文档库 最新最全的文档下载
当前位置:文档库 › 纳米晶体

纳米晶体

纳米晶体
纳米晶体

纳米晶体

摘要:本文主要介绍了金属纳米晶体、金属氧化物纳米晶体和一些其他纳米晶体的合成方法,并对它们的性能做了些简单的介绍。纳米晶体有许多独特优异的性能,本文对相关的纳米晶体的应用也进行了介绍,随着纳米晶体制备技术的发展,纳米晶体的应用会更加广泛。

关键词:纳米晶体;金属;金属氧化物

0引言

纳米材料是指组分尺寸至少在某一个维度上介于1~100nm之间的材料。纳米材料就其结构上可以分为纳米晶体、纳米颗粒、纳米粉末、纳米管等。由于纳米材料的纳米尺寸效应,使得纳米材料出现了许多不同于常规条件下的材料性能,例如光学性、电导性、抗腐蚀性等,因此人们对纳米材料在未来材料领域的应用与发展寄予了很大期望。但由于纳米材料在结构上存在表面效应和小尺寸效应,使其能量高于平衡态,表面上原子数增多,具有较高的表面能,使得这些表面原子具有较高的活性,非常不稳定,满足一定激活条件时,就会释放出过剩自由能,粒子长大,从而也将失去纳米材料所具有的特性,使块状纳米材料的制备产生困难。而纳米晶体由于晶界数量增加,使材料的强度、密度、韧性等性能大为改善。

纳米晶体指的具有纳米尺度的晶体材料。本文将分类介绍有关纳米晶体在制备、性能、应用等方面的研究进展。

1金属纳米晶体

同传统的金属晶体相比,金属纳米晶体材料由金属纳米晶粒构成,其晶粒尺寸很小( < 100 nm) ,晶界比例很大(30% ~50% ) ,晶体的缺陷密度很高,因此它所表现出来的性能,尤其是对结构敏感的性能与粗晶材料有很大差别。

刘伟[1]等用纯度为99.8%的紫铜丝作为原料,采用自悬浮定向流技术制备出金属Cu纳米粉末,制得平均晶粒尺寸为25 nm的金属Cu纳米晶体材料,其显微硬度为1155~1190GPa,约为普通粗晶Cu材料的3~4倍,硬度随压制工艺而变化,压力增大,保压时间延长,硬度增大. 且样品硬度值受表面抛光的影响。

李才臣[2]等以工业纯铝粉为原料,采用高能球磨法制备了纯铝纳米晶体并对其硬度进行了分析,经实验发现,球磨12 小时后可得平均晶粒尺寸约34nm, 而且此时的硬度最高,可达111HV, 纯铝纳米晶的硬度随着球磨时间的延长先升高后降低,随温度的增加先升高后下降。

对于金属纳米晶体的研究不仅局限在制备方法和显微硬度方面,对于纳米晶体的生长形态和结构稳定性方面也有相关的研究。

张吉晔[3]等对Ag纳米晶体的生长形态进行了相关的研究。他们在利用电化学方法在ITO 基板上沉积出银纳米晶体,然后研究了ITO基板上的沉积电位对Ag纳米晶体生长形态的影响。如图1所示,(a)和(b)中的银纳米粒子具有良好的分散性,粒径较均匀,此时沉积电位为0.3 V 时,粒子的分布密度较小。在(c)中,晶体形貌具有显著的羽毛状形态。(d)中银纳米晶体

的形貌完全呈现出树枝晶形态。(e)中有2种形状的银纳米粒子存在,其中多面体形状粒子占80%左右,形状有正方、六方等,尺寸在0.8~1.5 μm 之间,另一种银纳米粒子以枝晶形态存在。

图1 Ag纳米晶体的SEM[3]

