文档库 最新最全的文档下载
当前位置:文档库 › 第6章 土的孔隙水压力

第6章 土的孔隙水压力

第6章 土的孔隙水压力
第6章 土的孔隙水压力

地层孔隙压力预测新方法

石油与天然气地质  第28卷 第3期 O I L &G AS GE OLOGY 2007年6月  收稿日期:2006-09-06 第一作者简介:魏茂安(1966—),男,高级工程师、博士,信号与信息处理、测控技术 基金项目:中国石化重大科技项目(JP04014) 文章编号:0253-9985(2007)03-0395-06 地层孔隙压力预测新方法 魏茂安1 ,陈 潮2 ,王延江2 ,马 海 2 (1.中国石化胜利油田有限公司钻井工艺研究院信息中心,山东东营257017; 2.中国石油大学信息与控制工程学院,山东东营257061) 摘要:在分析地层孔隙压力预测传统方法局限性的基础上,提出了一种基于有效应力定理和声波速度模型的地层孔隙压力预测方法。由相关测井资料计算泥质含量、孔隙度和声波速度,通过支撑向量回归机计算垂直有效应力,密度测井资料计算上覆岩层压力,最后根据有效应力定理计算地层孔隙压力。实例分析表明,该方法用于预测砂泥岩及欠压实成因的异常地层压力是可行的。与传统方法相比,该方法不需要建立正常压实趋势线,有较好的适应性和预测精度。关键词:地层孔隙压力;支撑向量回归机;声波速度;孔隙度;泥质含量;垂直有效应力中图分类号:TE112.23 文献标识码:A New approach for pore pressure pred i cti on W eiMaoan 1 ,Chen Chao 2 ,W ang Yanjiang 2 ,Ma Hai 2 (1.D rilling Technology Research Institute,Shengli Petroleum Adm inistration B ureau,S I NO PEC,D ongYing,Shandong 257017; 2.School of Infor m ation and Control Engineering,China U niversity of Petroleum ,D ongY ing,Shandong 257061) Abstract:By analyzing the li m itati ons of the traditi onal pore p ressure p redicti on methods,a ne w pore p ressure p redicti on app r oach based on the effective stress theore m and the acoustic vel ocity model is p r oposed . It first calculates clay content,por osity,and acoustic vel ocity with relevant l og data,and then calculates vertical effec 2tive stress by using Support Vect orMachines f or Regressi on and the overburden p ressure with density l og data,and finally calculate for mati on pore p ressure by the effective p ressure theore m.Practical app licati on of the ap 2p r oach shows that it is feasible in p redicti on of abnor mal for mati on p ressure of sandst one and shale caused by undercompacti on .Compared with traditi onal pore p ressure p redicti on methods,the app r oach does not require establishing nor mal compacti on trend line and has better adap tability and higher accuracy of p redicti ons .Key words:pore p ressure;support vect or machine for regressi on;s onic vel ocity;por osity;shale content;vertical effective stress 异常地层孔隙压力的存在,不仅给石油勘探、钻井和开发带来很多困难,而且对安全钻井构成潜在的威胁。因此,在石油勘探中,地层孔隙压力的预测显得十分重要,其为设计钻井参数、井身结构提供重要的压力技术数据,对保护油气层、提高钻井成功率具有重要意义。 测井资料,尤其是地层声波速度,与地层孔隙压力密切相关,是确定地层孔隙压力较为理想的资料。利用测井资料预测地层孔隙压力的传统方 法有声波时差法、电导率法、密度法和中子测井法等[1,2] 。这些方法通常首先建立正常趋势线,并根据测井曲线是否偏离正常趋势线来定性判断是否存在异常地层孔隙压力,若测井曲线明显偏离了正常趋势线,则认为存在异常高压或低压,然后再 通过经验系数法、等效深度法和Eat on 法[3] 等定量计算地层孔隙压力。 传统预测方法提高了钻井的安全性和可靠性。但随着钻探深度与难度的提高,地层结构越来越复

地层压力预测方法(DOC)

