文档库 最新最全的文档下载
当前位置:文档库 › 统赢后处理参数资料

统赢后处理参数资料

统赢后处理参数资料
统赢后处理参数资料

WPCAM 系統內定變數一覽表(一)

變數宣告內容

0 R 外定誤差值(機臺最小位移量)

。 A R 外型切斷使用補正量0:與第一刀相同補正量,

1:使用割一刀的補正量, 2: 使用割一刀的補正量再+.001

。 B R 小孔尺寸設定ex:inti/3 (Φ3.0 以下為小孔) ; ex:inti/-3 (引入線短於3.0 以下為小孔) inc/2(小孔間隙自動放大.002mm)

C R 角落安全距離

。 D I 銅線補正編號 ex: H01,H02

E R 切斷點強迫過切長度

F R

。G I G-碼輸出ex:G00/G01/G02/G03

。H R 補正(微調量)輔助碼ex: H110,H109,H111,H121

。I,J R 圓心的X,Y方向座標

。N I NC程式行編號(需自行應用)

。P,Q R U,V軸的絕對座標位置

。R R 圓弧半徑值

。T R 工件初始斜度設定值,整體斜值,單孔斜度

。U,V R 相對於X,Y軸的輔助面(UV面)相對座標

。W R UV面的絕對(Z)高度

。X,Y R 銅線的X,Y座標值

。Z R 上導具的Z座標值

。27 R 銅線傾斜的斜度輸出值

。28 R 無屑切割也依照全割完再修之規則1: 全割完再修0:即割即修

29 R 銅線初始斜度設定

。30 R @30:上下異形分段裕量,

#30=0上模滑塊) 程式面路徑面積< 輔助面路徑面積

#30=1下模滑塊) 程式面路徑面積> 輔助面路徑面積

。31 R 上下異形最大分段長度

。32 R 工件厚度設定值

。33,34 R UV面上圓心的X,Y方向座標值

。35 R 當@35==2 ,表示粗割完成,已進入精修程式段

36 R

。37 I 切割型式0:模孔 1:衝頭

。40 I NC控制器的型式 1MITSU) 2:(SODICK)

4:(FANUC) 8:(SEIBU) 16:(AGIE) 32:(CHARMILL)

。41 I 切割型式設定8:粗割完再精修-8:粗精割分成兩個檔案

。42 I 整修時之過切設定0:不要1:修刀,最後一刀皆過切2: 修刀過切最後一刀不要。43 I 補正的方向1:G42 -1:G41

。44 I (SODICK原斜度值) (@27 已被調整過) #44=1:CW –1:CCW

。45 I 目前的整修次數

。46 I 儲存工件分類設定( )括弧裡的編號值

。47 I 整修次數設定值 trim_no

。48 I 引入線弧進弧出設定1:弧進弧出 0:直進直出

。49 I 自動穿線功能,目前之程式段數,1:粗割2:切斷

3:精修, 5:啟動自動穿線功能

#49= 0(邊割邊修) 1(全割完再修) 2(割,修各一程式)

。50 I 1: 讀取WT-Color.dat 檔的顏色設定資料,3:使用原依圖元顏色,-1 ddd模擬顏色控制

WPCAM 系統內定變數一覽表(二)

。51 R 即時暫用補正量 ex:0.196 (H01=H110+0.196)

。52,53 I 儲存起割點座標

。55 R Z1高度設定值(T:板厚{-99},空白內定值{-98},)

。56 I Z1高度變化旗標

。57 I 高度變化輔助旗標

58 I 計價功能, 2:振發3:兆基

。59 I @59=2 : Sodick 檔頭資料讀取

。60 R 各工件周長的累計長度(含引入線)

。61 R @60+引線+過切長度

# 62,63 R

。64 R 外圓角值

。65 R 清角長度值 cln_val

。66 R 清角寬度值

67,68 R 脫離後再進入至引入線的終點座標

。69 R @60+(引入線+過切長度)*2

。70 I NC 附檔名設定,0:NC , 1:NCF , 2:ISO,3:NC1,4:空白

。71 R 內圓角值

。72 R 趨近長度值

。73 R 過切長度值

。74 R 脫離長度值

。75 R 前置量下限值

。76 R 前置量百分比

。77 R 前置量上限值

。78 R 加工裕留量,分類設定裡的間隙值 gap_valuc

。79 清角狀態旗標 2:結束清角, 5:開紿清角用於細縫清角

80

。81 R 角落暫停輔助長度

。82 I 於切割路徑的中間圖元上(非於第一及最後一段圖元)

