文档库 最新最全的文档下载
当前位置:文档库 › 无人机遥感影像获取及后续处理探讨_洪宇

无人机遥感影像获取及后续处理探讨_洪宇

无人机遥感影像获取及后续处理探讨_洪宇
无人机遥感影像获取及后续处理探讨_洪宇

无人机航空影像空三加密流程

无人机航空影像数据处理 流程 中国测绘科学研究院 北京东方道迩信息技术有限责任公司

目录 1、无人机航空影像数据处理流程 (3) 2、无人机航空影像数据要求 (4) 3、无人机航空影像数据空三加密流程 (5) 3.1畸变差校正 (5) 3.2建立测区工程 (7) 3.3.1工程目录及相机检校文件设置 (8) 3.3.2设置航空影像数据 (10) 3.3.3设置控制点数据 (14) 3.3空三加密 (15) 3.4.1数据预处理 (16) 3.4.2航带初始点提取 (19) 3.4.3自动相对定向及修改 (21) 3.4.4自由网平差 (31) 3.4.5控制点提取及区域网平差 (35) 4、DEM与DOM制作 (37) 4.1 DEM匹配及编辑修改 (37) 4.1.1工程及格式转换 (37) 4.1.2核线影像生成及DEM匹配 (40) 4.1.3 DEM编辑修改 (46) 4.2 DOM纠正及分幅 (52) 4.3.1 DOM纠正及拼接 (52) 4.3.2 DOM分幅 (60)

1、无人机航空影像数据处理流程 高分辨率遥感影像一体化测图系统PixelGrid作为卫星影像数据处理的能力和效率在生产过程中已经得到了很好的验证,其数据适用范围之广、处理效率之高在国内都是其它同类软件无法比拟的。 无人机航空摄影是一种新型的航空影像数据获取方式,由于无人机种类不同以及所搭配的相机不同,其获取数据的质量也不相同,PixelGrid 针对国内测绘部分中低空领域普及的无人机航空拍摄数据,提供了高效快速的处理。 其无人机航空影像作业流程图如下: 图1-1 无人机航空影像处理流程

无人机的图像处理综述

无人机图像处理综述 摘要:目标识别与跟踪技术是无人作战机实施攻击的关键步骤,本文从无人作战机的自动目标识别与跟踪的基本概念入手,以成像传感器的目标识别与跟踪为例,介绍目标识别、检测、跟踪等关键技术。 关键词:无人战斗机目标识别图像处理识别技术 一、引言 无人战斗机在最近几年成为无人机的发展热点。它的设计概念介于有人战斗机与导弹之间。无人战斗机不是孤立存在的,它是整个无人战斗机系统的一部分。无人战斗机系统有其独特的组成方式和管理模式。目前,无人战斗机的开发刚刚处于起步阶段。为了发展无人战斗机,有许多关键技术值得注意,特别是目标识别技术。它主要包括视觉图像预处理,目标提取、目标跟踪、数据融合等问题。其中,运动目标检测可采用背景差法、帧差法、光流法等,固定标志物检测可用到角点提取、边提取、不变矩、Hough 变换、贪婪算法等,目标跟踪可以分析特征进行状态估计,并与其他传感器融合,用到的方法有卡尔曼滤波、粒子滤波器和人工神经网络等。还有很多方法诸如全景图像几何形变的分析或者地平线的检测等没有进行特征提取,而是直接将图像的某一变量加到控制中去。 实际应用中,上述问题的进一步解决受到很多因素的制约。由于无人机的动力、载重、装配空间等物理条件的限制以及飞行速度更快,使得算法处理需要更少的延时。而且,无人机稀疏的室外飞行环境使得适用于地面机器人的算法不适用于无人机。同时,模型的不确定性,噪声和干扰,都限制了实物实验的成功。所以,如何将地面机器人的视觉导航成果应用到无人机视觉导航中去,如何提高无人机的算法速度并不过分损失导航精度,如何面对无人机自身模型的不确定度以及外界噪声的干扰,如何适应无人机所处的标志物稀疏的飞行环境,这些问题都需要更进一步的探讨。 二、无人机图像处理技术现状 1979年,Daliy等人首先把雷达图像和Landsat.MSS图像的复合图像用于地质解释,其处理过程可以看作是最简单的图像融合。1981年,Laner和Todd 进行了Landsat. RBV和MSS图像融合试验。 到20世纪80年代中后期,图像融合技术开始引起人们的重视,陆续有人将图像融合技术应用于遥感多谱图像的分析和处理。 到20世纪80年代末,人们才开始将图像融合应用于一般图像融合(可见光、红外等)。多波段SAR雷达相继开发使得对多波段的SAR图像数据融合技术的研究成为可能,特别是美国宇航局1993年9月成功发射了全世界第一部多波段(L,C, X波段)、多极化、多投射角空间SAR之后,为多波段的SAR图像融合提供了坚实的物质基础。 20世纪90年代后,图像融合技术的研究呈不断上升趋势,应用的领域也遍