材料的结构决定性能。研究金属纳米微粒在小尺寸状态下的晶体结构稳定性,可以拓展人们对纳米微粒更深层次的认识,并对于纳米微粒的制备和实际应用有重要的参考价值。李亚军[4]等建立了金属纳米微粒的结合能模型,该模型以微粒尺寸、形状因子和密堆因子为主要参数。通过计算V、Cr、Nb、Mo、Ta、W 和Fe 元素纳米微粒的结合能。结果表明:在一定形状下,在一定临界尺寸时各纳米微粒bcc结构和fcc结构的结合能相等;当微粒尺寸大于该临界尺寸时,bcc结构更稳定,小于该尺寸时,fcc结构更稳定。

2金属氧化物纳米晶体

目前制备纳米尺度的金属氧化物晶体通常是采用液相法,韦志仁等[5]以钛酸钠纤维SnCl4·5H2O 为前驱物,在pH值为11,温度180℃,反应24小时后经水热处理,在钛酸钠纤维表面上生长了大量定向排列的纳米SnO2晶体。

朱俊武等[6]采用溶剂热法以Cu(NO3)2为原料,乙二醇为溶剂和还原剂,制得了不同形貌的纳米Cu2O。氧化亚铜作为一种重要的无机化工原料,在涂料、红色玻璃、催化剂等领域有着广泛的用途。此实验用高氯酸铵催化分解来表征纳米Cu2O晶体的性能。如图2所示不同形貌的纳米Cu2O均能强烈催化高氯酸铵的热分解,使高氯酸铵的高温分解温度下降了约104 ℃,不规则状的纳米Cu2O使高氯酸铵的分解放热量由590J/g 增至1450J/g ,而短棒状的纳米Cu2O 对于高氯酸铵的低温分解催化作用较强,使得高氯酸铵的低温分解温度下降了约48 ℃。

图2 高氯酸铵中添加2%(wt)Cu2O的DTA曲线[6]

张学俊等[7]采用采用液相法( 溶胶-凝胶法) 在阴离子交换树脂和乙醇溶剂的辅助作用下直接合成纳米级的SnO2晶体和掺杂的SnO2晶体, 经乙酸异戊酯为溶剂共沸干燥后得到高分散性的纳米微粉。此合成方法是在有机溶剂条件下控制水分, 以强阴离子交换树脂作为反应剂, 在提供反应剂OH-的同时吸附上金属盐中的阴离子( Cl-, NO3-等) ,合成出高纯度的金属氢氧化物, 由于金属氢氧化物通常有着很强的失水生成氧化物的倾向, 而这一倾向在有机溶剂(如乙醇)中变得更加的明显, 更容易失水生成氧化物, 并随着合成反应的进行逐渐生成一定尺寸的纳米晶体。未经高温灼烧直接合成的(掺杂)金属氧化物纳米晶体表现出很高催化活性和抗菌杀菌能力, 因为它们表面仍保留大量的羟基, 更有利于与水分子、有机溶剂、有机化合物亲和。所以在无机催化剂的合成上, 液相法直接合成金属氧化物纳米晶体是十分重要的。

3其他纳米晶体

王威等[8]以高纯硅为靶材,利用直流磁控溅射法在P型硅(111)衬底上生长硅纳米晶体薄膜,并在600摄氏度温度下退火处理。应用扫描电镜观察发现制备的硅纳米晶体粒度均匀,薄膜粗糙度小。X 射线衍射仪分析发现硅纳米晶体具有(201)晶面取向生长的特点。与块体材料相比,硅纳米晶体不仅具有良好的电学性能,还具有良好的光学性能,其吸收谱包含本征、激子和自由载流子等丰富的吸收峰。

许荣辉等[9]采用水热法制备了尺寸在50nm左右的氢氧化镁纳米晶,他们发现氢氧化镁纳米晶属于六方结构,ICDD编号为44-1482。影响纳米晶氢氧化镁尺寸的合成因素有很多,但是主要有反应物配比、反应物浓度及反应温度及保温时间。纳米晶氢氧化镁快速分解的温度范围为350.7~397.8℃,吸热量为876.7J·g-1,其分解吸热集中,吸热量比常规微米级大24%,其作为阻燃剂显然比微米级性能优越。

