,T 信号周期时长。

那么对于两个方向的车流,根据上面对一个方向的分析,都分别达到了最优,是一种最优解。同样的,对于协调控制方式二,如果满足关系

T v k T v S +=2

那么对于两个方向的车流也达到了最优。

现在问题就转化为如何满足上方的条件。经分析,我们看到,是否满足这种条件,在v 相对客观已经确定的情况下,只有T 可以人为的改变,所以对已经求得的信号周期进行微调,从而使之近似的满足条件,那么我们求得的解将是一个相对完善全面的解。

这里给出优化的方法:

第一步:对各个路口的交通状况进行数据采集,在对数据分析的基础上得到各路口的最优信号周期,取其中最大的作为整条马路的信号周期T 。对车流速度进行实际测量,估算出车辆的平均速度v 。通过对地图等的分析,得到个路口之间的间距大小。

第二步:运用公式

2

T v s =? 得出个路口之间理想间距的最小单位长度。

第三步:以各路口间距作为纵行,s ?的微调值为横行,列一张表,表内填写对于某个给定的s ?,各路口距离理想中路口的偏差。最后求出对于某个给定s ?对各路口偏差的衡量系数。

第四步:找出衡量系数的最小值,将其对应的s ?作为最小单位,同时算出各路口的相位关系,即为最优。

下面我们根据这一算法,针对此路段道路的具体情况,给出解决方案。首先我们通过地图测量了各路口之间长度的具体值,得到了路口间距,列表如下:

=50 km/h,即14m/s。运用前述公式,得到T=66s,这样基本数据的采集和处理就基本完

成了。通过公式

462

m

路口之间理想间距的最小单位长度也就确定下来了,由于进行优化时,要对s?

进行微调,这里给出s?的微调范围为440-480。

说明:以路口距离为纵轴,s?的各微调值为横轴,表中各值为距离理想中路口

的偏差来做表。这样作是为了得到实际路口与理想路口的偏差最小值。表的最

后一行为衡量系数a,它由如下公式得到:

s l

n a

n

i

i ?

=

=1 1

i

l——对于给定的s,第i个路口的偏差。

n ——路口数-1

a的实际意义为偏差的平均值与理想间距的最小单位长度的比值,用它来衡量各个s,体现了各路口平均偏移的相对大小,很显然,偏差小的则与理想越符合,所以应取a最小的那个值所对应的s为间距。考察该图,则450为最优的s。最后,根据求得的结果,将相位求出

说明:由确定的s?=450,可确定各个路口与理想中的第几个距离最近,结果列在理想路口列中。由前述分析可知,当路口编号为奇数时,为反相,偶数时为同相,这样我们就确定了各路口的红绿灯相位关系。

四、模型的稳定性分析、优缺点、推广

以上通过对“绿波带”线控模型的建立分析,找到了有效控制红绿灯的方案。对红绿灯的有效优化控制在一定程度上缓解了交通,解决了一定的交通堵塞问题。但是此种方法有一定的局限性,因为绿波带的带宽有限,还会导致一部分车辆等候绿灯信号。

模型的优点在于,实现了“绿波交通”。“绿波交通”具有最短的旅行时间,最少的停车次数,最少的等待时间,最大的通过量的特点。进入“绿波带”的车辆如果按平均速度v行驶将不会遇到红灯;对于在“绿波带”之外的车辆,在进入“绿波带”之前,将遇到一次红灯然后进入“绿波带”。所以,在此模