Pix4UAV处理无人机数据操作流程

Pix4UAV软件处理无人机数据操作流程 一、Pix4UAV处理无人机数据包括以下几个步骤: 1、数据整理 2、启动软件 3、新建工程 4、数据处理 5、成果数据查看 6、数据后处理 二、具体操作步骤如下: 1数据整理 1)影像数据和POS数据的文件名及其存放的路径都不要出现中文。原始数据的存储 路径和成果数据的最好不在同一盘(若只有一个可以存放数据的盘,则两者最好 不要在同一路径下,都放在根目录即可),否则有可能影响速度。 2)POS的格式可为*.txt、*.dat或者*.csv中的任意一种,内容中不能出现任何中 文字符。POS数据包含的内容依次为:影像名称纬度经度绝对航高Κφω, (若无IMU,则无需Κ、φ、ω,POS数据包含的内容依次为:影像名称纬度经 度绝对航高)。 图1 POS数据样例(有IMU数据) 图2 POS数据样例(无IMU数据) 3)影像格式最好是JPG的,如果是TIFF的要转成JPG的,可节省时间。 2启动软件,显示如下界面。

3新建工程 1)点击Project菜单,从列表中选择New Project。 2)弹出如下对话框,定义工程存放路径和工程名称。 点击Browse按钮,弹出如下对话框,定义工程存放的路径。

工程路径和工程名定义完成后,界面显示如下。 3)点击Next按钮,弹出加载影像数据的界面。

点击按钮,找到影像数据存放的路径并选中待处理的影像加载,加载数据完成后,显示界面如下。 4)点击next按钮,显示如下界面。定义坐标系、相机参数,并导入POS数据。

①坐标系设定。若默认的坐标系正确,则无需更改。若不正确,则点击Images coordinate system选项卡中的按钮,弹出如下的定义坐标系界面。 可以通过点击来选择投影和坐标系;也可以通过导入通用的prj文件来定义坐标系。 ②相机模型设定。相机模型的核查、修改或自定义。在Camera model选项卡中点击按钮。

无人机遥感

4.方茴说:"可能人总有点什么事,是想忘也忘不了的。" 5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷 偷摸摸的。" 6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念 却可以把已经注定的谎言变成童话。" 无人机遥感发展现状与应用 摘要:随着测绘科学技术的发展,各行各业对遥感数据的需求日益增加,但遥感数据获取手段相对不足。无人机遥感系统以更低的运营成本、高效灵活的任务安排,自动化和智能化的操作应用成为主要的遥感技术之一。本文对目前国内外无人机遥感的研究现状进行了介绍,在此基础上对无人机遥感关键技术进行了分析。 关键词:无人机遥感发展现在应用领域 无人机技术经过几十年的发展,性能不断提高,功能日益完善,尤其是近年来航空、计算机、微电子、导航、通讯及数字传感器等相关技术的飞速发展,使得无人机技术已经从研究阶段向实用化阶段发展。无人机技术已经被广泛应用于各个领域中,成为未来航空器的发展方向之一。随着人们对地理环境的不断理解和对测绘需求的增长使得无人机与测绘的关系越来越紧密。无人机遥感技术体现了无人机与测绘的紧密结合同时也提供了更高效的测绘方式。 一、无人机遥感介绍 1、无人机遥感系统简介 2、国外研究现状 无人机最早出现在1917年,早期的无人驾驶飞行器的研制和应用主要使用作飞机靶机,应用范围主要是在军事上,后来应用范围逐渐扩展到作战、侦察及民用遥感飞行平台。20世纪80年代的科技革命让无人机得到进一步发展。随着计算机技术、通讯技术的迅速发展以及各种数字化、重量轻、体积小、探测精度高的新型传感器的不断出现,无人机的性能不断提高,应用范围和应用领域迅速拓展。世界范围内的各种用途、各种性能指标的无人机的类型已达数百种之多。续航时间从一小时延长到几十个小时,任务载荷从几公斤到几百公斤。这为长时间、大范围的遥感监测提供了保障,也为搭载多种传感器和执行多种任务创造了有利条件[1]。传感器经历了早期的胶片相机和大面阵数字化几个发展阶段,目前国内制造的数字航空测量相机拥有8000多万像素,能够同时拍摄彩色、红外、全色的高精度航片[2];中国测绘科学研究院使用多台哈苏相机组合照相,利用开发的软件再进行拼接,有效地提高了遥感飞行效率;德国禄来公司推出的2200万像素专业相机,配备了自动保持水平和改正旋偏的相机云台,开发了相应的成图软件。另外激光三维扫描仪、红外扫描仪等小型高精度遥感器为无人机遥感的应用提供了发展的余地。 3、国内研究现在 2005年8月8日上午11时24分,由北京大学与一航贵州集团共同研制的我国第一个 1."噢,居然有土龙肉,给我一块!" 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