4总结

随着人们对纳米晶体认识的不断深入,纳米晶体材料的研究将向深度化发展,研发水平也将不断提高,晶体研究的方向也将从晶态转向非晶态,从体晶体转向薄膜晶体,从体性质转向表面性质,从无机扩展到有机。总之,目前人们对纳米晶体材料的认识还只局限于很小

的一个领域,还有许多未知领域等待着科研工作者去研发。

参考文献

[1] 刘伟,唐永建,楚广,等. 金属Cu纳米晶体的显微硬度及微结构研究[J]. 材料科学与工艺. 2006(2): 127-130.

[2] 李才巨,张继东,朱心昆,等. 高能球磨法制备纯铝纳米晶材料的研究[J]. 粉末冶金技术. 2006(6): 457-459.

[3] 张吉晔,陈福义,闫晓红. 沉积电位对银纳米晶体生长形态的影响[J]. 贵金属. 2011(2): 27-31.

[4] 李业军,齐卫宏,黄伯云,等. 金属纳米微粒晶体结构的稳定性及其结合能[J]. 中国有色金属学报. 2009(3): 543-548.

[5] 韦志仁,张利明,周洋,等. 钛酸钠纤维表面自组织生长SnO_2纳米晶体[J]. 无机化学学报. 2009(1): 180-183.

[6] 朱俊武,王艳萍,张莉莉,等. 乙二醇体系中纳米Cu_2O的制备及其性能研究[J]. 材料科学与工程学报. 2006(2): 209-211.

[7] 张学俊,付立业,张萌萌,等. 液相法合成纳米金属氧化物晶体[J]. 材料工程. 2008(10): 53-59.

[8] 王威,丁澜,马锡英. 磁控溅射法制备硅纳米晶体及其光电特性研究[J]. 中国科技信息. 2011(7): 33-34.

[9] 许荣辉,石海涛,任凤章,等. 纳米氢氧化镁晶体阻燃剂的制备及其性质[J]. 河南科技大学学报(自然科学版). 2010(5): 8-11.

tyndall-341-nnano译文硅纳米线晶体管

纳米线无结晶体管 所有现存的晶体管都是基于使用向半导体材料当中引入掺杂原子后构成的半导体结来制作完成的。随着现代器件当中的半导体结之间的距离降低到10nm以下,超出以往的的高 掺杂浓度梯度已经变得非常必要。由于扩散定律和掺杂区域的统计学原理的诸多限制,半导体业在制造这种半导体结上勉励着越来越重大的困难。在这篇文章当中,我们提出并描述一 种新型的晶体管,这种晶体管没有PN结也没有掺杂浓度梯度。这种器件拥有全部的CMOS 功效并采用硅纳米线构成。他们拥有接近理想的亚阈值坡度,极低的泄漏电流,在栅压和温 度条件下比经典的晶体管结构在迁移率方面有更小的退化。 所有现存的晶体管都是基于PN结结构制作的。PN结根据所加的偏置实现允许电流通 过和阻止电流的功能。他们的结构是由两块极性相反的半导体相接触构成的.最常见的结就是PN结,它是由富含空穴的P型硅和富含电子的N型硅的接触构成的。每一本关于半导 体器件物理的书都包含一章讲解PN结,通常是处在讲解半导体材料基础的介绍性章节和详 细介绍不同种类的晶体管的章节之间。其他种类的结包括金属和硅组成的肖特基结和异质结,它是一种由两种不同的半导体材料组成的PN结。双极晶体管包含两个PN结,MOSFET 晶体管也是如此。结型晶体管只有一个PN结,MESFET晶体管包含一个肖特基晶体管。 第一个有关晶体管原理的专利是由奥匈帝国物理学家Julius Edgar Lilienfield 于1925年 10月22日在加拿大注册的。他在几年之后用 "Device for controlling electric current ”的名字在美国注册了这种器件。但是他从来没有发表过任何关于这种器件的研究文章。这个 Lilienfield晶体管是一个场效应晶体管,有点像现代的金属氧化物场效应晶体管。它的结构是这样的:一个薄的半导体薄膜放置在一个薄的绝缘层上,这个结构又放置在一个金属电极 上。最后的这个金属电极就像一个器件的栅极一样去工作。工作的时候,电阻中的电流在两 个接触的电极之间流动,就像现在的MOS晶体管中在源极和漏极之间的漏极电流一样。这 个Lilienfield器件就是一个简单的电阻,应用到的这个门电压可以使半导体薄膜里的载流子耗尽,从而改变它的导电性。理想的状态下,应该可以去完全的去耗尽半导体薄膜中的载流子,这种情况下器件的电阻值近似无穷大。 Lilie nfield晶体管,与其他类型的晶体管不同,它不包括任何结。尽管不带任何半导体结的晶体管的想法可能会显得非主流,可是晶体管的这个名字也的确没有表明半导体结的存 在。晶体管是一个固态活动的晶体管,它可以控制电流,并且晶体管这个词也是一个可变和 电阻器的合成词。从技术上讲,Lilie nfield晶体管是一个门控的可变电阻器。也就是说,它 是一个有一个控制载流子密度(或者说电流)的门的电阻。它是最简单和首个被申请专利的 晶体管结构。但是不幸的是,在Lilienfield的时代可用的技术不足以制造一个可利用的器件。

