文档库 最新最全的文档下载
当前位置:文档库 › 关于球罐计算程序说明

关于球罐计算程序说明

关于球罐计算程序说明
关于球罐计算程序说明

球罐分析设计计算程序(ANSYS二次开发程序)

中国昆仑工程公司

2009.11

关于球罐计算程序说明

本计算程序是应用FEA 有限元软件ANSYS 对大型球罐进行分析设计计算,其中计算时考虑了包括压力、物料静压力(充装系数可调)、球罐本身自重、保温作用、拉杆、其他附件自重、地震、风载、雪载。其中包括四种工况组合:

1.自重+计算压力载荷组合工况

2.自重+试验压力载荷组合工况

3.自重+计算压力+风载荷组合工况

4.自重+计算压力+25%风载+地震载荷组合工况

MOD_MESH.MAC保留在ANSYS工作目录下,打开ANSYS软件,在ANSYS命令行输入MOD_MESH,回车确认,弹出图一画面。询问ANSYS 软件版本,如果是9.0或者以下输入0,其它的输入1。完成后按OK 按钮。

询问地震、风载方向与球罐支柱之间的角度关系,GB 12337-1998

《钢制球形储罐》标准中分为A,B两种载荷受力方向。本次计算采用A受力方向。

询问地震是近震(N)还是远震(F)。

输入球罐名称

输入设计参数,主要包括载荷参数设计压力、水压、充装系数、腐蚀欲量,风压、地震、风高系数、风振系数、风载和地震组合时风载系数、抗震烈度、场地土类别、重力加速度。

输入材料性能,包括弹性模量、波松比、壳材料密度、介质密度、水压密度、保温密度、拉杆质量、其它附件质量。

输入球罐结构尺寸参数,参照弹出的图片。注: T_H应小于UP_H

输入人孔结构尺寸参数(SH 3138-2003)。

网格化分,壳体厚度方向最少分三层,如果计算机性能较好,可以输入四层(计算结果更准确),其中MESH_2必须为偶数,影响整个赤道板附近网格的疏密。MESH_3为支柱的化分分数,可以少些(对

结果影响较小),MESH_4为盖板的网格大小,MESH_5为温带、极带之网格化分分数。(靠近中间赤道的网格密,靠近极带越稀疏,支柱与壳连接处网格密,靠近两个支柱之间位置处网格越稀疏)。

生成的模型和网格

Fmax 方向为A向图形如下

Fmax 方向为B向图形如下

钣金件下料尺寸计算方法分析

客车钣金件下料尺寸计算方法 2009-06-21 16:40 客车自制件在整个客车的构成中占有相当大的比重。随着钢材价格的不断上涨,控制客车自制件成本成为一个重要课题,被各客车厂家研究。怎么讯速、合理地确定自制件下料尺寸,是一项基本而又科学的工作。本文所介绍的客车钣金件的尺寸计算方法较为合理,也较为实用,希望能起到抛砖引玉的作用。 1 样板下料尺寸计算方法 这类制件下料尺寸计算分两部分:一部分为较复杂的钣金件(这部分暂不研究,因为钣金件展开需要单独分析);另一部分是简单的钣金样板件,一般取其外轮廓尺寸。 1)直线样板料板件料表的制作。分析:图l所示的两种板件为不规则梯形,制作这种类型的料表时一般按三角形或矩形来考虑。料表:98*110三角样;135 *175样。 2)弧线样板料板件料表的制作。图2所示的是一块带弧度的样板料,下料时在圆弧所在的方向最大尺寸应加5-10 mm的剪切余量。计算:(略),料表:605*115。 对图3所示的样板料,考虑其料较长,如下一块料不易剪料,所以下两块料制件。另外,在宽度上加5-10mm的余量。料表:235*1117(2)。

2折边制件类 1)基本计算方法(仅对折边角度为90°进行分析,其它折边角度类同。注:折边制件料的厚度(B)不大于6mm)。 图4所示的制件的截面展开长度等于所有展开单边外形轮廓尺寸之和减去板厚的1.5倍的折边次数所得差值。 ①图4(a)所示其截面展开尺寸为L0=H+L-1.5×B(B为板厚,下同)。 ②图4(b)所示其截面展开尺寸为L0=H+2L-2×1.5B。 ③图4(c)所示其截面展开尺寸为LO=H+LI+L2-2×1.5×B。 ④图4(d)所示其截面展开尺寸为ILl=(L-L1)+2B+LI+2H-4×1.5×B。 对于图4(c)、(d)两种情况,通过实践还可得出较简易的计算方法:

模板下料单计算方案(11-25)