83

84

85 R @85=1:該程式內含副程式

86 儲存副程式的號碼

。87 I 特殊加工旗標@87=1:上下同R , @87=3:上下異形, #87=1 無屑切割

。88 I 1:開放路徑2:線孔在外4:線孔在內7:主副程式狀態中8:先直割再斜割

10:入子外形(外型切斷) 28:先割後修34:開放路徑+孔在外 35:開放路徑+孔在內98:無屑切割外緣路徑, 99:無屑切割內部路徑,798: 無屑切割外緣路徑+主副程式, 799: 無屑切割內部路徑+主副程式

89

。90 R Offset編號ex: H01

。91 R Offset值 ex: 0.162

。92 R E Park1 ex: E100

。93 R 速度 ex: F100

94

95

。96 R E Park2 ex: E120

。97 R 部份斜度 tap1 存於@27 內

。98 R 單孔斜度 tap2 存於@27 內

。99 R 工件分類斜度 tap3 存於@27 內

。100 I SpecNo 號碼由使用者於加工分類處自設Ex:Spec1/Spec2/Spec3….注: 前有*記號的變數,僅可在Path-start之前修改才有效.

前有#記號的變數,為動態性的變數,可以隨時任意修改.

图像的后处理

图像后处理技术 DSP的重要功能在于进行数字图像处理。本装置的图像处理功能包括前处理和后处理,其中前处理分为采样处理(最大值采样、峰值偏差采样、点采样),失径平滑,图像的数字勾边及帧相关处理。而后处理包括有线性插值,H平滑,灰度窗口处理及 校正。 (图像处理功能示意图) 图像的前处理是沿着失径扫描线对数据进行处理的,它不可避免的要受到扫描方式的限制,因而处理功能比较简单。而图像后处理是在经过扫描变换以后的具有标准电视扫描方式的图像上进行处理,因而处理的功能就比较强。可加入的数字图像的内容也比较繁多,它可以将图像送往计算机中进行各种图像运算和处理,但对于实时动态显示的图像,为了满足实时的需要,目前本装置只加入了比较实用的对图像具有一定效果的处理功能。 1.图像的线性插补处理 目前在实时超声扇形扫描仪中数字扫描变换(DSC)已成为不可缺少的部分。这是由于它既可以使用标准显示和记录装置,也可以在图像上叠加别的信息,进行各种冻结方式的处理,并能灵活地,实时地显示多幅图像。然而经过数字扫描变换以后使图像产生了失真,这是将图像由原来的失径扫描经数字扫描变换转换成直角扫描所具有的固有缺陷,最具有代表性的是“云纹斑”(Morie)畸变的出现,显示过密或出现空缺。 1)云纹斑出现的机理 数字扫描转换的像素地址逻辑单元将每一点的极坐标转换成直角坐标,仔细地考虑这一坐标转换过程不难发现,每一采样点在空间的实际位置一般说来不会和显示点准确对应起来。由于在写入存储器时这种地址必须首先进行转换,将其空间地址转换到与实际位置最接近的存储单元。即像素地址首先由极坐标转换直角坐标,此时的直角坐标为地址数字化到最接近的一个像素地址,因而使得扇形图像的进场区域在两条相邻的扫描线上的部分数据采样点会被写在相同的像素地址单元中,即发生重写而造成显示过密。其次随着两条相邻扫描线离探头距离的增加其间隙也所之变大,这样两条扫描线之间某些像素不会被采样,从而形成“黑洞”,云纹斑正是这种预料中未采样的“黑洞”云集