专长介绍–纤维素纳米晶体CNC的应用研究和开发

专长介绍 – 纤维素纳 米晶体 (CNC) 的应用研究和开发 艾伯塔省科技创新研究院 (AITF) 运营的纤维素纳米晶体 (CNC) 中试工厂是世界上仅有的几家能大批量生产的设施之一, 可日产几公斤高品质的 CNC 材料。 这一充满活力,有高度灵活性的中试装置具备创造和评估改性 CNC 材料的能力与专长。 创建这一耗资五百五十万加元的中试装置是加拿大和艾伯塔省两级政府与工业界 (艾伯塔太平洋森林工业公司 AlPac) 伙伴关系的合作结果,可以从多种高α- 纤维素含量的纤维原料生产CNC 。自2013 年初以来,该工厂已用硫酸盐木浆纤维(包括针,阔叶木)和溶解浆生产高品质 CNC ,用来进行各种不同应用的测试,其最终目的是为商业化生产做准备。AITF 也有能力用秸秆纤维(例如,亚麻和大麻)生产高品质的 CNC 。无论用何种原料,中试工厂都能够生产出各种形态的 CNC 成品,包括喷雾干燥粉末或各种浓度的悬浮液。 CNC 具有许多有用的特性,包括高强度,光学性能和非常大的表面积。通过中试工厂及它的玻璃衬里反应器,研究人员可以针对一系列广泛用途,动态地评估并验证从各种生物质原料得到的 CNC ,各种应用包括钻井液,采矿尾渣处理,油漆和工业涂料,汽车部件,建材,塑料和包装。 架起发现和商业之间的桥梁 提供的研发项目和服务为艾伯塔在能源与环境, 生物产业和健康等优先领域建立起具有全球竞争力的商业。 AITF 的团队提供了一套从基础科学到更技术性专长的全面技能。我们团队在木材化学,分析表证,和应用开发方面具备相当多的专业知识,并有着中试工厂运作的卓越技能。总之,这一技能,知识和经验的集合,既能确保精确与可控的项目设计,同时又能灵活和及时地交付项目。作为艾伯塔省 CNC 专业大集群的一个活跃成 员,AITF 和 CNC 中试工厂现已定位好并愿意邀请世界各地工业和科研界的潜在伙伴一起合作,为这一充满希望的新材料共同开发新的用途和市场。我们期待着与您讨论关于我们提供 CNC 样品和寻求合作伙伴关系的可能性。 创新动力来自于