地震地层压力预测 摘要 目前,地震地层压力预测方法归纳起来可以分为图解法和公式计算法两大类10余种。本文对各种地震地层压力预测方法进行了系统地归纳和总结,并对各种方法的特点、适用性以及存在的问题进行分析和讨论.在此基础上,就如何提高压力预测的精度,提出了一种简单适用的改进措施,经J1.K地区的实测资料的验证,效果良好。 主题词地层压力地震预测正常压实异常压实 引言 众所周知,油气层的压力是油气层能量的反映,是推动油气在油层中流动的动力,是油气层的“灵魂”。因此,在石油和天然气的勘探开发中,研究油气层的压力具有十分重要的意义。 首先,在油气田勘探中,研究油气层压力特别是油气层异常压力的分布,以及预测和控制油气层压力的方法,不仅可以保证安全快速地钻进,而且可以正确地设计泥浆比重和工程套管程序;同时也可以帮助选择钻井设备类型和有效安全正确的完井方法等。这些都直接关系到钻井的成功率以及油气田的勘探速度等问题。其次,在油气田开发过程中,准确的压力预测以及认真而系统的油气层压力分布规律的研究,不仅可以帮助我们认识和发现新的油气层,而且对于了解地下油气层能量、控制油气层压力的变化,并合理地利用油气层能量最大限度地采出地下油气均具有十分重要的意义。 多少年来,人们在异常地层压力(这里主要指异常高压或超压)预测方面进行了种种尝试,然而直到本世纪70年代以来,随着岩石物理研究的不断深人以及地震技术的不断提高,才真正使得地层压力的地震预测成为现实。 对于异常高压地层,一般表现为高孔隙率、低密度、低速度、低电阻率等特点,因此,凡是可以反映这些特点的各种地球物理方法均可用于检测地层压力。但是,由于各种测井方法均为“事后”技术,这就使得在初探区内利用地震方法进行钻前预测显得尤为重要。与此同时,地震地层压力预测还可以提供较测井方法更为丰富的空间压力分布信息。 利用地震资料进行地层压力预测,主要是利用了超压层的低速特点,因为在正常情况下,速度随深度的增加而增加,当出现超压带时,将伴随出现层速度的降低。可见,取准层速度资料是预测地层压力的关键之一,而选择合适的地层压力预测方法同样是一个十分重要的环节。 到目前为止,地震地层压力预测的方法名目繁多,但就总体而言,大致可分为图解法和公式计算法两大类。本文将对各种地震地层压力预测方法的内容、特点、应用效果以及存在的问题等作一系统全面的叙述。在前人研究工作的基础上,就如何提高地震地层压力预测的精度,本文提出一种简单而实用的改进措施,经JLK(吉拉克)地区实际资料的计算,效果良好。 地震地层压力预测方法综述 图解法 在所有地震地层压力预测方法中,最为直观简便的方法莫过于图解法了。按照判定超压层方式的不同,又可细分为等效深度图解法、比值法和量板法三种。 等效深度图解法 等效深度图解法(或可形象地称之为直接趋势线判别法)是以页岩压实概念为基础

孔隙压力有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

孔隙水压力监测

孔隙水压力监测 一、监测内容 用于量测基坑工程坑外不同深度土的孔隙水压力。由于饱和土受荷载后首先产生的是孔隙水压力的变化,随后才是颗粒的固结变形,孔隙水压力的变化是土体运动的前兆。静态孔隙水压力监测相当于水位监测。潜水层的静态孔隙水压力测出的是孔隙水压力计上方的水头压力,可以通过换算计算出水位高度。在微承压水和承压水层,孔隙水压力计可以直接测出水的压力。结合土压力监测,可以进行土体有效应力分析,作为土体稳定计算的依据。不同深度孔隙水压力监测可以为围护墙后水、土压力分算提供设计依据。孔隙水压力监测为重力式围护体系一、二级监测等级、板式围护体系一级监测等级选测项目。 二、仪器、设备简介 1 孔隙水压力计目前孔隙水压力计有钢弦式、气压式等几种形式,基坑工程中常用的是钢弦式孔隙水压力计,属钢弦式传感器中的一种。孔隙水压力计由两部分组成,第一部分为滤头,由透水石、开孔钢管组成,主要起隔断土压的作用;第二部分为传感部分,其基本要素同钢筋计。 2 测试仪器、设备 数显频率仪。 三、孔隙水压力计安装 1 安装前的准备将孔隙水压力计前端的透水石和开孔钢管卸下,放入盛水容器中热泡,以快速排除透水石中的气泡,然后浸泡透水石至饱和,安装前透水石应始终浸泡在水中,严禁与空气接触。 2 钻孔埋设孔隙水压力计钻孔埋设有二种方法,一种方法为一孔埋设多个孔隙水压力计,孔隙水压力计间距大于 1.0m,以免水压力贯通。此种方法的优点是钻孔数量少,比较适合于提供监测场地不大的工程,缺点是孔隙水压力计之间封孔难度很大,封孔质量直接影响孔隙水压力计埋设质量,成为孔隙水压力计埋设好坏的关键工序,封孔材料一般采用膨润土泥球。埋设顺序为①钻孔到设计深度;②放入第一个孔隙水压力计,可采用压入法至要求深度;③回填膨润土泥球至第二个孔隙水压力计位置以上0.5m;④放入第二个孔隙水压力计,并压入至要求深度;⑤回填膨润土泥球…,以此反复,直到最后一个。第