PowerMILL后处理修改教程

一、完整的后处理文件介绍 一个完整的后处理文件通常有:定义字符段、定义字符格式段、定义键值段、定义指令值段、变量定义、程序格式段等部分组成。 下面我们先来看一个比较完整的后处理文件,并把它分为数段,把需要修改的地方做个必要的解释: machine fanucom ——————后处理文件头 ============第一部分是定义字符段=================================== define word TN address letter = "TOOL TYPE:- " address width = 13 field width = 25 end define 具体解释: define word TN ——————————————定义字段; address letter = "TOOL TYPE:- " —————定义字段的返回值,比如在后处理文件里有“MS =C ; TN ToolType ; EM =C”,而在写程式的时候选用的是端铣刀,那么在CNC程式里就会有(TOOL TYPE:- ENDMILL); address width = 13 ———————————定义字符宽度,如上"TOOL TYPE:- ",从T开始算起一共13位,包括空格; field width = 25 ———————————定义返回字的宽度,如上"ENDMILL",如果field width = 2,那"TOOL TYPE:- "就返回EN;如果field width = 25,那"TOOL TYPE:- "就返回ENDMILL。 end define ========================== 第二段是定义字符的格式================================== define format ( / G6 S T M1 M2 L P D E H O ) address width = 1 field width = 2

统赢后处理修改教程

统赢(WPCAM)系统内定变数一览表 变数宣告内容 0 R 外定误差值(机台最小位移量) 。 A R 外型切断使用补正量 0:与第一刀相同补正量 1:使用割一刀的补正量 。 B R 小孔尺寸设定ex:inti/3(3.0以下为小孔); ex:inti/-3(引入线短于3.0以下为上孔),inc/0.02(小 孔间隙自动放大0.02mm) C R 角落安全距离 。 D I 铜线补正编号 ex:H01,H02 这里是改辅正的H码&D码 E R 切断点强迫过切长度 。 F R 。G I G码输出 。H R 补正辅助码 ex: H110,H109,H111 。I,J R 圆心的X,Y方向座标 。N I NC程式行编号(需自行应用) 。P,Q R U,V轴的绝对座标位置 。R R 圆弧半径值 。T R 工件初始斜度设定值,整体斜度值,单孔斜度 。U,V R 相对于X,Y轴的辅助面(U,V面)相对座标 。W R UV面的绝对(Z)高度 。X,Y R 铜线的X,Y座标值 。Z R 上导具的Z座标值 。27 R 铜线倾斜的斜度输出值 29 R 铜线初始斜度设定 。30 R 上下异形分段裕量:#30=0:(上模滑块)程式面路径面积 <辅助面积,#30=1:(下模滑块)>辅助面积 。31 R 上下异形最大分段长度 。32 R 工件厚度设定值 。33,34 R UV面上圆心的X,Y方向座标值 这里是改上下异形走圆弧的,可以把字母I&J改成K&L 35 R 当@35=2,表示粗割完成,已进入精修程式段 36 R 。37 I 切割型式 0:模孔,1:冲头 38 39 。40 I NC控制器的型式 1:(MITSU)2:(sodick)4:FANUC 8:seibu 16:agie 32:charmill

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

PM10.0后处理修改教程

machine fanucom ——————后处理文件头 define word TN ---------------------------- 定义字段; address letter = "TOOL TYPE :- " ----- 定义字段的返回值 address width = 13 定义字符宽度 field width = 25 定义返回字的宽度 end define 结束定义 define format ( / G6 S T M1 M2 L P D E H O ) 第二段是定义字符的格式 address width = 1------------ 定义字符宽度 address width = 1------------ 定义字符宽度 field width = 2 ------------- 定义返回字的宽度exponent width = 0 ---------- 指数的宽度 scale factor = 1 ------------- 比例因子:值乘以1 scale divisor = 1 ------------ 比例因子:值被1 除

tape position = 1----------- 字前留一个空格 print position = 1 -----------打印位置 sign = none----- 用于不需要G代码和进给率 sign = if negative 仅标识负坐标 sign = always 如果需要+ / - 号 not permanent -------- 不需要行号 not modal ------------ 仅当改变时需要重复的字为modal 。(模态)。 通常G 代码和X, Y 和Z 为坐标为modal, 但圆心通常使用的I, J, K 代码通常不是,因此它们为not modal . metric formats --------------- 公制 leading zeros = false --------- 前导0 trailing zeros = true ----------后导0 decimal point = false ------ 不需要小数点 decimal places = 2 -------- 小数点后2