无人机数据后处理软件

无人机航测软件配置方案 一、无人机航测数据特点: 影像像幅小,影像数量多;受限于无人机姿态稳定性,影像旋偏角大;非量测性相机焦距短,影像投影差变形大,并且影像畸变差较大;POS精度低;以上均对后期处理软件具有很高的要求。 二、针对无人机航测数据特点在数据处理中需要解决的几个关键问题: 1).影像同名点匹配问题,尤其是弱纹理地区,如沙漠、林地、山地、水田等区域 2).空三成果精度保证问题 3).空三成果与采集软件的匹配问题 4).软件操作简单易用,自动化程度高

二、国内外无人机数据处理软件对比进口

国产: 四、推荐软件介绍 4.1结论依据:通过分析市面上的无人机后处理软件的特点,结合市场用户的试用情况及经验积累如南宁勘察测绘地理信息院,遵义水利水电勘测设计研究院(湄潭县高台水库1:1000地形图测量项目,中桥水库1:1000地形图测量项目),中国电建成都勘察设计研究院有限公司,中国电建西北勘测设计研究院有限公司,软件选型上采用多种软件组合的方式,数据预处理采用美国Trimble公司UASMaster软件,采用UASMaster软件做完同名点匹配后采用德国Inpho公司Inpho软件MATCH-AT功能进行空三加密,空三加密后的成果导入航天远景公司Mtrix系列或四维公司JX4系列测图系统进行测图,这是实现高效高精度成果的最佳方式也是经过大量生产验证过经验方案。 4.2 UASMaster软件介绍

该软件在非摄影测量人员接近黑匣子的简单工作流与摄影测量专家的工作流之间架起了桥梁,填补了他们之间的空缺。UASMaster包含先进的技术,这种技术经过定制,能从UAS的数据特性中给出高质量的结果。它很容易集成到Inpho软件的摄影测量工作流和第三方工作流中。 UASMaster具有开放市场的理念,几乎能处理来自任何UAS硬件供应商的数据。它可以处理固定翼无人机和直升无人机系统所获得的数据。甚至对于处理飞艇和其它类型无人机系统所采集的数据,也证明该软件是成功的。 主要特点 集成到单一产品中的完整的摄影测量工作流程 快速黑盒子处理或者通过预设的质量优化与性能优化的多步骤处理 处理任何类型无人机系统数据 多种相机支持(支持高达5100万像素的相机) 无需专门的摄影测量知识或经验,即可获得完美的成果 性能概述 工作流 全自动的地理参考、相机标定、点云匹配和正摄影像镶嵌 通过子区域选择,对地理参考、点云和正摄镶嵌进行编辑与再处理 最佳精度的摄影测量级成果