模板下料单计算方案 一、概况与工期 (一)概况: 1、楼为剪力墙结构,层,标准层高度m,每层建筑面积m2,总建筑面积m2,每层模板展开模板面积m2。 (二)工期 2、①计划年月日至年月日完成(一层模板); ②预算人工费元,承包给模板组,测算人天,投工个,每工日元。 二、程序与质量 (三)程序: 3、察看——看懂会审模板图——计算下料单——画简图——与制作人员交底。 (四)质量: 4、按图计算,尺寸无误,数量准确。 5、准备: ①人员:木工负责人和主要师傅各一人; ②材料:1.83×0.915木成板计划四层周转量,约m2,40*80木枋根;50圆钉kg;

③机具:计算器2个,笔、纸均有。 6、察看: ①察看施工员、木工组长参加图纸会审的记录; ②看模板施工图有无错误; ③看施工员对木工组的交底记录。 7、方法: ①看懂、会审模板图。由施工员组织,木工组长带主要师傅看模板图,然后进行会审,各抒己见,对不懂之处,不祥之处或标识笔误之处等进行会审,做好记录,由施工员向设计人员反映,尽快解决。 ②计算下料单: 木工组长主持,组织主要师傅讨论后,对梁、板、墙模板分别进行计算,比如剪力墙2.2m长×0.2m厚,16处,计算模板高度以每层结构标高2.97m减去现浇板厚度10cm,减去现浇板模板本身厚度16mm,模板净高2854mm,模板宽度2.2m加32mm等于2232mm,即该剪力墙模板尺寸为2232×2854共计32块,即墙厚200mm,200×2854共计16块,其它剪力墙如此类推。 比如:梁宽度200mm,梁高350mm,梁长4500mm(轴线长),32支。计算梁底模板长度4500—200mm,—32净长4268mm,即200×4268共计32块,梁邦板长度4268mm,宽度350加16mm净宽,366mm,即4268×366共计64块,其它梁如此类推。 现浇板轴线开间尺寸4500×3600mm,21块。模板尺寸为长度4500mm减200mm,加32mm,净长4268mm,宽度3600mm减200mm

第二章 球罐结构设计

第二章 球罐结构设计 2、1 球壳球瓣结构尺寸计算 2、1、1 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:112、5°/7 赤道:67、6°/16 下极:112、5°/7 图 2-1混合式排板结构球罐 2、1、2混合式结构排板得计算: 1、符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (瞧上图数得) α--赤道带周向球角22、5° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??=7601、4mm 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 =2001、4mm 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22=1989、6mm 弧长2B )=N R π2=16 14 .362252?x =2443、3mm 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)=2428、9mm 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 7413、0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 7936、4mm 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1、139mm 1B ) = 2001、4 L ) = 7601、4 1B ) = 6204、1 2B ) =7167、1 0D ) =9731、7

球罐结构设计

第二章 球罐结构设计 2.1 球壳球瓣结构尺寸计算 2.1.1 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:112.5°/7 赤道:67.6°/16 下极:112.5°/7 图 2-1混合式排板结构球罐 2.1.2混合式结构排板的计算: 1.符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角22.5° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??=7601.4mm 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 =2001.4mm 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22=1989.6mm 弧长2B )=N R π2=16 14 .362252?x =2443.3mm 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)=2428.9mm 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 7413.0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 7936.4mm 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1.139mm 1B ) = 2001.4 L ) = 7601.4 1B ) = 6204.1 2B ) =7167.1 0D ) =9731.7

放样下料计算(特选内容)

球面经线法近似放样下料说明 本例为球罐按经线法近似放样下料的构件。球面为不可展曲面,因此分近似法和拱曲法两种放样方法作展开图计算。经线法近似放样是将球面的经线方向分成若干等分按多边形来计算下料,按此制作后是多边形的近似球面,外形不够美观,但具有加工简单、对工人的技术要求不高、成本低等优点,等分数较大时,可接近球状。 示意图中d为球罐的内径,b为板材厚度。要求d、b>0,以上数据由操作者确定后输入。 球罐经线方向须分成n1等分,纬线方向须分成n2等分来计算每一条素线的实长,n1、n2的数值由操作者根据直径和精度要求自定,但必须取4的整倍数,n1、n2的数值越大,展开图的精度越高,但画展开图的工作量相应增加。用人工画线一般取n1、n2=16~36已可比较准确下料,用数控切割机下料或是刻绘机按1:1画样板,n1、n2值可取大一些。 展开图所输出数据已作板厚处理,操作者可直接根据数据在板材上下料,具体可参照展开示意图按如下方法放样: (1)、画一任意线段,长度等于ls,将线段分成n2等份,每份长度等于m2。 (2)、过各等分点在线段的两侧画垂直线,按图在各垂直线上对称依次量取ms(1)~ms(n2/2+1)长度。 (3)、用光滑曲线连接量取的各点,即为球罐一片的展开图,共需画n1片同样的展开图,弯曲后拼接起来即成近似的球罐。