型建立的南二环上行驶时最多将遇到一次红灯,前提是行驶速度不能与平均速

度v相差太大。

但模型也有不足之处,首先这是一个静态的模型,它没有考虑到车流量的变化以及平均速度的变化,在实际情况中,车流很明显的随着时间变化,尤其

在高峰期,交通流量往往是平时的数倍。所以信号周期T与绿信比g都应是动

态变化的,相应的信号灯设计方案也应是动态变化的。

五、总结

在对交通状况进行分析建模后,我们首先考虑了较为简单的单向模型。

在这种模型中,为了使车辆通过各路口时尽可能多的遇到绿灯,我们给出了各

红绿灯相位差公式,使前一个路口红绿灯由红变绿时,释放的车流到达下一个

路口刚好遇到绿灯。在此基础上我们再对双向交通进行分析,在双向交通中由

于红绿灯同时制约着两个方向的交通,就要考虑两个方向的优化问题。我们给

出了两种方案:图解法与数值计算法。在图解法中,我们对于简单的系统,将

各路口红绿灯的相位情况直观的表示在图上,而交通流则表现为以速度v为斜

率的带状分布,通过调整红绿灯的相位,使车流尽可能多的流经绿灯区域,得

到最优解,然而对于比较复杂的系统,这种方法就不是很可行了。数值法是一

种更精确的方法,为了统一正反两个方向的车流,我们只将红绿灯的相位设定

为两种模式:同相与反相。根据对单向情况的分析,如果要在同相与反相时实

现最优,路程,信号周期必须要满足一定的关系,显然改变路口间距是不可能的,为了使其可行,我们对信号周期进行微调,并找到尽量满足公式的信号周

期作为方案的信号周期。这种方法保证了在同相与反相时,两个方向的车流较

大程度的满足单向时的最优解,同时,各个路口的信号周期也在最优附近,较

全面完善的解决了问题,而我们改变的只是红绿灯的相位与绿信比,这在实际

情况中是完全可以实现的,这样既达到了最优,也符合实际,所以这个方案是

可行的。

参考文献:

[1]沈继红等.数学建模.哈尔滨:哈尔滨工程大学出版社,2002.5

[2]王炜.交通工程学.东南大学出版社

[3]姜启源.数学模型.高等教育出版社

[4]倪江华.交通工程学计算示例.人民交通出版社

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模论文十字路口绿灯

江西师范高等专科学校 论文题目:十字路口绿灯亮30秒,最多可以通过多少辆汽车? 组长:肖根金学号:9015300135 班级:15数教1班 组员:叶强学号:9015300143 班级:15数教1班 组员:谭伟学号:9015300132 班级:15数教1班 2017年4月15日

目录 一、问题重述 (3) 1.1问题背景 (3) 1.2问题简述 (4) 二、模型假设 (4) 3.1 停车位模型 (5) 3.2 启动时间模型 (5) 3.3 行驶模型 (5) 三、模型建立 (5) 四、模型求解 (5) 五、模型的检验与应用 (6) 5.1调查一个路口有关红绿灯的数据验证模型是否正确 5.2分析绿灯亮后,汽车开始以最高限速穿过路口的时间 5.3给出穿过路口汽车的数量n随时间t变化的数学模型 六、模型的评价 (6) 6.1 模型的优点 (6) 6.2 模型的缺点 (7) 参考文献

一、问题重述 1.1问题背景 随着经济和社会快速发展,我国城市道路建设增多,出行车辆增加,城市交通进入了快速发展阶段,城市交通的几个问题,即交通阻塞、交通事故、公共交通问题城市,道路交通问题日益突出.,为城市交通建设和路网规划提供方案和依据,达到优化城市道路交通状况的目的.因此我们针对于交通问题事故,将“十字路口绿灯亮30秒问题”单独列出以建模的形式来进行合理的规划,让十字路口的交通,更安全。在每年的节假时间里,有很多的人喜欢去旅游,交通的拥挤阻塞已经是很大问题,好多事故的发生。这是我们不愿意见到的事实。“十字路口绿灯亮30时间”对于现在的这个新时代的我们来说,城市的汽车车水马龙,它的合理设计是十分重要的。在交通管理中,绿灯的作用是为了维持交通秩序。在十字路口行驶的车辆中,主要因素是机动车辆,驶近交叉路口的驾驶员,在看到绿色信号后要通过路口。利用数学模型解决绿灯在十字路口亮30秒的问题,可以减少交通事故的发生,也相对合理的运用社会科学知识解决实际问题。某一天一个式子路口的绿灯灯亮30秒,那么能通过几辆汽车呢? 1.2问题简述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路