无人机影像空三后处理流程

1、数据的准备 A、原始影像以及曝光点数据 无人机低空航摄采用的是普通数码相机,需要进行相机畸变纠正才能用于后期空三处理。但是我们采用的是双拼相机,原始影像是分为前后相机,而且相片好是一一对应的,这个是必须注意的。 曝光点数据是指的每张相片曝光时的坐标数据,它也是与相片一一对应的。B、像控点数据像控点数据包括像控点坐标和点之记以及像控点刺点图,点之记主要是记录像控点所在位置的信息,刺点图记录的是像控点在图像上的准确位置,方便空三加密是刺控制点。 2、数据预处理 数据预处理与空三软件有关,也与相机有关。普通相机的相片需进行畸变纠正,双拼相机的影像需进行前后相片的拼接,拼接过程已经进行了畸变纠正。一般相片预处理时需将相片按照航带分开并按照飞行方向适当旋转(相邻航线的相片旋转角度相差180 度),有的空三软件需将相片格式转换为tif 格式才能做后期处理,在转格式和旋转相片时,为了保持相片信息不丢失,最好是PhotoShop软件来处理,为了提高效率,可以采用PS的批处理命令。如果是用MAP-AT软件的话,相片可放在一个目录,格式也不需转换,直接用JPEG格式,但 是仍需按照航带旋转相片,这是为了方便批处理建立空三的工程文件。像控点数据按照编号和航带分好目录。 3、空三加密处理 空三加密处理是航摄中最重要的步骤,也是最繁琐的步骤。不同的软件空三步骤有些许不同,但是大同小异。一般都是先做内定向,然后是相对定向,最后做绝对定向,绝对定向是需要控制点数据的。所谓加密其实就是平差过程,为了提高加密精度一般在最后都会在绝对定向的基础上做一次在整体的光束法平差,光束法整体平差不引入中间步骤的参数,是以精度最高。当然这只是理论上的流程,真正的处理过程比较繁琐也不是全按照流程,只要知道每一步流程的作业就行。 这里以MAP-AT软件为例讲解下空三流程: (略,可参考MAP-AT处理流程文档) 4、生成DEM和DOM 做完空三之后就可以生成DEM和DOMT,在相对定向之后可以将部分加密点假设为已知点,所以相对定向之后就可以做这一步了,如果只是需要没用坐标的正射影像的话,可以在相对定向之后做这一步。生成DEM其实就是软件自动匹配加密点的过程,增加加密点的密度 就可以得到不能分辨率的DEM但是电脑自动匹配的加密点总会有错误的,所以如果要出DEM 成果是必须要人工编辑的。生成DEM需要所在影像的高程数据,也就是DEM可以用电脑自 动生成的DE(未编辑的),也可以用已有的DEM数据,如等高线数据等。但是已有格式DEM 可能和软件所用格式不同,须进行格式。DEM的格式,有点空三软件是自带,有的需用ARCGIS 或者ERDA勞软件来处理。 5、镶嵌匀色 在上一步中生成的DOME射影像都是单张相片纠正过来的,为了得到整幅影像需进行镶嵌处理,镶嵌的意思就是不同的相片按照坐标和纹理进行拼接处理。不同的相片对比度和色 调不一致,所以在拼接前还需进行匀光匀色处理,匀光是统一对比度,匀色是统一色调。匀光匀色软件很多,有的是空三软件自带的(如DPGrid),有的是单独的,有的和镶嵌软件是 一体的。但是所有的镶嵌匀色软件处理步骤都大同小异。匀光匀色有不同的算法,主要是两 种,一种是整体的自适应算法,这个算法是根据所有形象的对比度和色调信息计算出一个整体统一的

无人机航测流程

无人机航测流程 无人机航拍测绘具有精度高、作业效率高、数据分析能力强的特点,很大程度上解决了人工测绘的痛点。因此,无人机在测绘工程中的应用越来越广泛。那么,先掌握无人机航拍注意要点,才能充分发挥无人机优势,减轻测绘负担。 一、航拍总技术流程 二、航拍测绘各步骤说明 测绘无人机小组航拍小组配备2-3人即可,航拍任务结束后对数据进行快速检查,检查合格后即可带回进行后续的数据处理工作。 1.飞行准备 飞行前的准备内容包括:选择航拍测绘设备、航线规划涉及、飞行方案涉及(确定航高及飞行速度、重叠度)

2.保持每天的工作日志 记录当天风速、天气、起降坐标等信息,并保存数据供日后参考和分析。 3.建立无线电台和地面站 无线电链路用于地面站和无人机之间的通信。目前,大多数测绘无人机使用无线电链路在无人机与地面站之间进行数据交换。 4.飞行执行 根据制定的分区航摄计划,寻找合适的起飞点,对每块区域进行拍摄采集照片。在设备检查完毕,并确认起飞区域安全后,将无人机解锁起飞。起飞时飞手通过遥控器实时控制飞机,地面站飞控人员通过飞机传输回来的参数观察飞机状态。飞机到达安全高度后由飞手通过遥控器收起起落架,将飞行模式切换为自动任务飞行模式。同时,飞手需通过目视无人机时刻关注飞机的动态,地面站飞控人员留意飞控软件中电池状况、飞行速度、飞行高度、飞行姿态、航线完成情况等,以此保证飞行安全。 5.飞行结束 无人机完成飞行任务后,降落时应确保降落地点安全,避免路人靠近。完成降落后检查相机中的影像数据、飞控系统中的数据是否完整。数据获取完成后,需对获取的影像进行质量检查,对不合格的区域进行补飞,直到获取的影像质量满足要求。 三、无人机航拍影像质量检查方法 1 避免无人机航拍影像曝光