渗流孔隙水压力的计算

顺流减压,逆流增压—扫地僧 最近大家问了很多渗流的问题,自己也好好总结了一下。岩土考试涉及到渗流情况的孔隙水压力计算时,基本都可归结为8个字:顺流减压,逆流增压。渗流可以理解为水流,流速很慢的水流,沿渗流方向移动,相当于顺流而下,受到的水压力减小,即为顺流减压。逆渗流方向移动,相当于逆流而上,压力增大,即为逆流增压。 任意点D 的孔隙水压力万能公式: 1、按顺流减压:(从总水头高处往低处计算是即为顺流向) 2D u H x i =-? , /i h L =? 2、按逆流增压: (从总水头低处往高处 计算是即为逆流向)112()()/D u H L x i H L x h L H x i =+-?=+-??=-?(注:式中H1、H2分别为逆流向和顺流向D 点的静水压力水头) 力学原理解释:x i ?为计算段总水头损 失1h ,总水头损失=压力水头损失+位置水 头损失,发生渗流的情况与无渗流时(静水)相比较,位置水头差不变,故总水头损失1h 等于相对于静水时的压力水头损失(水头损失全部由压力水头承担),此段话比较绕,理解不了也没关系,下面以顺流减压进行推导。 以黏土层底面为基准面,A 点总水头:2H H x =+ 计算段总水头损失:1h x i =? D 点总水头: 12H H h H x x i '=-=+-? D 点位置水头:x D 点压力水头:1D u H x H x i '=-=-? 实战中的运用: 此方法实际就是上述的顺流减压公式。

此方法实际就是上述的顺流减压公式。 若按逆流曾压则为:30+45/2=52.5 此题若按顺流减压则为: ()22sin 28 6sin 28666sin 286cos 28w i h i ==-??=-?=?

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1) 其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图 6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图6.2所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= (6.4) 当竖管中的水位低于地表面时(如图 6.2(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图6.2(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图6.3说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-= (6.5)

振弦式孔隙水压力计全性能试验记录表

振弦式孔隙水压力计全性能试验记录表 一.环境条件 二.传感器主要参数 - 1 -

三.实际校准特性 压力校准数据(温度℃,初始读数 kPa) - 2 -

四.传感器压力性能参数 可参考GB/T 13606-2007附录A的计算方法进行计算,性能参数应符合GB/T 3411.1-2009 中5.3的要求。 压力计算公式(用线性方程表征或用非线性方程表征): 上式中传感器系数、温度修正系数: 压力计算数据 - 3 -

压力性能参数 注:满量程输出FS为振弦式传感器工作特性所决定的最大输出频率的平方和最小输出频率的平方的代数差。 - 4 -

五.防水密封性 压力计在1.2 倍满量程压力的水中连续工作2h,(填有或无)渗漏,(填符合或不符合)GB/T 3411.1-2009 中5.5的规定。 六.温度影响 将压力计放入高低温湿热试验箱中,从常温开始降至0℃,保持4h,读取输出值,然后升温至+40℃,保持4h,读取输出值,温度影响为每摄氏度下额定功率的%,(填符合或不符合)GB/T 3411.1-2009 中5.6的规定。 七.温度测量误差 将压力计分别放置在冰点槽和恒温水浴中,标准温度与传感器测量温度之间差异的最大值为℃,(填符合或不符合)GB/T 3411.1-2009 中5.7的规定。 - 5 -