数学建模,红绿灯闪烁模型

建模实习作业题 之红绿灯闪烁模型班级:计算1502

交通管理中非数字灯闪烁时间模型 摘要 本文在了解过车辆通过红绿灯所遇见的情况,以及对车型的分析下,重点通过常微分方程建立起时间,刹车距离,以及刹车制动因素相关的数学模型。 在问题中对红绿灯灯应闪烁时间做出等价转换,闪烁的意图是让车辆在黄灯前停在停止线前,对于影响车辆刹车距离的因素主要由车辆制动力控制,闪烁时间应为驾驶员观察到信号变换反应的时间与驾驶员制动使车辆停在停车线所需时间之和。在法定通过红绿灯的速度下对大型车辆进行讨论,因为小型车辆制动距离明显小于大型载货汽车。 对于模型的评价,本文采用与实际生活中数据以及对车辆理论数据进行对比,以此检验模型建立的合理性及正确性。 最后,本文分析了现有模型的缺陷,并提出进一步改进方法,使之与贴合生活方面进一步。 【关键词】微分方程;刹车制动力;制动因素

目录 一、问题重 述………………………………………………………………………………… …4 二、基本假 设………………………………………………………………………………… …4 三、符号说 明………………………………………………………………………………… …4 四、模型建立、分析与求 解 (5) 五、模型评价与改 进 (6) 六、参考文 献 (7)

一、问题重述 从2013年元月一日,国家开始实行新的交通法规。在十字路口的交通管理中,最大而且最有争议的改变是闯黄灯。在以前的交规中,亮红灯之前要亮一段时间黄灯,这是为了让那些行驶在十字路口或距十字路口太近以致无法停下来的车辆通过路口.现在规定闯黄灯也是违规行为,为了不违反交通法规,对有时间数字的交通灯,司机根据时间数字可以提前对自己的行动作出决策,但还有很多交通灯是非数字的,这就不可避免的对司机的判断造成障碍,为此,非数字的交通灯在变灯前加入了闪烁,以提醒司机。为了让司机在十字路口有足够的时间决定过不过马路,请你考察实际生活中的道路,给出最佳的闪烁时间。 二、基本假设 1.假设刹车途中,刹车制动力恒定 2.行驶过程中没有意外事故

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模 红绿灯问题

十字路口红绿灯的合理设置 陈金康 检索词:红绿灯设置、红绿灯周期 一、问题的提出 作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。 下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。 二、模型的建立 1、红绿灯周期 从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式: s q L C ∑ -+= 15 其中 : C 为周期时间。 相位:同时启动和终止的若干股车流叫做一个相位。 L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。) 即R I L +∑= q 为相应相位的车流量 s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。) 2、南北方向和东西方向开绿灯时间的分配 不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

交通路口红绿灯__数学建模

交通路口红绿灯 十字路口绿灯亮30秒,最多可以通过多少辆汽车?一问题重述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路口绿灯亮30秒,最多可以通过多少辆汽车”时应综合考虑各方面因素二模型假设 (1)十字路的车辆穿行秩序良好不会发生阻塞; (2)所有车辆都是直行穿过路口,不拐弯行驶,并且仅考虑马路一侧的车辆。 (3)所有车辆长度相同,并且都是从静止状态开始匀加速启动; (4)红灯下等侍的每辆相邻车之间的距离相等; (5)前一辆车启动后同后一辆车启动的延迟时间相等。 另外在红灯下等侍的车队足够长,以至排在队尾的司机看见绿灯又转为红灯时仍不能通过路口。 参数,变量:车长L,车距D,加速度a,启动延迟T,在时刻 t 第n 辆车的位置 S n(t) 用数轴表示车辆行驶道路,数轴的正向为汽车行驶方向, 数轴原点为红绿灯的位置。于是, 当S n(30)>0时, 表明在第30秒第n辆车已通过红绿灯,否则,结论相反。