浅析无人机遥感影像的特点与影像处理技术

龙源期刊网 https://www.wendangku.net/doc/4c2089380.html, 浅析无人机遥感影像的特点与影像处理技术作者:梁双凤 来源:《中国住宅设施》2017年第01期 摘要:借助遥感摄影,快速辨识了细微情形下的建筑裂痕,查明受损状态。历经地震以后,就要明晰这一区段的建筑损害,提供调研根据。无人机特有的遥感影像有着自动的优势,提取精准信息。在减灾调研之中,影像处理有着不可替换的价值。为此,有必要探析无人机可获取的遥感影像特性,解析更适宜的处理技术。 关键词:无人机;遥感影像;特点;影像处理技术 无人机拍摄可得低空影像,拍摄遥感影像。针对遥感影像,探析了快速处理。这样做,化解了应急态势下的处理疑难,供应新的思路。面向对象状态下,无人机拍摄得出的遥感影像辨识了多样的信息,经由快速提取,可得区域以内的被损毁状态。妥善处理影像,便于后续时段的建筑修复,提升处理水准[1]。借助数字摄影特有的测量流程,测得受灾区段内的精准数 值。它提快了常规流程的处理速率,符合精度指标。 一、解析影像特性 无人机拍摄可得的影像有着更优的分辨率,借助人为调控,航拍显出了针对特性。通常状态下,它侧重去拍摄选出来的某区段信息,用作指引救援、精准反映灾情。在灾后调研及评估之中,拍摄可得的这类影像还可予以运用,指引日后重建。突发地震以后,遥感传感器、飞行必备的遥感平台凸显了独有的优势,二者彼此互补;选取多样角度予以拍摄影像。 在航空摄影中,设定多重方位予以拍摄,获取明晰的影像。借助飞艇及新式无人机,增设了遥感特性的新颖平台,安设数码相机。这种设备自带的体积很小,有着灵活优势。经由地表遥控,它提快了原有的获取速率。此外,省去起降跑道,也摆脱了偏大的气候阻碍。作为航拍补充,无人机特有的遥感途径最适宜局部范畴的常规拍摄,反映区域情况[2]。 二、无人机独有的遥感优势 首先,依托超轻特性的直升机当成无人机,布设遥感平台。可以定点起降,接近地表来拍摄。选取数码相机,拍摄影像除掉了框标,信息更为明晰。 其次,航向影像增添了固有的重叠度,超出80%。增添了分辨率,识别了某区段的震后状态,辨识地表损伤。 第三,拍摄原始影像,摄影装置配有的铅垂线、主光轴显出了偏大的转角。为此,要依循拟定好的规程来飞行,这样可拍得竖向方位的航片,缩减局部形变。

无人机影像完整解决方案讲课讲稿

无人机影像完整解决 方案

无人机小数码影像完整解决方案 一、无人机小数码影像优点 (2) 二、无人机小数码影像缺点 (3) 三、传统解决方案的精度与效率 (5) 四、VISIONTEK无人机小数码影像解决方案 (5) 1、产品组成 (6) 2、产品特点 (6) 五、传统解决方案和远景无人机小数码影像完整解决方案对比 (11) 六、低空无人机小数码完整解决方案应用行业 (12) 七、案例 (13) 一、无人机小数码影像优点 1.影像获取快捷方便 无需专业航测设备,普通民用单反相机即可作为影像获取的传感器,操控手经过短期培训学习即可操控整个系统。 2.成本低廉 无人机(带飞控系统)市场价格10万到100万,各种档次都有,而相机整套(机身加镜头)不到2万,整套系统成本低廉。 3.整个系统机动性强 整套设备不需要专门机场调运、调配,可用小型汽车装载托运,随时下车组装,3个工作人员2小时内可组装完毕。 4.受气候条件影响小 只要不下雨、下雪并且空中风速小于6级,即使是光照不足的阴天,飞机也可上天航拍。 5.飞行条件需求较低 不需要专门机场和跑道,可在普通公路上滑跑起降或采用弹射方式起飞和伞降方式降落。 6.满足大比例尺成图要求 满足《低空数字航空摄影测量内业规范》CH/Z 3003-2010 1:500、1:1000、1:2000大比例尺成图精度要求,满足传统航测规范 GB 7930-1987和GB/T 7930-2008 中1:1000和1:2000大比例尺成图精度要求。 7.影像获取周期短、时效性强 无人机遥感几乎不受场地和天气影响,飞行前准备工作可少于2个小时,因此可快速上天获取满足要求的遥感影像,从准备航飞到获取影像周期短,影像获取后可立即处理得到航测成果,时效性强。