球面经线法拱曲放样下料说明本例为球罐按经线法拱曲放样下料的构件,由于球面为不可展曲面,拱曲法每块料中线按球面尺寸计算下料,边线则加一定的收缩量,加工时用热胀冷缩或压延的办法使边线收缩中间拉伸拱曲成球面形状,用压延方法加工,要有大型压力机和模具,用热胀冷缩法对工人的技术要求高,成本费用大。使用哪种方法放样下料,须根据构件的要求,工人的技术水平,设备状况以及成本的高低来确定。 示意图中d为球罐的内径,d1为球罐顶圆直径,b为板材厚度。要求d1、b>0、d1

球罐结构设计

第二章 球罐结构设计 球壳球瓣结构尺寸计算 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7 图 2-1混合式排板结构球罐 混合式结构排板的计算: 1.符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算: 图2-2 弧长L )=1800βR π =180 70622514.3??= 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 = 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22= 弧长2B )=N R π2=16 14 .362252?x = 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)= 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) =

极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 弦长1B = H R )2sin( 221 ββ+=139 .1) 11244 sin(62252+x x = 弧长1B )=90R πarcsin(2R B 1)=906225 14.3x arcsin(2x62253.5953)= 弦长0D =21B ) =2×= 弧长0D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 8774)= 弦长2B =2Rsin( 21 2ββ+)=2x6225xsin( 112 44 +)= 弧长2B )=180)2(21ββ+R π=180 2x11)(44622514.3+??= (1)极中板(图2-4)尺寸计算: 图2-4 对角线弦长与弧长的最大间距: A=)2 ( sin )2 ( sin 121 21 2βββ+-= 弧长2B )=180 1 βR π= 弦长2B =2Rsin( 2 1 β)= 弧长2L )=180)2(R 21ββ+π= 弦长2L =2Rsin(21 2ββ+)= 弦长1L =A ) 2sin()2cos(2R 21 1βββ+= 弧长1L )=90 R πarcsin(R L 21 )= 弦长1B = A R ) 2 cos()2 sin( 221 1 βββ+=

EHA封头下料直径尺寸及计算公式

壁厚(S)mm 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30 DN 直边(h2)mm25 40 50 下料直径φφ410 φ435 毛重Kg 6 7 8 11 15 18 21 24 27 300 容积(V)0.0053 M3 7.8 5.8 质量Kg 3.8 4.8 下料直径φφ475 φ495 毛重Kg 7 9 11 14 19 23 27 31 35 350 容积(V)0.0080 M3 10.3 7.6 质量Kg 5 6.3 下料直径φφ535 φ560 毛重Kg 9 11 14 18 25 30 35 40 45 400 容积(V)0.0115 M3 质量Kg 6.4 8 9.7 13.1 16.5 20 23.6 下料直径φφ595 φ620 毛重Kg 11 14 17 22 30 36 42 48 54 450 容积(V)0.0159 M3 质量Kg 7.9 10 12 16.2 20.4 24.8 29.2 下料直径φφ655 φ680 毛重Kg 14 17 20 27 37 44 51 58 66 79 500 容积(V)0.0213 M3 质量Kg 9.6 12.1 14.6 19.6 24.7 30 35.3 40.7 46.2 51.8 下料直径φφ715 φ740 φ750 毛重Kg 16 20 24 32 43 51 60 70 79 550 容积(V)0.0227 M3 质量Kg 11.5 14.4 17.4 23.4 29.5 35.7 41.9 48.3 54.8 61.4

壁厚(S)mm 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30 DN 直边(h2)mm25 40 50 下料直径φφ775 φ805 φ810 毛重Kg 19 24 28 38 51 61 71 83 93 110 121 132 600 容积(V)0.0353 M3 质量Kg 13.5 17 20.4 27.5 34.6 41.8 49.2 56.7 64.2 71.9 下料直径φφ835 φ870 φ890 毛重Kg 22 27 33 34 59 70 82 94 100 126 650 容积(V)0.0442 M3 质量Kg 15.7 19.7 23.8 31.9 40.2 48.5 57 65.6 74.4 83.2 下料直径φφ895 φ930 φ950 毛重Kg 25 32 38 51 69 82 95 109 122 144 158 172 186 700 容积(V)0.0545M3 质量Kg 18.1 22.7 27.3 36.6 40.6 55.7 65.4 75.3 85.2 95.3 下料直径φφ1020 φ1050 φ1070 毛重Kg 33 41 49 65 85 102 119 137 154 182 200 218 236 800 容积(V)0.0796M3 质量Kg 23.3 29.2 35.1 47.1 59.3 71.5 83.9 96.5 109.2 136.6 151.1 165.8 180.6 下料直径φφ1140 φ1165 φ1200 毛重Kg 41 51 61 82 106 127 148 169 191 228 250 272 295 317 900 容积(V)0.1113M3 质量Kg 29.2 3605 44 58.9 74.1 89.3 104.8 120.4 136.1 152 168.1 184.4 200.8 217.3 下料直径φφ1260 φ1295 φ1320 毛重Kg 50 62 75 100 130 157 183 211 237 276 303 330 357 384 411 1000 容积(V)0.1503M3 质量Kg 35.7 44.7 53.8 72.1 90.5 109.1 127.9 146.9 166 185.3 204.8 224.5 244.4 264.4