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

遥感图像的分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。

PowerMILL后处理修改教程

PowerMILL后处理修改教程 本教程是偶在实际使用中的PowerMILL后处理文件修改知识的积累,其中有部分修改案例来源于帮助文件,在此仅以文字和图片的形式把他记录下来与初学者共同分享。 By mymould(风影爱人)一、完整的后处理文件介绍 一个完整的后处理文件通常有:定义字符段、定义字符格式段、定义键值段、定义指令值段、变量定义、程序格式段等部分组成。 下面我们先来看一个比较完整的后处理文件,并把它分为数段,把需要修改的地方做个必要的解释:machine fanucom ——————后处理文件头 =========================== 第一部分是定义字符段============================== define word TN address letter = "TOOL TYPE:- " address width = 13 field width = 25 end define 具体解释: define word TN ——————————————定义字段; address letter = "TOOL TYPE:- " —————定义字段的返回值,比如在后处理文件里有“MS =C ; TN ToolType ; EM =C”,而在写程式的时候 选用的是端铣刀,那么在CNC程式里就会有 (TOOL TYPE:- ENDMILL); address width = 13 ———————————定义字符宽度,如上"TOOL TYPE:- ",从T开 始算起一共13位,包括空格; field width = 25 ———————————定义返回字的宽度,如上"ENDMILL",如果field width = 2,那"TOOL TYPE:- "就返回EN;如 果field width = 25,那"TOOL TYPE:- "就返回 ENDMILL。 end define ========================== 第二段是定义字符的格式============================= define format ( / G6 S T M1 M2 L P D E H O ) address width = 1 field width = 2 exponent width = 0 scale factor = 1 scale divisor = 1 tape position = 0 print position = 1 sign = none not permanent not modal metric formats leading zeros = false trailing zeros = true decimal point = false 控制公制尺寸的前导零、后导零,小数点 decimal places = 0 imperial formats leading zeros = false trailing zeros = true decimal point = false 控制英制尺寸的前导零、后导零,小数点 decimal places = 0 end define word order = ( OP N G1 G2 G3 G4 G5 ) word order = ( + G6 G7 X Y Z B C )

envi遥感图像监督分类

envi遥感图像监督分类 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 遥感影像的监督分类一般包括以下6个步骤,如下图所示: 详细操作步骤 第一步:类别定义/特征判别 根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。

启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。 通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。 第二步:样本选择 (1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。 1)在Region of Interest (ROI) Tool面板上,设置以下参数: ROI Name:林地 ROI Color: 2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择; 3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上; 4)这样就为林地选好了训练样本。 注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。 2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。 3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。 (2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool面板上,选择工具。重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本; (3)如下图为选好好的样本。

图像分类结果后处理方法介绍

图像分类结果后处理方法介绍 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority 分析、聚类处理(clump)和过滤处理(Sieve)。6.5.2 majority 和minority分析Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,用变换核中占主要地位(像元素最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。在主菜单中,选择Classification->Post Classification->Majority/Minority Analysis。在打开的文件选择对话框中,选择分类图像。打开Majority/Minority Parameters对话框(图6.28),下面填写Majority/Minority Parameters对话框中的参数。(1)选择分类类别(Select Classes):单击Select All Items按钮,选择所有类别。(2)选择分析方法(Analysis Method):Majority。(3)选择变换核(Kernel Size):5x5。必须是奇数且不必为正方形,变换核越大,分类图像越平滑。(4)中心像元权重(Center Pixel Weight):1。

在判定在变换核中哪个类别占主体地位时,中心像元权重用于设定中心像元类别将被计算多少次。例如:如果输入的权重为1,系统仅计算1次中心像元类别;如果输入5,系统 将计算5次中心像元类别。(5)选择输出路径及文件名,单击OK执行majority和minority分析。图6.28 Majority/Minority Parameters对话框6.5.3 聚类处理(clump) 聚类处理(clump)是运用形态学算子将临近的类似分类区 域聚类并合并。分类图像经常缺少空间连续性(分类区域中斑点或洞的存在)。低通滤波虽然可以用来平滑这些图像, 但是类别信息常常会被临近类别的编码干扰,聚类处理解决了这个问题。首先将被选的分类用一个扩大操作合并到一块,然后用参数对话框中指定了大小的变换核对分类图像进行 侵蚀操作。在主菜单中,选择Classification->Post Classification->Clump Classes。在Classification Input File 对话框中,选择一个分类图像,单击击OK按钮,打开Clump Parameters对话框(图6.29)。下面填写Clump Parameters对话框中的参数。(1)选择分类类别(Select Classes):单击Select All Items按钮,选择所 有类别。(2)输入形态学算子大小(Rows和Cols):3,3。(3)选择输出路径及文件名,单击OK执行Clump处理。图6.29 Clump Parameters对话框6.5.4 过滤处理(Sieve)过滤处理(Sieve)解决分类图像中出