纳米材料和纳米结构

纳米材料和纳米结构 1.纳米微粒尺寸的评估 在进行纳米微粒尺寸的评估之前,首先说明如下几个基本概念: (1)关于颗粒及颗粒度的概念 (i)晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 (ii)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。 (iii)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬团聚体 和软团聚体两种。团聚体的形成过程使体系能量下降。 (iv)二次颗粒:是指人为制造的粉料团聚粒子。例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。 纳米粒子一般指一次颗粒,它的结构可以是晶态、非晶态和准晶,可以是单相、多相结构。只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同。 (2)颗粒尺寸的定义对球形颗粒来说,颗粒尺寸(粒径)是指其直径。对不规则颗粒,尺寸的定义常为等当直径,如体积等当直径、投影面积直径等。 粒径评估的方法很多,这里仅介绍几种常用的方法。 A 透射电镜观察法 用透射电镜可观察纳米粒子平均直径或粒径的分布。 该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性。首先将那米粉制成的悬浮液滴在带有碳膜的电镜用Cu网上,待悬浮液中的载液(例如乙醇)挥发后,放入电镜样品台,尽量多拍摄有代表性的电镜像,然后由这些照片来测量粒径。测量方法有以下几种:(i)交叉法:用尺或金相显微镜中的标尺任意的测量约600颗粒的交叉长度,然后将交叉长度的算术平均值乘上一统一因子(1.56)来获得平均粒径;(ii)测量约100个颗粒中每个颗粒的最大交叉长度,颗粒粒径为这些交叉长度的算术平均值。(iii)求出颗粒的粒径或等当半径,画出粒径与不同粒径下的微粒数的分布图,将分布曲线中峰值对应的颗粒尺寸作为平均粒径。用这种方法往往测得的颗粒粒径是团聚体的粒径,这是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法,使超微粉分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,结果在样品Cu网上往往存在一些团聚体,在观察时容易把团聚体误认为是一次颗粒。电镜观察法还存在一个缺点就是测量结果缺乏统计性,这是因为电镜观察用的粉体是极少的,导致观察到的粉体的粒子分布范围并不代表整个粉体的粒径范围。 B X射线衍射线线宽法(谢乐公式) 电镜观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定颗粒晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒度。颗粒为多晶时,测得的是组成单个颗粒的单个晶粒的平均晶粒度。这种测量方法只适用晶态的纳