八.绝缘性能 用100V的绝缘电阻表测量压力计测量电路(芯线不接地)与密封壳体之间的绝缘电阻为MΩ,(填符合或不符合)GB/T 3411.1-2009 中5.8的规定。 九.过范围限 将压力计置于压力容器中施加满量程压力值1.2倍的压力,保持0.5h后,恢复至正常测量范围后,其性能不重复度%FS,迟滞%FS,非线性度%FS,综合误差%FS,(填符合或不符合)GB/T 3411.1-2009 中5.3压力性能参数的要求。 十.稳定性 将压力计放置在压力容器中,按满量程压力值加、卸荷各10次,每次保持30s。让其恢复自然状态2h 后, 零点漂移%FS,(填符合或不符合)GB/T 3411.1-2009 中5.10.1的要求。 绝缘电阻MΩ,(填符合或不符合)GB/T 3411.1-2009 中5.8的要求。 - 6 -

地层孔隙压力检测方法

中华人民共和国石油天然气行业标准 SY /T 5623—1997 地层孔隙压力预测检测方法 Prediction and detection methods of formation pore pressure 1997—12—31发布 1998—07—01实施 中国石油天然气总公司 发布 ICS 75020 E 13 备案号:1163—1998 SY

SY/T 5623—1997 目次 前言………………………………………………………………………………………………………………l 范围………………………………………………………………………………………………………… 2 符号………………………………………………………………………………………………………… 3 破指数法…………………………………………………………………………………………………… 4 声波时差法………………………………………………………………………………………………… 5 预测检测孔隙压力技术总结………………………………………………………………………………

SY/T 5623—1997 前言 本标准是SY 5623—93的修订版本。 本标准修订时,增加了用声波时差法预测检测地层孔隙压力的内容,并对原有也指效法的内容做了必要的修改。 本标准从生效之日起,同时代替SY 5623—93。 本标准由石油钻井工程专业标准化委员会提出并归口。 本标准起草单位:江汉石油学院石油工程系。 本标准主要起草人李自俊王越支 本标准原代号和编号为ZB E13 006—90,首次发布日期:1990年3月27日。 本标准转为行业标准SY 5623的日期:1993年。

路基沉降、深水平位移、地基孔隙水压力观测作业指导书

路基沉降、深水平位移、地基孔隙水压力 观测作业指导书 编制: 审核: 批准: 新疆环路通公路桥梁试验检测有限公司

二0一四年八月 检测目的 为了优质高效建好项目,就必须密切关注不同工程地质条件下路堤填筑过程中或填筑后的地基变形动态,必须进行不同支撑条件下路基沉降和稳定的动态观测,为指导施工及时提供可靠的参考数据。 1.检测依据 1.1 交通部《公路工程技术标准》(JTG B01-2003); 1.2 交通部《公路路基设计规范》(JTG D30-2004); 1.3 交通部《公路路基路面现场测试规程》(JTJ059-95); 1.4 交通部《公路路基施工技术规范》(JTG F10-2006); 1.5 交通部《公路水泥混凝土路面设计规范》(JTG D40-2003); 1.6 交通部公路规划设计院《公路沥青路面设计规范》(JTG D50-2006); 2.适用范围 本方法适用于天然地基、处理土地基及复合地基路基沉降、深水平位移、地基孔隙水压力的检测。 3.方法原理简介 在天然地基、处理土地基及复合地基中通过沉降与稳定观测点布设,把沉降板、分层沉降管、边桩、测斜仪、孔隙水压力计压力盒等按一定设计规范及技术要求设置在需要观测的位置处,用以观测地基各层位土体侧向位移量,用于稳定监测,并了解土体各

层侧向变位以及附加应力增加过程中的变位发展情况。测定路堤侧向地面水平位移量并兼测地面沉降或隆起量,用以判断路基的稳定性。观测软土地基孔隙水压力变化,分析地基土的固结情况,评价加固效果及地基稳定性。了解路基基层横向不均匀沉降的大小及发生、发展规律沿纵向设置等间距基层沉降观测点,以了解路基基层纵向不均匀沉降的大小及发生、发展规律;为设计或工程验收提供依据。 4.工作程序与职责 4.1.经理或其指定人员按有关检测规范和行政法规的要求,结合具体工作情况,代表本公司与委托方签订检测委托,收集检测所必需的相关资料。 4.2 检测室负责人安排不少于2名的现场检测人员,确定现场检测负责人,并向其移交检测委托单及委托方提供的相关资料。 4.3 现场检测负责人凭检测委托单与委托方联系具体检测事项,负责制定检测方案,确定仪器设备的配置,经检测室负责人批准后实施。 4.4 现场检测负责人全面负责检测项目的技术、质量、安全、保密工作,保证检测样品或对象的真实性,编写检测报告。 4.5 检测室负责人审核报告;技术负责人批准报告;业务室负责报告的复印、装订和盖章;并凭委托方的收费凭据发出报告;财会室负责检测报告的收费。 5 观测内容 5.1 普通测点及重点观测断面所有观测项目如表1所示: 表1 观测项目及观测目的