慢走丝之统赢操作说明及后处理修改说明

慢走丝之统赢操作说明及后处理修改说明 NC程式中出現的補正編號是由變數90的控制,可以將#8更換為#90﹐Variable 90 = H20,abs,modal,integer,init/0.; Offset code :;;Offset Compensation Number #8與#90的區別,(根據客戶需要采用變數控制) #8的補正編號是由系統自動累加1,從H01﹒H02﹒H03﹒﹒﹒﹒H99﹒﹒﹒ #90的補正編號是由DBF檔案資料庫與條件組補正編號控制﹐變動性較#8大﹐可以這選圖元時隨時改變補正編號 #90補正編號可參考WPCAM﹒DBF檔案資料 原Variable D = H10,init/0,not_modal,ex:H01,H02 修改后Variable D = D10,init/0,not_modal,ex01,D02(也可以修改成其他字母代碼 全世界慢走丝,中走丝,快走丝“常用中英词汇表” 慢走丝名 三菱Mitsubishi 牧野Makino 兄弟Brother 日立 Hitachi 西部Seibu 沙迪克Sodlck 法那科,富士通。Fanuc 积柏时Japax 欧安? 夏米尔洽米尔Charmiles 阿奇Agie GF阿奇夏米尔GF Agie-Charmills 庆鸿Chmer 徕通Legend 京美Centech 美新?健升?秀丰?亚特?美溪? 杜芬?联盛?

三光科技Sanguang Technoloies 汉川?三光沙迪克 Sanguang Sodlck 北京阿奇? 中特?宝码?上海通用?安德? 编程系统 Esprit 无中文名你能取一个MasterCam 无中文名Ycut 立先Wpcam 统羸 机台性能: 最大工件尺寸Max workpiece size 最大工件重量Max workpiece weight X和Y轴行程X/Y Travel U,Vl轴行程U,V Treavl Z轴行程Z Travel 机械重量Net Wight 机头移动距离Machine Head movement 电极直径Electrode pipe diameter 加工液容量Fluid capacity 加工液Dielectric fluid 加工电源Input power 最大加工电流Max machineing current 机械高度Machine height 机台尺寸Machine size 机器特性Features 穿线方法Thread type 半自动穿线Semi-auto thread 自动穿线Automatic thread 驱动器Driver 伺服马达Servo motor 光栅尺位置检出装置 Liner scale Positioning 线张力Wire tension 线速Wire feed 垂直度Perpendicularity 锥度Taper 斜度Oblique 过滤方式Filtering element 纯水供液系统Pure water supply unit 离子交换Ionexchange 冷却系统Coolant system 控制轴Axis control 最小设定单位Min setting 最小移动单位Min movment 程序储存Program storage 轴旋转Axis rotating 镜像 Mirror 线径补偿Offset 倍率scale 自动园角 corner path 转角暂停corner pause 加工电源Power supply 放电回路Discharge loop 电流current 停止时间Off time 放电时间On time 辅助电流Auxiliary current 辅助停止时间Auxiliary off time 伺服

医学影像技术的后处理及在临床医学中的应用

医学影像的后处理及在临床应用中的技术研究技术报告医学影像的后处理及在临床应用中的技术研究课题组二Ο一三年十一月三十日 1 2012年3月至2013年7月,县人民医院、县精神病防治院联合在县第一人民医院开展了“医学影像的后处理及在临床应用中的技术研究”课题,经充分调查和认证,各种医学影像处理增强方法都有其优缺点,必须从成像目的、影像的特点和各种增强方法的自身特性出发,选择合适的增强方法,课题研究主要技术要点如下。一.调查论证医学影像技术是现代医学中重要的组成部分,并且已经成为医学技术中发展最快的领域之一。它主要包括医学成像显示技术、医学图像分析处理技术和医学图像压缩传输技术三个主要方向。它的主要作用是:采集病人身体病变部位的信息并存储为相应的图像,通过对这些图像信息作进一步的分析、诊断来更加清晰、详细地获得和掌握病人的病情,从而可以更好地