三模型建立 1.停车位模型: S n(0)=–(n-1)(L+D) 2. 启动时间模型: t n =(n-1)T 3. 行驶模型: S n(t)=S n(0)+1/2 a (t-t n) 2, t>t n 参数估计 L=5m,D=2m,T=1s,a=2m/s 四模型求解 解: S n(30)=-7(n-1)+(30-(n-1))2>0 得 n≤19 且 t19=18<30=t 成立。 答案: 最多19辆车通过路口. 改进:考虑到城市车辆的限速,在匀加速运动启动后,达到最高限速后,停止加速, 按最高限速运动穿过路口。 最高限速:校园内v*=15公里/小时=4米/秒,长安街上v*=40公里/小时=11米/秒,环城路上 v*=60公里/小时=17米/秒 取最高限速 v*=11m/s,达到最高限速时间t n*=v* /a+t n =5.5+n-1 限速行驶模型: S n(t)=S n(0)+1/2 a(t n *–t n )2+v*(t-t n*), t>t n* =S n(0)+1/2 a (t-t n) 2, t n*>t>t n = S n(0) t n>t 解:S n(30)=-7(n-1)+(5.5)2+11(30-5.5-(n-1))>0 得 n≤17 且 t17 * =5.5+16=21.5<30=t 成立。 结论: 该路口最多通过17辆汽车.

数学建模--交通问题

摘要 近年来随着机动车辆的迅猛增长,城市道路的交通压力日渐增大,各大城市对旧城改造及城市道路建设的投入也不断扩大,交通拥挤问题却仍旧日益严重。因此,科学全面地分析和评价城市的绩效,进而找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。 本文通过大量查阅城市交通绩效评价指标,结合目前我国交通发展现状,以兰州为例,首先建立了绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u ==∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w ==∑ []R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过一致性检验公式RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着,为了优化兰州安宁区道路交通,我们建立了评价城市交通的指标体系,继而构造模糊判断矩阵P ,计算出相应的权重值。我们挑选了道路因素进行优化,以主干道利用率约束、红绿灯效率约束、公交站点数目约束、非负约束为约束条件建立了安宁区道路交通优化方案的权系数模型,最后利用实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。 关键词:城市交通 层次分析 模糊综合评判 绩效评价 隶属度

附录:全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling,简称CUMCM)是由国家教育部高等教育司和中国工业与应用数学学会联合举办的,在全国高校中规模最大的课外科技活动之一. 其竞赛宗旨是:创新意识、团队精神、重在参与、公平竞争. 本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加).同学们可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系. 全国大学生数学建模竞赛章程(2008年)第一条总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革. 第二条竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程.题目有较大的灵活性供参赛者发挥其创造能力.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准. 第三条竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行. 2.竞赛每年举办一次,一般在某个周末前后的三天内举行. 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限.竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加.每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理. 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念

模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。 合理的假设是建立理想模型的必要条件和基本保证。如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。 3.构造模型