无人机遥感影像获取及后续处理探讨

收稿日期:2008-02-23;修订日期:2008-07-07 作者简介:洪宇(1981-),女,硕士研究生,主要从事地理信息系统、航空摄影测量等方面研究。E -m ail:hongyuw h@https://www.wendangku.net/doc/4c2089380.html, 。 无人机遥感影像获取及后续处理探讨 洪 宇1,2,龚建华2,胡社荣1,黄明祥2 (1.中国矿业大学(北京),北京 100083; 2.中国科学院遥感应用研究所,北京 100083) 摘要:作为卫星遥感和航空遥感的有益补充,无人机航空遥感系统获取遥感影像具有多种特性。通过4次无人机航拍试验,根据所获取的遥感影像和飞行辅助数据,对航拍数据进行拼接。从航拍的多个方面对飞行试验以及实验成果进行了质量评价。并提出了无人机应用于航拍时存在的问题及一些改进方法。 关 键 词:无人机;遥感;试验;影像;质量评价 中图分类号:P231 文献标志码:A 文章编号:1004-0323(2008)04-0462-05 1 引 言 无人机遥感是遥感的发展趋势之一,无人机遥 感系统具有运行成本低、执行任务灵活性高等优点, 是遥感数据获取的重要工具。随着技术的成熟和民 用领域的需求,无人机已经逐渐渗透到民用领域的 各个行业。近年来出现的性能各异的无人机,广泛 应用于军用战场侦察和监视任务以及民用研究。按 用途可分为民用通信中继无人机、气象探测无人机、 灾害监测无人机、农药喷洒无人机、地质勘测无人 机、地图测绘无人机、交通管制无人机和边境控制无 人机等[4]。 尽管已经应用于我国民用领域的各个行业,无 人机在民用特别是遥感领域的应用仍然处于起步阶 段,目前并没有形成一个成熟的产业。 作为遥感平台,无人机遥感系统更可显示其独 特的优势:它成本低廉,能够低速、低空飞行,有利于 遥感作业;并且机动灵活,能快速响应拍摄任务;可 以承担高风险或高科技的飞行任务。其缺点是对载 荷的体积重量有严格限制,对载荷的抗震性能也有 较高要求。费用低廉使得许多中小型用户也有能力 支付,扩大了遥感的应用范围和用户群,具有广阔的 应用前景。 由于无人机携带的为非量测型相机,其本身与 量测型相机在拍摄方式和后期处理上都与传统的航空摄影测量有所不同[7]。针对这些特殊性,本文就无人机采集影像的方式、拼接方法及其精度做了探讨,阐述了无人机遥感系统采集高分辨率图像和高精度定位数据以及后续影像处理的可行性与可靠性,分析无人机携带非量测型相机遥感作业以及后期数据处理的可行性,意在探讨适宜于民用的无人机遥感及后续影像处理的方法及可行性。2 无人机遥感系统的硬件平台构成研究和试验所采用的是按照气象无人机的标准自行研发的无人机。该无人机遥感平台由3个子模块构成:无人机平台、相机子系统、空中遥感控制子系统[8]。该无人机的性能如下:可在高度150~2500m 进行飞行,巡航速度为90km /h,续航3h,有效载荷为2kg,导航精度50m 。无人机遥感系统由空中部分、地面部分和数据后处理部分组成,如图1所示。其中空中部分包括遥感传感器子系统、遥感空中控制子系统、无人机平台。地面部分包括航迹规划子系统、无人机地面控制子系统以及数据接收显示子系统。遥感空中子系统的主要功能:规划航线并上传到飞机上的控制器;飞行中监控飞机状态,在能可靠传递数据的时候可以改变部分控制参数。地面部分主要功能为设计和规划航道轨迹,无人机的实时控制与飞行姿态数据的实时接收和遥感影像的显示。 第23卷 第4期2008年8月遥 感 技 术 与 应 用REM OT E SENSING TECH NOLOGY AND APPL ICAT ION Vol.23 N o.4 A ug.2008

2017年无人机数据处理完整解决方案

2017年无人机数据处理完整 解决方案

目录 1 产品特点 (3) 1.1 无人驾驶小飞机项目情况简介 (6) 1.2 数据处理软件技术指标 (6) 1.3 硬件设备要求 (7) 1.4 处理软件要求 (7) 1.5 数据要求 (7) 2 数据处理操作流程 (8) 2.1 数据处理流程图 (8) 2.2 空三加密 (9) 2.2.1 启用软件FlightMatrix (9) 2.2.1.1创建Flightmatrix工程 9 2.2.1.2设置工程选项参数 10 2.2.1.3自动化处理 19 2.2.1.4DATMatrix交互编辑 22 2.2.1.5调用PATB进行平差解算 30

2.3 生成DEM、DOM (32) 2.4 镶嵌成图 (35) 2.4.1 启用软件EPT (35) 2.4.1.1导入MapMatrix工程生成DOM镶嵌工程 40 2.4.1.2编辑镶嵌线 50 2.5 图幅修补 (52) 2.6 创建DLG,进行数字测图 (54)

1产品特点 1)空三加密 1.可根据已有航飞POS信息自动建立航线、划分航带,也可手动划 分航带。 2.完全摒弃传统航测提点和转点流程,可不依赖POS信息实现全自 动快速提点和转点,匹配同影像旋偏角无关,克服了小数码影像排列不规则、俯仰角、旋偏角等特别大的缺点。即使是超过80%区域为水面覆盖,程序依旧能匹配出高重叠度的同名像点,整个测区连接强度高。 3.直接支持数码相机输出的JPG格式或TIF格式,无需格式转换。 4.无需影像预旋转,横排、纵排都可实现自动转点,节约数据准备 时间。 5.实现畸变改正参数化,方便用户修正畸变改正参数,不需要事先 对影像做去畸变即可完成后续4D产品生产。 6.除无人机小数码影像外,还适用于其它航空影像。 7.空三加密支持无外业像控点模式,方便快速制作挂图,满足相关 需求。 8.专门针对中国测绘科学研究院二维检校场和武汉大学遥感学院近 景实验室三维检校场检校报告格式研发了傻瓜式批处理影像畸变差改正工具,格式对应,检校参数直接填入,无需转换,方便空三成果导入到其他航测软件进行后续处理。