对病人开展进一步的治疗。保留的图像信息还可以作为日后诊断的参考。现代医学影像技术也已经使得远程医疗成为可能,极大地方便了病人和医生的沟通。 二、对比试验传统的医学成像技术是以物理学和现代电子计算机技术为基础的,就成像机理而论主要包括:投影X 射线成像、X 射线计算机断层成像、超声成像、放射性核素、磁共振成像、红外线成像等。随着计算机技术的进一步发展,基于全息摄影的三维成 2 像技术也得到日益广泛的应用,从而进一步提升了医学诊断技术的清晰性和准确性。以数字图像处理技术和计算机技术为依托,医学图像的分析和处理是医学影像技术中极为重要的一个环节,它是使医生获得病人病情可靠信息的重要保证,也是医生开展进一步治疗的必要条件。它对医学图像的分析处理主要包括:图像的预处理、特征提取、图像分割、图像配准、图像融合、纹理分析和伪彩色处理等。图像的压缩传输技术

envi遥感图像处理之分类

ENVI遥感图像处理之计算机分类 一、非监督分类 1、K—均值分类算法 步骤:1)打开待分类的遥感影像数据 2)依次打开:ENVI主菜单栏—>Classification—>Unsupervised—>K—Means即进入K均值分类数据文件选择对话框 3)选择待分类的数据文件 4)选好数据以后,点击OK键,进入K-Means参数设置对话框,进行有关参数的设置,包括分类的类数、分类终止的条件、类均值左右允许误差、最大距离误差以及文件的输出等参数的设置

5)建立光谱类和地物类之间的联系:在新窗口中显示分类结果图: 然后,打开显示窗口菜单栏Tools菜单—>Color Mapping—>Class Color Mapping…进入分类结果的属性设置对话框,在这里,可以进行类别的名称,显示的颜色等,建立了光谱类和地物类之间的联系。 设置完成以后,点击菜单栏Options—>Save Changes 即完成光谱类与地物类联系的确立6)类的合并问题:如果分出的类中,有一些需要进行合并,可按以下步骤进行:选择ENVI主菜单Classfaction—>Post Classfiction—>Combine Classes,进入待合并分类结果数据的选择对话框

点击OK键,进入合并参数设置对话框,在左边选择要合并的类,在右边选择合并后的类,点击Add Combination 键即完成一组合并的设置,如此反复,对其他需合并的类进行此项操作,点击OK,出现输出文件对话框,选择输出方式,即完成了类的合并的操作。 至此,K—均值分类的方法结束。 2、ISODATA算法 基本操作与K—均值分类相似。 1)进行分类数据文件的选择(依次打开:ENVI主菜单栏—>Classification—>Unsupervised —>IsoData即进入ISODA TA算法分类数据文件选择对话框,选择待分类的数据文件)2)进行分类的相关参数的设置(点击OK键以后,进入参数设置对话框,可以进行分类的 最大最小类数、迭代次数等 参数的设置)

图像处理在医学上的应用

数字图像处理在医学上的应用 徐胜632081101020 控制理论与控制工程 摘要: 本文介绍了数字图像处理技术在医学中的应用。并且举例采用显微光学放大系统及CCD数字图像采集系统拍摄人体微血管图像在对采集的图像进行二值化。图像处理技术也是医学影像学的重要组成部分,在人体信息可视化的基础上,进一步分析、识别、分割、理解、分类等,以便医生更加直观利用信息做出临床诊断。在医学教学、研究中具有广阔的应用价值。 关键词: 数字图像处理; 二值化; CCD数字图像采集; 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。 在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。

MASTERCAM后处理修改方法必看

进行模具加工时,需从G54~G59的工件坐标系指令中指定一个,最常用的是G54。部分控制器使用G92指令确定工件坐标系。对刀时需定义工件坐标原点,原点的机械坐标值保存在CNC控制器的G54~G59指令参数中。CNC控制器执行G54~G59指令时,调出相应的参数用于工件加工。采用系统缺省的后处理文件时,相关参数设置正确的情况下可输出G55~G59指令,但无法实现G54指令的自动输出。 1、增加G54指令(方法一): 采用其他后处理文件(如MP_EZ.PST)可正常输出G54指令。由于FANUC.PST后处理文件广泛采用,这里仍以此文件为例进行所有修改。其他后处理文件内容有所不同,修改时根据实际情况调整。 选择【File】>【Edit】>【PST】命令,系统弹出读文件窗口,选择Mpfan.PST文件,系统弹出如下图所示编辑器。