数学建模——交通管理问题

190 实验十 交通管理问题 【实验目的】 1.了解微分方程的一些基本概念。 2.初步掌握微分方程模型建立、求解的基本方法和步骤。 3.学习掌握用MA TLAB 软件中相关命令求解常微分方程的解析解。 【实验内容】 在城市道路的十字路口,都会设置红绿交通灯。为了让那些正行驶在交叉路口或离交叉路口太近而又无法停下的车辆通过路口,红绿灯转换中间还要亮起一段时间的黄灯。对于一名驶近交叉路口的驾驶员来说,万万不可处于这样进退两难的境地:要安全停车但又离路口太近;要想在红灯亮之前通过路口又觉得距离太远。那么,黄灯应亮多长时间才最为合理呢? 已知城市道路法定速度为0v ,交叉路口的宽度为I ,典型的车身长度统一定为L ,一般情况下驾驶员的反应时间为T ,地面的磨擦系数为μ。(假设I =9m ,L =4.5m ,μ=0.2,T =1s ) 【实验准备】 微分方程是研究函数变化过程中规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用。如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。 1.微分方程的基本概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。如果未知函数是多个变量的函数,称为偏微分方程。联系一些未知函数的多个微分方程称为微分方程组。微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )(n y +)1(1)(-n y t a +…+'1)(y t a n -+y t a n )(=)(t b (1) 若(1)式中系数)(t a i (i =1,2,…,n )均与t 无关,称之为常系数(或定常、自治、时不变)的。 建立微分方程模型要根据研究的问题作具体的分析。一般有以下三种方法: 根据规律建模:在数学、力学、物理、化学等学科中已有许多经过实践检验的规律和定律,如牛顿运动定律、基尔霍夫电流及电压定律、物质的放射性规律、曲线的切线的性质等,这些都涉及某些函数的变化率。我们可以根据相应的规律,列出常微分方程。 微元法建模:利用微积分的分析法建立常微分方程模型,实际上是寻求一些微元之间的关系式,在建立这些关系式时也要用到已知的规律或定理。与第一种方法不同之处在于这里不是直接对未知函数及其导数应用规律和定理来求关系式,而是对某些微元来应用规律。 模拟近似法建模:在社会科学、生物学、医学、经济学等学科的实践中,常常要用模拟近似法来建立微分方程模型。这是因为,上述学科中的一些现象的规律性我们还不是很清楚,

数学建模比赛需要什么软件及其介绍

数学建模比赛必备 1matlab(矩阵实验室) 2 lingo和lingo(线性规划) 3 SPSS<统计) 其中MATLAB是最重要的也是最常用的 4还有就是最好学好c语言这个软件和有很多的相似之处 其中统计软件:SPSS,SAS,STATA。 解决运筹学的模型:lingo 5 PS:SAS很强大的,如果没有接触过还是不要学的好。其实SPSS解决一下就可以了,只是SAS画出来的图很好看。 6另外还有时间可以看看另两个软件SMARTDRAW LATELX

什么是数学建模 数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。 3、竞赛的内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 4、竞赛的步骤 建模是一种十分复杂的创造性劳动,现实世界中的事物形形色色,五花八门,不可能用一些条条框框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则: 1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息. 2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。为数学问题,注意要尽量采用简单的数学工具。

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待 人们去研究、去解决。但 是,社会对数学的需求并 不只是需要数学家和专门 从事数学研究的人才,而 更大量的是需要在各部门 中从事实际工作 的人善于运用数 学知识及数学的 思维方法来解决 他们每天面临的 大量的实际问题, 取得经济效益和社会效 益。他们不是为了应用数 学知识而寻找实际问题 (就像在学校里做数学应 用题),而是为了解决实 际问题而需要用到数学。 而且不止是要用到数学, 很可能还要用到别的学 科、领域的知识,要用到 工作经验和常识。特别是 在现代社会,要真正解决 一个实际问题几乎都离不 开计算机。可以这样说, 在实际工作中 遇到的问题, 完全纯粹的只 用现成的数学 知识就能解决 的问题几乎是 没有的。你所能遇到的都 是数学和其他东西混杂在 一起的问题,不是“干净 的”数学,而是“脏”的 数学。其中的数学奥妙不 是明摆在那里等着你去解 决,而是暗藏在深处等着