孔隙压力、有效应力和排水

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1)

其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3/20m kN ≈γ,干土的3/16m kN ≈γ,水的3 /10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和

基于地震资料的探井钻前孔隙压力预测 ——以伊拉克A油田为例

第36卷 第6期 OIL&GASGEOLOGY2015年12月 收稿日期:2015-04-24;修订日期:2015-10-28。 第一作者简介:陈鑫(1981—),男,博士,高级工程师,油藏综合地质研究。E -mail :chenxinupc@qq.com。 基金项目:中国石油股份公司科技重大专项(2011E-2501)。文章编号:0253-9985(2015)06-1038-09doi:10.11743/ogg20150620 基于地震资料的探井钻前孔隙压力预测 ———以伊拉克A油田为例 陈 鑫1,魏小东1,李艳静1,夏亚良1,周晓明1,王 管2,王小天2 [1.中国石油东方地球物理公司研究院,河北涿州072750; 2.中国石油大学(北京)地球科学学院,北京102249] 摘要:钻前压力预测在保障钻井安全、选取合理的钻井液密度、设计科学的井身结构、降低钻井成本和保护油气层方面都具有十分重要的意义。由于测井资料不足和地震资料的多解性,钻前压力预测的精度常常达不到钻井的要求。本次研究以伊拉克西南部的A油田为研究区,针对该区深层探井资料少和地震响应复杂的两个难点,以地震资料为基础,充分结合区域地质和浅层测井资料,从压力的成因研究出发,查明了研究区超压主要受侧向构造挤压和深部断裂引起的流体充注两种因素的控制,在此基础上优选出了基于地震资料的钻前压力预测方法,开展了井震联合上覆地层压力预测、地质一致性精细速度解释和地震速度变化率分段求取三项参数精度提升工作,预测出了深层探井侏罗系的孔隙压力系数为1畅95~2畅05。经钻井验证,压力预测成果与实测结果的相对误差小于3%,证实该方法能够提高钻前孔隙压力预测的精度。 关键词:孔隙压力;压力预测;深层探井;侏罗系;伊拉克 中图分类号:TE122.1 文献标识码:A Pre -drilling pore pressure prediction based on seismic data for exploratory well :Oilfield A in Iraq ChenXin1,WeiXiaodong1,LiYanjing1,XiaYaliang1,ZhouXiaoming1 , WangGan2,WangXiaotian2[1.Geophysical Research Institute ,BGP ,CNPC ,Zhuozhou Hebei 072750,China ; 2.College of Geosciences ,China University of Petroleum (Beijing ),Beijing 102249,China ] Abstract :Porepressurepredictionbeforedrillingisofgreatsignificanceforensuringdrillingsafety,choosingreasonabledrillingmuddensity,designingwellconfiguration,reducingdrillingcostandprotectingreservoirs.Theaccuracyofpres-surepredictionusuallyisnotsufficientfordrillingrequirementduetoalackofloggingdataandmulti-interpretationofseismicdata.ThispaperfocusesonanoilfieldAinsouthwestofIraq.Totackletheproblemofinadequateexplorationwelldataofdeeplayersandcomplicatedseismicresponses,wecombinedseismicdatawithregionalgeologyandshallowwellloggingdatatostudythemechanismsbehindpressure.Wefoundoutthatthestudyareawascontrolledbyfluidchargingcausedbylateraltectonicextrudinganddeepfaulting.Anoptimizedmethodforpre-drillingpressurepredictionwaspickedoutandimprovementontheprecisionoftheporepressurecalculatingparameterswasachievedthroughoverbur-denpressurepredictionbasedonseismic-well-integration,seismicvelocityanalysesbasedongeologicalconsistency,andvariationrateofseismicvelocityestimation.PorepressurecoefficientofexploratorywellindeepJurassicwaspredictedtorangebetween1.95and2.05.Thepredictionwasverifiedbyactualmeasurementwithanerrorlessthan3%only.Key words :porepressure,pressureprediction,deepexploratorywell,Jurassic,Iraq 孔隙压力是石油勘探开发工作中的基础数据之 一。在石油勘探过程中,孔隙压力为油气的分布、运 移、聚集提供重要信息,有利于提高探井成功率[1-2]。 在钻井过程中,孔隙压力不仅是确定钻井液密度、井身 结构的依据,而且关系到能否安全、快速、经济地实施钻井,甚至影响到钻井的成败[3]。随着勘探开发的深入,目标逐渐转向深层,井喷带来的巨大灾难让越来越多的石油工作者认识到钻前孔隙压力预测的重要性[4-9],油田也迫切需要准确的钻前孔隙压力预测资料来降低投资风险。本次研究从伊拉克A油田深层