无人机影像完整解决方案

无人机小数码影像完整解决方案 一、无人机小数码影像优点 (1) 二、无人机小数码影像缺点 (2) 三、传统解决方案的精度与效率 (4) 四、VISIONTEK无人机小数码影像解决方案 (4) 1、产品组成 (5) 2、产品特点 (5) 五、传统解决方案和远景无人机小数码影像完整解决方案对比 (10) 六、低空无人机小数码完整解决方案应用行业 (11) 七、案例 (12) 一、无人机小数码影像优点 1.影像获取快捷方便 无需专业航测设备,普通民用单反相机即可作为影像获取的传感器,操控手经过短期培训学习即可操控整个系统。 2.成本低廉 无人机(带飞控系统)市场价格10万到100万,各种档次都有,而相机整套(机身加镜头)不到2万,整套系统成本低廉。 3.整个系统机动性强 整套设备不需要专门机场调运、调配,可用小型汽车装载托运,随时下车组装,3个工作人员2小时内可组装完毕。 4.受气候条件影响小 只要不下雨、下雪并且空中风速小于6级,即使是光照不足的阴天,飞机也可上天航拍。 5.飞行条件需求较低 不需要专门机场和跑道,可在普通公路上滑跑起降或采用弹射方式起飞和伞降方式降落。 6.满足大比例尺成图要求 满足《低空数字航空摄影测量内业规范》CH/Z 3003-2010 1:500、1:1000、1:2000大比例尺成图精度要求,满足传统航测规范GB 7930-1987和GB/T 7930-2008 中1:1000和1:2000大比例尺成图精度要求。 7.影像获取周期短、时效性强 无人机遥感几乎不受场地和天气影响,飞行前准备工作可少于2个小时,因此可快速上天获取满足要求的遥感影像,从准备航飞到获取影像周期短,影像获取后可立即处理得到航测成果,时效性强。

无人机影像空三后处理流程

无人机影像空三后处理流程 1、数据的准备 A、原始影像以及曝光点数据 无人机低空航摄采用的是普通数码相机,需要进行相机畸变纠正才能用于后期空三处理。但是我们采用的是双拼相机,原始影像是分为前后相机,而且相片好是一一对应的,这个是必须注意的。曝光点数据是指的每张相片曝光时的坐标数据,它也是与相片一一对应的。 B、像控点数据 像控点数据包括像控点坐标和点之记以及像控点刺点图,点之记主要是记录像控点所在位置的信息,刺点图记录的是像控点在图像上的准确位置,方便空三加密是刺控制点。 2、数据预处理 数据预处理与空三软件有关,也与相机有关。普通相机的相片需进行畸变纠正,双拼相机的影像需进行前后相片的拼接,拼接过程已经进行了畸变纠正。一般相片预处理时需将相片按照航带分开并按照飞行方向适当旋转(相邻航线的相片旋转角度相差180度),有的空三软件需将相片格式转换为tif格式才能做后期处理,在转格式和旋转相片时,为了保持相片信息不丢失,最好是PhotoShop软件来处理,为了提高效率,可以采用PS的批处理命令。如果是用MAP-AT软件的话,相片可放在一个目录,格式也不需转换,直接用JPEG格式,但是仍需按照航带旋转相片,这是为了方便批处理建立空三的工程文件。像控点数据按照编号和航带分好目录。 3、空三加密处理 空三加密处理是航摄中最重要的步骤,也是最繁琐的步骤。不同的软件空三步骤有些许不同,但是大同小异。一般都是先做内定向,然后是相对定向,最后做绝对定向,绝对定向是需要控制点数据的。所谓加密其实就是平差过程,为了提高加密精度一般在最后都会在绝对定向的基础上做一次在整体的光束法平差,光束法整体平差不引入中间步骤的参数,是以精度最高。当然这只是理论上的流程,真正的处理过程比较繁琐也不是全按照流程,只要知道每一步流程的作业就行。 这里以MAP-AT软件为例讲解下空三流程: (略,可参考MAP-AT处理流程文档) 4、生成DEM和DOM 做完空三之后就可以生成DEM和DOM了,在相对定向之后可以将部分加密点假设为已知点,所以相对定向之后就可以做这一步了,如果只是需要没用坐标的正射影像的话,可以在相对定向之后做这一步。生成DEM其实就是软件自动匹配加密点的过程,增加加密点的密度就可以得到不能分辨率的DEM,但是电脑自动匹配的加密点总会有错误的,所以如果要出DEM成果是必须要人工编辑的。生成DEM需要所在影像的高程数据,也就是DEM,可以用电脑自动生成的DEM(未编辑的),也可以用已有的DEM数据,如等高线数据等。但是已有格式DEM可能和软件所用格式不同,须进行格式。DEM的格式,有点空三软件是自带,有的需用ARCGIS,或者ERDAS等软件来处理。 5、镶嵌匀色