2000立方米大型球罐设计说明书

课程设计资料标签 资料编号: 题目球形储罐设计 姓名学号专业材料成型 指导教师成绩 资料清单 注意事项: 1、存档内容请在相应位置填上件数、份数,保存在档案盒内。每盒放3-5名学生资料,每份按序号归档, 如果其中某项已装订于论文正本内,则不按以上顺序归档。各专业可依据实际情况适当调整保存内容。 2、所有资料必须保存三年。课程设计论文(说明书)装订格式可参照毕业设计论文装订规范要求。 3、资料由学院资料室统一编号。编号规则是:年度—资料类别代码·学院代码·学期代码—顺序号,顺 序号由四位数字组成(参照《西安理工大学实践教学资料整理归档要求》)。 4、各院、系应在课程设计结束后一个月内按照规范进行资料归档。 5、特殊情况请在备注中注明,并把相关资料归档,应有当事人和负责人签名。 课程与生产设计(焊)

设计说明书设计题目球形储罐设计 专业材料成型及控制工程 班级 学生 指导教师 2016 年秋学期

目录 一、设计说明 课程设计任务书-------------------------------------------------------------------------------1 1.1 选材-----------------------------------------------------------------------------------------------2 1.2 球壳计算----------------------------------------------------------------------------------------2 1.3 球壳薄膜应力校核---------------------------------------------------- --------------------3 1.4 球壳许用外力----------------------------------------------------------------------- ----------4 1.5 球壳分瓣计算----------------------------------------------------------------------------------5 二、支柱拉杆计算 2.1 计算数据---------------------------------------------------------------------------------------9 2.2 支柱载荷计算---------------------------------------------------------------------------------10 2.3 支柱稳定性校核-----------------------------------------------------------------------------13 2.4 拉杆计算---------------------------------------------------------------------------------------14 三、连接部位强度计算 3.1 销钉直径计算-----------------------------------------------------------------------------------15 3.2 耳板和翼板厚度计算-------------------------------------------------------------------------15 3.3 焊缝剪应力校核-------------------------------------------------------------------------------15 3.4 支柱底板的直径和厚度计算---------------------------------------------------------------16 3.5 支柱与球壳连接处的应力验算------------------------------------------------------------16 3.6 支柱与球壳连接焊缝强度计算------------------------------------------------------------18 四、附件设计 4.1 人孔结构-----------------------------------------------------------------------------------------19 4.2 接管结构-----------------------------------------------------------------------------------------19 4.3 梯子平台---------------------------------------------------------------------------------------19 4.4 液面计--------------------------------------------------------------------------------------------20 五、工厂制造及现场组装 5.1 工厂制造----------------------------------------------------------------------------------------21

法兰分瓣下料时钢板尺寸计算

石油化工设备 SHIYOU HUAGONG SHEBEI 1999年第3期 No3 1999 法兰分瓣下料时钢板尺寸计算 符金城 摘要提供了大型法兰分瓣下料时在任选钢板宽度情况下,所需钢板长度较准确的计算公式和划线方法。用此方法可直接在钢板上划线。 关键词法兰分瓣下料钢板长度计算 分类号TQ 050.6 在制造石油化工机械和通用机械中的大直径法兰时,一般先将钢板切割成环段,即扇形板,然后焊接成环状法兰。在切割之前常用作图法做出纸片样板,再在钢板上划线。这样,尺寸精度往往不易保证,且要耗费许多时间和纸料。笔者将介绍一个经过实践检验的公式,可根据现有任选钢板的宽度和法兰的内、外半径,求出钢板所需的长度,并直接在钢板上划线。 1 计算公式 设矩形钢板宽度为b,一个环状法兰包含的扇形板数量为n,则一个法兰所需钢板的长度L由下式确定: 式中,L为一个法兰所需钢板的长度,R为法兰外半径,r为法兰内半径,单位均为mm;考虑到热切割切口宽度及尺寸误差,而增加10 mm的附加量;n为一个法兰中扇形板的数目,n=360°/α,其中α为一个扇形板所对的圆心角,(°)。 计算时,由已知的R、r及b,根据几何关系式α/2=arcsin(b/2R),求出α/2及α。由n=360°/α求出n,进而求出钢板长度L。实践证明,此公式较为准确。当法兰直径在2 000~ 4 000 mm时,L误差值不超过2%。 2 几项说明 (1)确定R及r划线用实际值时,应考虑法兰焊后机加工余量。 (2)由于余料利用等原因,现有钢板宽度b可能是多种多样的,算出来的块数n 常常不为整数。这时可取比n大的最近整数代入式(1)求出L值。法兰拼焊时将其中一块扇形板按n值小数部分所对的圆心角沿其向心线切断,弃去多余部分。也可根据n=360°/α及α/2=arcsin(b/2R)关系式,先确定扇形板数目n,然后求出b来选择合适的钢板。可见式(1)适用于不同宽度的钢板。 3 应用举例 现行压力容器法兰标准JB 4720-92《乙型平焊法兰》中有一种PN=1.0 MPa,DN=1 000 mm的法兰,若选用b=600 mm钢板切割扇形板,求所需长度L。 解:查该标准,DN=1 000, D=1 140,即R=570,r=500(单位均为mm)。则 α/2=31°45′24″,α=63°30′49″,n=5.668,取n=6代入式(1),解得L=616.47 (n-1)+(R-r)cos(α/2) +10(1)