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应

力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

地层压力预测方法

一、地层压力预测软件有: 1.JASON软件 Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。 Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。用户可根据需要由Jason 的模块构建自己的研究流程。 其反演模块包括: InverTrace:递归反演 稀疏脉冲反演 InverTrace_plus:稀疏脉冲反演 RockTrace:弹性反演 InverMod:特征反演 (主组分分析) StatMod:随机模拟 随机反演 FunctionMod:函数运算 压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。 2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG 软件功能: ?趋势线(参考线)的建立 --手工 --最小二乘方拟合 --参考线库 ?页岩辨别分析 ?上覆岩层梯度分析 --体积密度测井 --密度孔隙度测井 --用户定义方法(程序) ?孔隙压力分法 --指数方法 电阻率、D一指数 声波、电导率 地震波 --等效深度方法 电阻率、D--指数 声波 --潘尼派克方沾 --用户定义方法(程序) ?压裂梯度分法 --伊顿方法

--马修斯和凯利方法 --用户定义方法(程序) ?系统支持项目和油井数据库 ?系统支持所有趋势线方法 ?系统包括交叉绘图功能 ?用户定义方法(程序) ?包括全套算子 ?系统支持井与井之间的关联分析 ?系统支持岩性显示 ?系统支持随钻实时分析 ?系统支持随钻关联分析 ?多用户网络版本 数据装载功能: ?斯仑贝谢LIS磁盘输入 ?斯仑贝谢LIS磁带输入 ?CWLS LAS输入 ?ASCII输入 ?离散的表格输入 ?井眼测斜数据 ?测深/垂深表格 用户范围: ?美国墨西哥湾 ?北海 ?西部非洲 ?南美 ?尼日利亚三角洲 ?南中国海 ?澳大利亚 DrillWorks/PREDICTGNG 与其它软件的区别?世界上用得最多的地层压力软件 ?钻前预测、随钻监测和钻后检测 ?用户主导的软件系统 ?准确确定 --上覆岩层压力梯度 --孔隙压力梯度 --破裂压力梯度 ?使用下列数据的任何组合来分析地层: -地震波速度 -有线测井

灌浆基础知识和计算公式

灌浆基础知识和计算公式 一、灌浆的含义: 简单的说,灌浆就是将具有胶凝性的浆液或化学溶液,按照规定的配比或浓度,借用机械(或灌浆自重)对之施加压力,通过钻孔或其他设施,压送到需要灌浆的部位中的一种施工技术。 二、灌浆的实质: 充填这些节理裂隙、孔隙、空隙、孔洞和裂缝之处,形成结石,从而起到固结、粘合、防渗,提高承载强度和抗变形能力以及传递应力等作用。 三、灌浆分类: 按照大坝坝基岩类构成,可分为岩石灌浆和砂砾石层灌浆。 按照灌浆的作用,可分为固结灌浆、帷幕灌浆、回填灌浆和接触灌浆。 按照灌注材料,可分为水泥灌浆、水泥砂浆灌浆、水泥粘土灌浆以及化学灌浆等。 按照灌浆压力,可分为高压灌浆(3MPa以上)、中压灌浆(0.5~3MPa)、低压灌浆(0.5MPa以下),后两类也可称为常规压力灌浆。 按照灌浆机理,可分为渗入性灌浆和张裂式灌浆。 四、灌浆材料: 水泥(磨细水泥、超细水泥)、砂、粉煤灰、粘土和膨润土、水外加剂(速凝剂、减水剂、稳定剂) 五、水泥浆液: 配置水泥浆时,多依照质量比例配制,也有按照体积比例配制的。我国各灌浆工程都采用质量比,帷幕灌浆使用范围一般多为水:水泥=5:1~0.5:1,固结灌浆多为2:1~0.5:1。 1、水泥浆的配制:

将水泥和水依照规定的比例直接拌和,这种情况最为简单。先将计量好的水放入搅拌筒内,再将水泥按所规定的质量秤好后,放入筒中直接搅拌即可。例如欲配制各种浓度的水泥浆100L,其所用的水泥和水量可见下【表1】。 配制水泥浆100L 【表1】 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变浓。如原水泥浆100L,加水泥质量可见下【表2】。 在原100L水泥浆中加水泥使水泥浆变浓【表2】注:加水泥单位为 kg 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变稀。如原水泥浆100L,加水体积可见下【表3】。 在原100L水泥浆中加水使水泥浆变稀【表3】注:加水单位为L

基于水压率讨论土中孔隙水压力及有关问题

〔收稿日期〕 2006-12-07 基于水压率讨论土中孔隙水压力及有关问题 方玉树 (后勤工程学院,重庆) 摘 要 提出了水压率的概念,在此基础上修正了孔隙水压力、浮力、浮重度、渗透力、固结系数和贮水率 计算方法,分析了有效应力、有效自重应力和有效土压力变化规律,对渗流破坏、基坑底突和振动液化特征作出了解释。 关键词 水压率 孔隙水压力 浮力 土压力 渗透力 有效应力 岩土工程广泛涉及孔隙水压力或与孔隙水压力 有关的问题。目前,人们对一些与孔隙水压力相关的议题存在着争论或不完全清楚,如: 细粒土中水对结构物的浮力在按阿基米德定律计算后要不要折减?文献[1]规定:浮力“在原则上应按设计水位计算,对粘土当有经验或实测时可根据经验确定。”该文献的条文说明对此规定做了如下解释:“地下水对基础的浮力可用阿基米德原理计算。这一原理对渗透系数很低的粘土来说也应是适用的,但有实测资料表明,粘土中基础所受到的浮力往往小于水柱高度。由于折减缺乏必要的理论依据,很难确切定量,故规定只有在具有地方经验或实测数据时方可进行一定的折减。”文献[2]只要求对砂类土、碎石类土按计算水位的100%计算浮力,而对粉土和粘性土是否按计算水位的100%计算浮力未作要求。由此可见,当前的困惑在于折减符合实际,但不符合阿基米德定律或者说与现有孔隙水压力计算方法不协调,不折减符合阿基米德定律或者说与现有孔隙水压力计算方法协调,但不符合实际。 计算土的有效自重应力时水位以下土的重度是否一律取浮重度?通常的做法是一律取浮重度,也有意见认为,一般应取浮重度,但计算不透水层(例如只含结合水的坚硬粘土层)中某点的自重应力时,由于不透水层中不存在水的浮力,水位以下土的 重度应取饱和重度[3] 。根据目前普遍采用的土的浮重度和饱和重度的关系式,按浮重度计算和按饱和重度计算的结果有近一倍的差别。 土压力计算时是水土分算还是水土合算?第一种意见是水土分算(或水土分算,有经验时可水土 合算)[4] (据文献[1]之条文说明,上海、广州有关标 准也持这种意见)。第二种意见是水土合算[5,6] (据文献[1]之条文说明,深圳、湖北有关标准也持这种 意见),文献[5]之条文说明对此规定作了如下解 释:按有效应力原理应进行水土分算,这种方法概念比较明确,但粘性土孔隙水压力往往难以确定,故采用水土合算,这种方法低估了水压力的作用,对此应有足够认识。第三种意见是根据经验确定是水土分 算还是水土合算[7] ,这种意见对缺乏经验时如何计算没有说明。根据目前孔隙水压力和竖向有效自重应力(或浮重度)计算方法,水土分算的墙背土压力强度明显大于水土合算的墙背土压力强度。 动水头范围内是否一律考虑渗透力?文献[8]认为应一律考虑渗透力;文献[7]与[9]认为有渗流时应考虑渗透力;文献[10]认为对透水性较强的土体应考虑渗透力,对相对不透水的土体可不考虑渗 透力;文献[11]与[12]以1×10-7 m /s 的渗透系数为界,渗透系数超过此值时计算渗透力,不超过此值时不计算渗透力。 为什么细砂和粉砂最易发生流土和振动液化?为什么包括潜蚀和流土的渗流破坏会在水力坡度远远小于1的情况下发生,又会在水力坡度远远大于1的情况下也不发生? 因此有必要对孔隙水压力问题加以认真的考察。本文提出了水压率的概念,以此为基础对与孔隙水压力有关的问题作出了新的解答。 1 水压率与孔隙水压力 1.1 孔隙水压力的表达 为使土的力学问题能用连续体力学解决,必须把土看成连续体。因此,在研究地下水的运动时,某点的渗透速度是单位面积土截面的流量(而不是实际流速);在研究土体内力时,某点的应力是单位面积土截面上的压力。同样,与应力同量纲的孔隙水压力也应是单位面积土截面上的水压力。孔隙水压 1 2