单击"查找"按钮,系统弹出查找对话框,输入“G49”,如下图所示: 单击FIND NEXT按钮,查找结果所在行为: pbld, n, *sgcode, *sgplane, "G40", "G49", "G80", *sgabsinc, e 插入G54指令到当前行,将其修改为: pbld, n, *sgcode, *sgplane, "G40", "G49", "G80", *sgabsinc, "G54",e 输出的NC文件修改前对应位置指令为: N102G0G17G40G49G80G90 修改后变为: N102G0G17G40G49G80G90G54 查找当前行的上一行: pbld, n, *smetric, e 将其整行删除,或加上“#”成为注释行:

MASTERCAM后处理的设置及参数修改.docx

MASTERCAM后处理的设置和参数修改后置处理文件简称后处理文件,MASTERCAM后置处理文件是一种可以由用户以回答问题的形式自行修改的文件,其扩展名为 .PST。安装MASTERCAM时系统会自动安装默认的后处理为MPFAN.PST在.应用 Mastercam 软件的自动编程功能之前,必须先对这个文件进行编辑,才能在执行后处理程序时产生符合某种控制器需要和使用者习惯的 NC程序,如果没有全部更正,则可能造成事故 . MASTERCAM提供了不同系列的后处理文件,它们在内容上略有不同,但其格式及主体部分是相似的,一般都包括以下部分: 1)注释部分。对后处理文件及其设定方法作一般性 介绍. 此部分内容一般都不用更改 . 以下是截取的部分注释:( 注释前都带 #号, 系统在执行代码处理时是不会读取前面带#号的语句的 .) #Post Name : MPFAN #Product : MILL #Machine Name : GENERIC FANUC #Control Name : GENERIC FANUC #Description : GENERIC FANUC MILL POST #Associated Post : NONE

#Mill/Turn : NO #4-axis/Axis subs. : YES #5-axis : NO #Subprograms : YES #Executable : MP v9.0 # #WARNING:THIS POSTIS GENERICANDIS INTENDEDFOR MODIFICATION TO #THE MACHINE TOOL REQUIREMENTSAND PERSONAL PREFERENCE. 2)系统程序规划部分( Debugging and Factory Set Program Switches )。此部分是 MASTERCAM版本的后处理系统 规 划,每个版本都大同小异 , 一般不需更改 . 以下截取的是 9.0 版的 ) m_one : -1 #Define constant zero : 0 #Define constant one : 1 #Define constant two : 2 #Define constant three : 3 #Define constant four : 4 #Define constant five : 5 #Define constant

统赢后处理参数资料

WPCAM 系統內定變數一覽表(一) 變數宣告內容 0 R 外定誤差值(機臺最小位移量) 。 A R 外型切斷使用補正量0:與第一刀相同補正量, 1:使用割一刀的補正量, 2: 使用割一刀的補正量再+.001 。 B R 小孔尺寸設定ex:inti/3 (Φ3.0 以下為小孔) ; ex:inti/-3 (引入線短於3.0 以下為小孔) inc/2(小孔間隙自動放大.002mm) C R 角落安全距離 。 D I 銅線補正編號 ex: H01,H02 E R 切斷點強迫過切長度 F R 。G I G-碼輸出ex:G00/G01/G02/G03 。H R 補正(微調量)輔助碼ex: H110,H109,H111,H121 。I,J R 圓心的X,Y方向座標 。N I NC程式行編號(需自行應用) 。P,Q R U,V軸的絕對座標位置 。R R 圓弧半徑值 。T R 工件初始斜度設定值,整體斜值,單孔斜度 。U,V R 相對於X,Y軸的輔助面(UV面)相對座標 。W R UV面的絕對(Z)高度 。X,Y R 銅線的X,Y座標值 。Z R 上導具的Z座標值 。27 R 銅線傾斜的斜度輸出值 。28 R 無屑切割也依照全割完再修之規則1: 全割完再修0:即割即修 29 R 銅線初始斜度設定 。30 R @30:上下異形分段裕量, #30=0上模滑塊) 程式面路徑面積< 輔助面路徑面積 #30=1下模滑塊) 程式面路徑面積> 輔助面路徑面積 。31 R 上下異形最大分段長度 。32 R 工件厚度設定值 。33,34 R UV面上圓心的X,Y方向座標值 。35 R 當@35==2 ,表示粗割完成,已進入精修程式段 36 R 。37 I 切割型式0:模孔 1:衝頭 。40 I NC控制器的型式 1MITSU) 2:(SODICK) 4:(FANUC) 8:(SEIBU) 16:(AGIE) 32:(CHARMILL) 。41 I 切割型式設定8:粗割完再精修-8:粗精割分成兩個檔案 。42 I 整修時之過切設定0:不要1:修刀,最後一刀皆過切2: 修刀過切最後一刀不要。43 I 補正的方向1:G42 -1:G41 。44 I (SODICK原斜度值) (@27 已被調整過) #44=1:CW –1:CCW