球罐计算书

摘要:介绍了液化烃的性质及发生火灾的特点,对液化烃储罐火灾的危险性及水喷雾冷却、灭火机理进行了分析,列举了液化烃球罐水喷雾系统的设计计算实例,提出了设计中应注意的问题。 关键词:液化烃球罐火灾水喷雾灭火系统报警消防冷却 1、概述 液化轻烃的主要成分是:乙烷、丙烷、丁烷、戊烷等烃类组成,在气态时比重比空气重,(是空气的1.5~2.0倍)。液化烃储罐发生火灾的根源是液化烃泄漏。液化烃一旦泄漏,迅速汽化且难以控制。汽化时,从周围环境吸收大量的热量,使空气中的水份冷却成为细小雾滴,形成液化烃的蒸气云。液化烃的蒸气云从泄漏点沿地面向下风向或低洼处漂移、积聚。液化轻烃爆炸极限低(2%~10%体积比),如大量泄漏遇明火可造成大面积的火灾或可燃蒸气云爆炸事故。液化轻烃的燃烧热值高,爆炸迅速、威力大,破坏性强,其火焰温度达200℃以上,极易引起邻罐的爆炸。 液化轻烃的体积膨胀系数比水大,过量超装十分危险。液化轻烃生产出来,为了便于储存和运输,通常进行加压和冷却使其汽化,储存在密闭的压力储罐内,由于球罐耐压大且受力均匀,储存量大,因而石化企业普遍采用球罐和卧式罐做为储存液化气的压力容器。液化轻烃球罐发生火灾时,若球罐内尚有剩余可燃气体时就将火扑灭,剩余的可燃气体泄漏出来与空气混合到一定的浓度,遇明火就会发生爆炸,产生更大的危害。因此,控制液化气球罐火灾的根本措施是切断气源和紧急排空。在完成放空之前应维持其稳定燃烧,同时对着火罐及相邻罐进行喷水冷却保护,使球罐不会因受热发生破坏。因为液化烃会吸收热量而大量蒸发,导致罐内温度、压力升高。罐壁的热量不能及时的传出,温度迅速升高,强度急剧下降。如果不及时供给冷却水,一般在火灾持续10min 左右将出现热塑裂口,储罐破裂。因此对储罐壁进行及时有效的冷却,是防止球罐发生破裂而引起灾难性火灾事故的重要措施。 笔者在春晓气田群建设开发项目陆上终端的轻烃球罐区采用水喷雾冷却系统,对液化烃球罐实施了固定式消防冷却水系统。

球罐凸缘计算方法

本计算根据日本液化石油气协会标准:JLPA No.2-1—1978《液化石油气球形贮罐标准》第4.9节“开孔补强”之等面积补强法进行计算。 200m3球罐 DN500人孔 已知数据: 计算压力:Pc=1.3MPa 壳体内直径:Di=7100mm 焊接接头系数:φ=1.0 接管内直径:di=506mm 腐蚀裕量:C2=1.5mm 壳体名义厚度;δn =20mm 接管名义厚度:δnt =12mm 壳体有效厚度;δe =δns-C2=18.5mm 接管有效厚度: δet =δnt-C2=10.5mm 壳体16MnR材料设计温度下的许用应力: [σ]tt=163MPa 接管16MnII材料设计温度下的许用应力:[σ]tt=150MPa F=150/163=0.92 计算过程: 有效宽度:B=2di=2x506=1012mm 外侧有效高度:h1 = 2.5δe =2.5x18.5=46.25mm 内侧有效高度:h2=0 壳体计算厚度: 接管计算厚度: 开孔所需补强面积: A=dδsc F=506x14.2x0.92=6610.4mm2 补强面积: A0=2x[187.1x46.25-0.5x(46.25-20.63)x44.37-0.5x(44.37x2+20.63)x20.63]