孔隙水压力测试

应力作用下的孔隙水压力 一、目的与意义 根据太沙基有效应力原理,在应力的作用下,土体体积变形和抗剪强度的变化,唯一决定于作用在土骨架上的有效应力。然而这一有效应力一般不能直接测定或直接计算,而是通过有效力原理,利用可以测定或可以计算的孔隙水压力来确定的(即σˊ=σ-μ)。因此,研究应力作用下的孔隙水压力的目的主要是进一步确定土中有效应力,以便进一步研究土的压缩变形和抗剪强度性状。例如下面将讨论的有效应力对抗剪强度的影响,以及有效压力对地基固结和地基稳定性的影响等。这是研究土的应力应变与强度关系中的一个有意义的问题。 为此,A.W.斯肯普顿(A.W.Skempton 1954)根据三轴试验的结果,引入了与土的性质有关的孔隙水压力系数A、B,建立了轴对称条件的孔隙水压力方程,并应用于研究土的强度和变形性质。 二、轴对称应力条件下的孔隙水压力方程 轴对称应力条件下荷载应力增量引起的孔隙水压力可通过三轴剪切 试验来研究。图34-1所示为三轴剪切试验试样土单元体受到轴对称应力作用时,孔隙水压力和有效应力的变化过程。图34-1(a)、(b)、(c)和(d)中的三个方块,按顺序分别表示土试样受到的轴对应力增量的作用力Δσ、在试样中产生的孔隙水压力增量Δu和作用于土骨架的有效应力Δσˊ。按试验的步骤,首先对试样施加等向围压力σc,待完全固结,使试样中的孔隙水压力完全消散至Δu=0,围压力σc 全部作用于土骨架成为有效应力σˊc,见图34-1(a),其意图是使试

样恢复至原位应力状态,然后,在不排水条件下,施加荷载应力增量, 围压力为Δσ3,轴向应力为Δσ1,进行试验。按弹性理论应力叠加原理,把荷载应力增量分解为围压增量Δσ3和轴压增量(Δσ1-Δσ 两部分,分别见图34-1中(b)、(c)两种情况。在试验时应分别施3) 加,先施加正应力部分,即施加等向围压力Δσ3,见图34-1(b)。此时,由正应力引起的孔隙水压力为Δu3。相应地,由有效应力原理得到作用于试样土骨架的有效应力为Δσˊ3,即 Δσˊ3=Δσ3-Δ u3(34-1) 然后,继续施加轴向压力增量(Δσ1-Δσ3),即施加剪应力进行剪切,见图34-1(c)。此时,土试样受轴向压力引起的孔隙水压力增量为Δu l,相应土试样骨架受到的有效应力为 轴向:Δσˊ1=Δσ1-Δ u1(34-2) 径向:Δσˊ3=0-Δu1=-Δ u1(34-3) 土试样单元体受到轴对称应力增量Δσ1和Δσ3作用剪切时,引起的孔隙水压力增量Δu也可按照应力叠加的原理计算,即为围压增量Δσ3和轴压增量(Δσ1-Δσ3)两者引起的孔隙水压Δu3和Δu1的叠加,故 Δu=Δu1+Δu3(34-4)

相关文档
相关文档 最新文档