浅析医学图像后处理技术

浅析医学图像后处理技术 学号:072404 姓名:叶晨曦指导教师:霍妍 【摘要】:计算机技术的快速发展不但极大地改进了医学影像诊疗设备,而且也为其发展开辟了新地方向,如计算机在医学图像处理中的应用,采用多媒体及网络技术的医学影像工作站,实现数字传输为医生提供重要诊断及鉴别诊断信息,以及存储与通信系统。医学影像新技术的发展特点,主要体现在数字化、信息化、多功能化及宽频带化等方面的综合应用。医学影像的数字化处理,提高了工作效率和工作质量,使影像工作的应用得到质的飞跃。【Abstract】:The rapid development of computer technology has not only greatly improved the treatment of medical imaging equipment, but also opened up a new landmark for the development direction of the computer such as medical image processing, multimedia and network technology, medical imaging workstations, digital transmission for the doctor Provide important information on diagnosis and differential diagnosis, as well as storage and communications systems. Medical imaging features of the development of new technologies, mainly in digital, information-based, multi-functional and in areas such as broadband-integrated applications.The process of medical Imaging digital enhances the efficiency and quality of work, so that the application of the work of the images has been a qualitative leap. 【关键字】: 医学图像,后处理 【Key Words】:Medical images, post-processing 1、引言 随着数字化医院的建设,医院信息化的重要组成部分之一——医学影像信息处理系统(PACS)也进入了新的数字化、无胶片的时代。PACS的概念提出于20世纪80年代,由于数字化影像设备,如CT、MRI、DR的广泛使用和计算机技术、网络技术和数字图像处理技术的发展,使得PACS逐渐与其他系统互通信息,共同构成一个整体的医院信息系统。 随着医学影像的数字化,医学影像在数量和大小上的增加越来越有必要使用计算机来存储处理及分析这些图像,对它进行必要的图像处理。计算机在医学图像处理中的应用除了成像方面的应用外,在对图像的管理上也有重要作用。 总之,将计算机图像处理技术更好地应用医学成像已成为重要研究方向。当今影像医学新技术的发展特点,主要体现在数字化、多功能化、信息化、宽频带化等方面的综合应用。而数字化和信息化,因其可操作、可传输、直观、有效等特点,倍受因发现医务工作者的重视。 2、影像后处理的概念与意义。 目前医学医学影像检查手段如CT、MRI、DSA、SPECT、PET和超声等产生的数字化图像,经计算机技术对其进行再加工并从定性到定量对图像进行分析的过程称为医学图像后处理技术。 通过PACS处理,医生能快速的得到病人的医学影像信息。但由于检查设备成像、显示器的刷新率、场频及帧频等影响,以及人眼观察时的图像闪烁,都会给诊断带来不利。 为了给病人提供更准确的诊断结果,PACS工作站采集DICOM图像信息后,经影像后处理,可以对图像进行处理和分析,再以DICOM文件格式在网络中传输的,为医生提供诊断信息。经过医学影像处理后的图像,增强了图像的显示力,使医生能更准确、更方便的作出诊断,满足病人需求。在现代图像处理中,计算机有专门的显示存储区域,显示器上所显示的内容都可以找到相应的显存区域与之对应起来,而具体的如何显示出图像、图形或文字等,是由专门的视频处理硬件来完成。而以胶片为传媒介质的原模式就没有这些优势。 3、影像后处理的主要功能(种类)。

相关文档