=13914mm2 A0≥1.10A 结论:补强满足要求。 DN100接管: 已知数据: 计算压力:Pc=1.3MPa 壳体内直径:Di=7100mm 焊接接头系数:φ=1.0 接管内直径:di=96mm 腐蚀裕量:C2=1.5mm 壳体名义厚度;δn =20mm 接管名义厚度:δnt =6mm 壳体有效厚度;δe =δns-C2=18.5mm 接管有效厚度:δet =δnt-C2=4.5mm 壳体16MnR材料设计温度下的许用应力: [σ]tt=163MPa 接管16MnII材料设计温度下的许用应力:[σ]tt=150MPa F=150/163=0.92 计算过程: 有效宽度:B=2di=2x96=192mm 外侧有效高度:h1 = 2.5δe =2.5x18.5=46.25mm 内侧有效高度:h2=0 壳体计算厚度: 接管计算厚度: 开孔所需补强面积:

球罐计算公式

1设计条件 设计压力:p=2.2MPa 设计温度:-40℃ 水压试验压力:P T =1.25P [] []tσ σ =2.75MPa 球壳内直径:Di=12300mm(1000m3) 储存物料:乙烯 充装系数:k=0.9 地震设防烈度:7度 基本风压值:450 基本雪压值:450 支柱数目:8 支柱选用:¢426×9钢管 10钢 拉杆选用:¢159×6钢管 球罐建造场地:Ⅱ类土地、近震、B类地区2球壳计算 2.2计算压力 设计压力:p=2.2MPa 球壳各带的物料液柱高度: h1=324.9㎜ h2=7158.4㎜ h3=9891.7㎜ 物料密度:ρ=453㎏/m3 重力加速度:g=9.81m/s2

球壳各带的计算压力: 9210-?+=g h P P i ci ρ 1c P =2.2+324.9×453×9.81×-910=2.201MPa 2c P =2.2+7158.4×453×9.81×-910=2.232MPa 3c P =2.2+9891.7×453×9.81×-910=2.244MPa 2.2 球壳各带的厚度计算 球壳内直径:Di=12300㎜ 设计温度下球壳材料07MnNiCrMoVDR 的许用应力:[]=t σ=203MPa 焊缝系数:¢=1 厚度附加量:C=21C C +=1.1+1=2.1㎜ []C P -4D P 1 c t i c11+= φσδd = 201 .21203412300 201.2-???=35.53㎜ []C P -4D P c2 t i c22d +=φσδ= 232 .21203412300 232.2-???=36.00㎜ []C P -4D P 3 c t i c33d += φσδ= 244 .21203412300 244.2-???=36.19㎜ 取球壳名义厚度δn=38㎜ 3球壳质量计算 球壳平均直径:=cp D 12338㎜ 球壳材料密度:=1ρ7850㎏/m 3 充装系数:k=0.9 水的密度: =3ρ1000㎏/m 3

立罐中油品重量的计算方法

油品重量计算 (标准方法) 一、根据油库显示屏取得以下参数: 1、当前油高; 2、当前温度; 二、利用容积表计算当前油高所对应的当前温度下的体积Vt, 三、取油样在实验室中测量油品的视温和视密。查表(59D)得到标准密度ρ20。 五、根据油温和标准密度,查表(60D)得到体积修正系数VCF20. 六、按以下公式求得质量: M = (ρ20-0.0011)* V t *VCF20 (简便方法) m=Vt×Dt Vt--任意计量温度下油品体积(m3) Dt--任意计量温度下油品计重密度(kg/m3) 根据油高查容积表求得当前的体积Vt 。 根据试温和试密求得标密,再倒查表求得当前温度下的计重密度。石油产品重量计算可选择下列公式: m=V20×(p20-1.1)(1) V20=Vt×VCF20 m=Vt×Dt (2) 式中m--油品在空气中的质量

V20--标准温度下油品的体积(m3) p20--标准密度(kg/m3) VCF20--体积修正系数 Vt--任意计量温度下油品体积(m3) Dt--任意计量温度下油品计重密度(kg/m3) 1.1--空气浮力修正值单位为kg/m3 (1)式为按GB/T 1885-1998计算公式,用于计量精度要求较高及处理计量交接纠纷时使用。 (2)式为石油产品计量速算表计算公式,用于一般日常工作。 油品(成品油)计量计算标准 *专业技术2009-07-04 15:10 阅读383 评论4 字号:大大中中小小关于产品计量(摘自98国标) 1、产品按空气中的质量计算数量 2、当在非标准温度下使用石油密度计测得产品的视密度时,应该用表59B查取该产品的标准密度(ρ20)。 3、在计算产品数量时,产品在计量温度下的体积通常要换算成标准体积。产品的标准体积(V20)用计量温度下的体积(Vt)乘以计量温度下的体积修正到标准体积的体积修正系数(VCF20)获得,见公式(1)。而体积修正系数是用标准密度和计量温度表查表60B获得的。 V20=Vt* VCF20 (1) 4、在计算产品在空气中的质量(商业质量)时,应进行空气浮力修正,将标准密度(kg/m3)减去空气浮力修正值1.1 kg/m3,在乘以标准体积,就得到产品质量(m),见公式(2)。 m= V20*(ρ20—1.1) (2)