你去发现。也就是说,你 要对复杂的实际问题进行 分析,发现其中的可以用 数学语言来描述的关系或 规律,把这个实际问题化 成一个数学问题,这就称 为数学模型。 数学模型具有下列特 征:数学模型的一个重要 特征是高度的抽象性。通 过数学模型能够将形象思 维转化为抽象思维,从而 可以突破实际系统的约 束,运用已有的数学研究 成果对研究对象进行深入 的研究。数学模型的另一 个特征是经济性。用数学 模型研究不需要过多的专 用设备和工具,可以节省 大量的设备运行和维护费 用,用数学模型可以大大 加快研究工作的进度,缩 短研究周期,特别是在电 子计算机得到广泛应用的 今天,这个优越性就更为 突出。但是,数学模型具 有局限性,在简化和抽象 过程中必然造成某些失 真。所谓“模型就是模型” (而不是原型),即是该性 质。 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。 模型是客观实体有关属性的模拟。陈列 在橱窗中的飞机模型外形应当像真正的飞 机,至于它是否真的能飞则无关紧要;然而 参加航模比赛的飞机模型则全然不同,如果 飞行性能不佳,外形再 像飞机,也不能算是一 个好的模型。模型不一 定是对实体的一种仿照,也可以是对实体的 某些基本属性的抽象,例如,一张地质图并 不需要用实物来模拟,它可以用抽象的符 号、文字和数字来反映出该地区的地质结 构。数学模型也是一种模拟,是用数 学符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁

数学建模 绿色波浪红绿灯

评分栏 1、设计"绿色波浪"红绿灯 摘要: 本文主要研究交通问题中的“绿色波浪”线控模型,把主干道相邻交通交通信号联 动起来,通过对其距离和信号周期的分析,给出“时间-距离”图,利用图解法对简单系 统优化求解;提出对复杂系统的数值计算法,用精确的数值进一步研究红绿灯控制问题, 并实地考察从哈尔滨秋林公司到太平桥各路口的实际情况,采集了数据,用此法给出了对 此路段的“绿色波浪”红绿灯的设计方案。从而政府可以逐渐改变道路的结构和尽可能多 地设置“绿色波浪”道路,大大节约整个行车组的汽油消耗,改善环境。 一、问题重述 随着全球温室效应的加剧和石油资源的逐渐减少,很多国家都将节能减排 提到了政府工作的重要议事日程之中。城市拥堵的交通是造成汽油消耗和大量 尾气排放的重要元凶,而汽车在反复刹车减速和提速的过程中不但耗油量是正 常行驶的数倍以至十多倍,所排放的有害气体也是成倍增加。哈尔滨秋林公司 到太平桥路线,该路段长约4公里,但是地处繁华地带,红绿灯密集,一路上 有大约10多处红绿灯,行车缓慢经常拥堵,行车时间长达20分钟。需要依照“绿色波浪”想法设计一套红绿灯系统。在保证安全的前提下尽可能实现顺畅 通行,并在最后向司机写一份推广文,介绍想法做法,和司机应该如何顺利实 现“绿色波浪”。 二、问题的分析与假设 1、假设从秋林公司到太平桥这一段,马路的宽度相等、各向车道数相等。 2、假设此路段上车总量大于与其他交叉的其他路口的车流量。 3、从各个路口进入此路段的车流量等于注入此路口的车流量。即各个路 口对此路段的车流量没有影响,此路段与它们相交叉时自身的车流量不会改变。 4、假设此路段从西到东的车流量相等,而且两个方向汽车的平均速度相等。 5、信号灯只有红灯、绿灯两种,不考虑黄灯。 6、各个路口的信号周期(红灯+绿灯时间)相等。 7、不考虑转盘等设施,认为在这些路口仍然使用红绿灯。 三、模型的建立与求解 在提出模型之前,现进行符号说明和参数解释。

大学生数学建模竞赛简介

大学生数学建模竞赛简介 1、数模竞赛的起源与历史 数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意识、团队精神、重在参与、公平竞争。1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。 2、什么是数学建模 数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。 3、竞赛的内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 4、竞赛的步骤 建模是一种十分复杂的创造性劳动,现实世界中的事物形形色色,五花八门,不可能用一些条条框框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则: 1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息. 2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。为数学问题,注意要尽量采用简单的数学工具。

相关文档
相关文档 最新文档