无人机遥感技术在地质灾害调查中的应用

无人机遥感技术在地质灾害调查中的应用 摘要:本文通过介绍无人机遥感技术在地质灾害调查中的步骤、特点以及关键技术等,证实无人机遥感技术应用与地质灾害调查中的优势,同时展望今后无人机遥感技术在地质灾害调查中的应用前景。 关键词:无人机遥感技术;地质灾害;调查 近年来遥感技术得到了快速发展,无人机遥感技术也越来越被广泛的运用于地质灾害的调查和监测工作中。欧美各国对泥石流、滑坡等进行了大量的相关调查,并且以此为基础对遥感技术方法进行了系统总结,针对不同规模和不同对比度的泥石流以及滑坡情况提出了不同的遥感图像空间分辨率要求,同时利用雷达和GPS测量来对地质灾害的程度进行预测。目前我国也开始较大范围的运用遥感技术来调查地质灾害了,利用无人机遥感技术也是发展的必然趋势。 本研究利用了无人机康派技术完成了测区拍摄任务,通过对获取到的高分辨率航空影响进行GIS技术分析,得到有关的地质灾害信息,对测区的地质灾害情况进行分析并推动无人机遥感技术的进一步运用。 1研究区域概况 测区位于我国西北某省的南部,属于黄土高原中部的丘陵沟壑区,气候环境属于半湿润、半干旱,海拔1400米至1900米,年平均降雨量为500mm左右,年平均气温6℃左右。该地区地貌类型复杂多样,由于疏于典型的黄土丘陵沟壑区,所以水土流失情况严重,黄土沉积较厚并且地质结构疏松,因而经常发生滑坡、崩塌等地质灾害现象。 2具体研究内容 地质灾害是众多地质现象中的会产生不良后果的一种,不管是滑坡、泥石流这些灾害个体,还是众多地质灾害组合出现,遥感图像都会和周围背景有所不同,具体在影纹结构、色调、形态等都能看出。首先利用无人机对测区进行航拍,然后对得到的高分辨率影像进行分析研究,通过GIS技术来解译并提取出测区的地质灾害情况,从而全面、系统的得知测区内已经发生的地质灾害和存在地质灾害隐患的点,病调查清楚灾害的类型、规模、发展趋势、特点、危害性以及影响因素,然后以此为基础对后期的地质灾害防治工作进行指导。 2.1无人机航空摄影

无人机遥感影像的获取及处理研究

无人机遥感影像的获取及处理研究 摘要:无人机作为传统遥感数据获取手段的有效补充,具有高分辨率、成本低、操作简单等多个优点。文章主要介绍了无人机遥感平台及其特点,并对无人机影像的获取和处理进行了探讨,同时举例说明eBee无人机在土地利用调查中的应用。 标签:无人机;遥感;影像处理 引言 无人机驾驶飞机简称无人机(unmanned Aerial Vehicle)是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上安装有自动驾驶仪、程序控制等设备,地面遥控站人员通过雷达等设备,对无人机进行定位、跟踪、遥测和数据传输。无人机技术广泛应用于军事侦察、矿产勘查、地质调查、环境监测等多个领域。 随着社会经济的快速发展,人口和土地资源的矛盾日益突出,为了提高土地利用效率,全面开展土地利用情况调查工作,对于国土资源部进行有效的土地管理工作至关重要。目前,我国无人机进行影像获取正处于起步阶段,然而利用无人机进行土地利用调查,使用方便、成本低、分辨率高,较适合小范围获取影像,这对于提高土地管理工作有很大的帮助。 1 无人机影像的特点 无人机遥感与传统的卫星遥感、航空航天遥感相比,它有其独特的优势: (1)无人机操作简单,非专业人士均可使用,作业和维修成本较低。 (2)无人机的飞行高度和航线均可人为操控,灵活性强。 (3)无人机飞行受天气影响较小,飞行高度一般低于1000m,不受空域限制。 (4)无人机设备体积较小,易携带和运输。 (5)无人机作业效率高,可获取高分辨率影像。 但是,无人机由于自身体积小,承载能力有限,受风力的影响较大。与此同时,与传统影像获取方式相比,无人机数据的获取和处理有一定的局限性。 2 无人机遥感数据的获取

相关文档