铝合金下料尺寸计算

铝合金下料尺寸计算 一、铝合金推拉窗的设计要求 设计铝合金推拉窗时,应考虑推拉窗的安装和使用安全。当窗的高度方向搭接量太大时,则给安装带来困难;若搭接量太小时,又存在使用安全问题,窗扇容易从窗框中脱出。因此,应正确选择搭接量。 高度方向搭接量的确定:应根据上滑型材的槽深和下滑型材的道轨高度,以及窗扇滑轮的高度来选择搭接量。窗扇与上滑的搭接量一般为上滑槽深的1/2减去2~3mm,可选用10 mm。窗扇与下滑的搭接量是滑轮的槽深到窗扇下边的距离,一般为6~10 mm,可选用8 mm。 另外,也可以用推拉框高度方向的内口尺寸,加上上滑槽深,再减去4~6 mm,作为推拉扇的高度尺寸。 宽度方向的搭接量应根据边封型材、勾企型材以及光企型材确定。设计时,应使两个窗扇的勾企完全重合。 铝合金推拉窗分为两扇推拉窗、三扇三等分推拉窗、三扇四等分推拉窗、四扇推拉窗等。设计时,应使窗扇的宽度尺寸和高度尺寸在国家标准允许的范围内。 设计带有固定窗的推拉窗时,如果是上下分格,固定窗与推拉窗之间可以采用中上滑型材或中下滑型材;如果是左右分格,固定窗与推拉窗之间可以采用固定边封型材。如果是高层建筑,还要考虑推拉窗的厚度系列是否满足抗风压强度要求。 设计纱扇时,高度方向的搭接量按纱轨槽深的二分之一选取。宽度方向的搭接量可按纱扇宽度不超过窗扇宽度选取,宽度尺寸不应超过窗扇宽度。 二、铝合金推拉窗的下料尺寸计算 铝合金推拉窗的下料尺寸主要是窗框和窗扇的下料尺寸计算。 窗框的下料尺寸包括:边封、上滑、下滑、中上滑、中下滑、固上横、中立柱(中梃)等。边封的下料尺寸等于窗高;上滑、下滑、中上滑、中下滑、固上横的下料尺寸等于窗宽减去两个边封的宽度再加上两个边封的槽深; 窗扇的下料尺寸包括:上方、下方、勾企、光企等。勾企、光企的下料尺寸等于窗框的内口尺寸,再加上两个搭接量(上下搭接量);上方、下方的下料尺寸等于窗扇的宽度减去勾企、光企的宽度,再加上勾企、光企的槽深;

钢筋下料尺寸计算

钢筋下料尺寸计算 一般钢筋下料按外包尺寸进行,没有内包尺寸,叫内皮尺寸;定义按字面理解就ok了,拿箍筋来理解! 计算方法:直钢筋下料长度=构件长度-保护层厚度+弯钩增加长度 弯起钢筋下料长度=直段长度+斜段长度-弯曲调整值+弯钩增加长度 箍筋下料长度=箍筋周长+箍筋调整值 钢筋弯曲角度30°45°60°90°135° 钢筋弯曲调整值0.35d0.5d0.85d2d 2.5d 弯钩增加长度:一般半圆弯钩为6.25d,直弯钩为3.5d,斜弯钩为4.9d 箍筋直径6810~12 箍筋调整值506070 箍筋 箍筋:(gu jin) ties 用来满足斜截面抗剪强度,并联结受拉主钢筋和受压区混凝土使其共同工作,此外,用来固定主钢筋的位置而使梁内各种钢筋构成钢筋骨架的钢筋。 1.矩形箍筋下料长度计算公式 箍筋下料长度=箍筋周长+箍筋调整值(表1) 式中箍筋周长=2*(外包宽度+外包长度); 外包宽度=b-2c+2d; 外包长度=h-2c+2d; b×h=构件横截面宽×高; c——纵向钢筋的保护层厚度; d——箍筋直径。 2.计算实例 某抗震框架梁跨中截面尺寸b×h=250mm×500mm,梁内配筋箍筋φ6@150,纵向钢筋的保护层厚度c=25mm,求一根箍筋的下料长度。 解:外包宽度= b-2c+2d =250-2×25+2×6=212(mm) 外包长度=h-2c+2d =500-2×25+2×6=462(mm) 箍筋下料长度=箍筋周长+箍筋调整值 =2*(外包宽度+外包长度)+110(调整值) =2*(212+462)+110=1458(mm) ≈1460(mm)(抗震箍) 箍筋形式使用结构箍筋弯钩 不直段长 度lp 箍筋直径 hpb235级hrb335级crb550级 6 8 10 12 8 10 12 5 6 7 8

球壳板下料尺寸的精确计算

球壳板下料板幅展开精确计算 一、计算原理 球壳板任一边弧线可以看成是平面与球壳板相交所得的相贯线,平面有通过球心和不通过球心两种方式,平面与球壳的相贯线均为圆,相贯线的投影圆因其方向不同则可为圆,椭圆和直线三种形式. 二、球面展开数学模型 圆锥模型形成如图所示,球面上任一点P ,在极轴上引一直线PG ,使PG 垂直于P 点的球半径OP ,则以GP 为母线绕极轴旋转形成锥体的下底圆,使下底圆与P 点在球面上的纬向圆为同一圆,则P 点在球面上的纬向圆弦口可按锥体下底圆进行展开计算。 P 点纬向圆弦口展开半径 R P =(D tg αP )/2 P 点纬向圆展开后扇形角 γP =360COS αP P 点单块瓣片对应展开角 ΦP =(360COS αP )/N P P 点单块瓣片展开宽度W P 对应W P 形成的拱高h P 式中:N P — P 点所在带板分瓣数。 三、符号说明 主要公式符号的意义如下: Ri —— 球壳内半径(mm ); [] p p p p p p N D R PQ W /)cos 180(sin tg )2/sin(2ααφ===[ ]{}p p p p p p p N D R R MN h /)cos 180(cos 1tg 2)2/cos(ααφ-=-==

Di ——球壳内直径(mm); α0——极带的内球心角(°); α1——第1带的球心角(°); α2——第2带的球心角(°); αi——第i带的球心角(°); Ni ——第i带的分瓣数; θ1 ——极带中板的球心角(°); θ2——极带侧板的球心角(°); θ3 ——极带边板的球心角(°)。 四、球壳板尺寸计算 极带分为7块的混合式球壳结构及坐标系如图1所示。 图 1 混合式球罐极板的分瓣及坐标系

1500立方米球罐设计

1500M3球型储罐设计 摘要 球罐作为大容量、承压的球形储存容器,广泛应用于石油、化工、冶金等部门,它可以用来作为液化石油气、液化天然气、液氧、液氨、液氮及其他介质的储存容器。也可作为压缩气体(空气、氧气、氮气、城市煤气)的储罐。 这次设计主要按照GB12337—1998《钢制球形储罐设计》进行设计本设计共分两部分,第一部分包括球罐的设计;第二部分为外文资料及其对应的中文翻译。其中第一部分介绍了球罐的发展状况和应用场合、材料选择、球罐设计、结构确定、强度计算、绘图等内容。以结构强度的设计计算为主,从基础理论、设计方法、结构分析、标准规定等方面进行了系统的阐述。 本球罐在1.77MPa的设计压力、常温的设计温度下设计,设计厚度为46mm,焊接接头系数 采用100%无损检测选用1.00,压力试验采用水压试验,水压试验压力为2.22MPa,球壳材料选Q345R,支柱采用赤道正切式支柱式支承,为了承受风载荷和地震载荷,保证球罐的稳定性,在支柱之间设置拉杆相连,球壳采用的是三带混合式,球壳分块少,板材利用率高,制造工作量小,焊缝短,焊缝个数少,检验量小,施工速度快,使球罐的施工质量易于保证,拉杆结构采用可调节式拉杆,使球罐平衡易于调节。 但在本次设计中由于设计者水平有限,所以难免会出现漏洞和不足,望指正。关键词:球形储罐、压力容器

Abstract As a large-capacity tank, pressure the ball storage container, widely used in petroleum, chemical, metallurgical and other departments, it can be used as a liquefied petroleum gas, liquefied natural gas, liquid oxygen, liquid ammonia, liquid nitrogen, and other media storage container . Also available as compressed gas (air, oxygen, nitrogen, city gas) storage tank Designed in accordance with the GB12337-1998 “Design of steel spherical tank”,this design is divided into two parts, the first part includes an overview and design of spherical tank including the calculation of spherical tank; the second part includes an English paper with 20,000 characters and its corresponding Chinese translation. The first section describes the development of the sphere and applications, material selection, spherical design, structure identification, strength calculation and so on.The most important is the calculation,and I also introduce the structural design ,the basic theory, design methods, structural analysis, standards. The spherical design at 1.77MPa pressure and Room temperature and the design thickness is 46mm. The use of welded joints coefficient selection of 100% non-destructive testing 1.00, and use the hydraulic pressure test with 2.22MPa, ball shell material selection,.I use the equator tangent pillar strut-type support.In order to bear wind and seismic loads and ensure the stability of spherical,I set a rod between the pillars ,and the three mixed spherical shell is made up witth only several parts.The using rate of the plate is small.There are a small number of welds and the length of the welds

相关文档