硅纳米线温度传感器及其特点

硅纳米线温度传感器及其特点 摘要 利用气液固相法(VLS)制备硅纳米线(SiNWs),结晶的方向和结构良好,用旋涂(SOD)法进行非原位n型掺杂。非原位掺杂过程中使用基于固态扩散的SOD 技术,该SOD技术分为涂层和驱动两个步奏。我们对含磷的硅纳米线在适当的温度和时间下进行研究,本实验取950℃保持5到60分钟。掺杂的纳米线很容易做成一个具有良好分辨率和响应速度的温度传感器。对不同掺杂浓度的SiNWs 温度传感器的校准工作已经完成。本实验测定浓度为的SiNWs传感器具有最好的分辨率(6186Ω/℃)和灵敏度。 关键词- SiNWs;VLS合成;非原位掺杂;SOD;温度传感器 I 背景 目前,硅是电子器件的重要材料。材料和工具的创新,通过“自上而下”的制造方法使电子器件的尺寸不断减小。随着尺寸的减小,“自上而下”的制造流程会出现越来越多的问题;因此,“自下而上”的制造方法更具指导意义。一维的纳米结构就是采用“自下而上”的制造方法。一维纳米结构材料硅纳米线和碳纳米管,是常用的研究纳电子学的材料,因为它们的形态、尺寸和电子的特性比整块材料优越。然而,碳纳米管材料在合成金属或半导体纳米管的控制,半导体纳米管掺杂的控制,限制了碳纳米管材料的应用。VLS制备的半导体纳米线,可以克服碳纳米管的局限性。硅纳米线(SiNWs)作为活性物质具有研究意义,因为硅纳米线可以把一维输运和传统的成熟的Si工艺制造流程组合在一起。因此,硅纳米线被认为是场效应晶体管,传感器件,光学器件等纳米电学材料的重要组成部分。 此外,硅掺杂源的选择和掺杂浓度的控制,已经在传统的集成电路工艺(固体扩散,离子注入等)中被广泛研究。然而,硅纳米线主要是在VLS法中的气相过程进行原位掺杂。但是,原位掺杂生成的硅纳米线结构难以控制;例如,常用的掺杂剂气体乙硼烷,在VLS法中用于生长SiNWs硅烷气体,会导致侧壁线额外的生长;乙硼烷浓度过高会导致非晶硅壳周围形成晶体SiNWs;这些因素会导致SiNWs轴方向的掺杂不均匀。非原位掺杂与SiNWs生长的掺杂过程分开,避免了因SiNWs侧壁生长导致掺杂剂的变化或SiNWs结构的变化。非原位扩散使用旋涂法(SOD),在硅工艺上是十分成熟的。这种方法曾在VLS法进行磷掺杂生成SiNWs实验中简单介绍过。对SiNWs进行非原位掺杂,最适合用固态旋涂法控制掺杂物,而且对硅纳米线和硅晶结构造不成损害。适当温度和时间下的固态扩散决定了SiNWs的数量。 本实验中,通过旋涂法对VLS法生长的SiNWs晶体进行非原位掺杂时,要先进行退火处理。SiNWs与不同的方向衬底结合起来;非常有益于通过传统集成电路制造流程,制造高分辨率、高灵敏度的温度传感器。SiNWs温度传感器的特性在实验中测量和报告。 II传感器的制造和实验 首先,通过VLS法并利用金作催化剂在硅基板上生成SiNWs。在洁净的p 衬底(111方向)涂金膜,然后加热使金膜蒸发溅射到纳米颗粒上形成金纳米线。

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

纳米晶体产生各种物体的形状

纳米晶体、纳米管、纳米球的制备及应用 编者按: 纳米技术的发展日新月异。本文编译了在美国加利福尼亚大学的Berkeley 实验室中最新纳米晶体、纳米管、高聚纳米球的研究成果,以供读者参考。 第一章 纳米晶体的制备及应用 第二章 超硬、超强、超级使用的纳米管 第三章 树丛状纳米球的制备及应用 第一章 纳米晶体的制备及应用 因为采纳米技术可能甚至容易制造非常完美 的纳米晶体,因而倍受建造大结构部件的亲昧。 化学家Paul Alivisato 共同负责Berkeley 实验室材料科学部和在Berkeley 的加利福尼亚大学化学系。所以说,Alivisato 在纳米半导体晶体始创领域中,是一位闪烁光芒的科学家之一。

Chemist Paul Alivisatos is a leader in the development of nano-sized crystals that could serve as building blocks for electronic devices a few billionths of a meter in size. 纳米晶体是一种由几百到上万原子结合成晶体,形成物体的聚合。这种聚合常称为“蔟”(cluster).典型的直径10纳米晶体比分子大但比块状固体要小,因此兼有物理和化学之间的性质。纳米晶体产生全表面的虚拟而内部却没有,它的性质随晶体尺寸的成长而有相当的不同。 “通过精确控制纳米晶体尺寸和表面,能改变它们的性质,”Alivistos说,“你能改变频带隙、你能改变如何传导电荷、你能改变它归属什么样晶体结构、你甚至能改变它的熔点温度”。 生长无裂痕纳米晶体是相对容易些,因为它们的长度是如此小以致于在成长加工成所需之缺陷时简单到不需要足够的时间。然而,对同样小长度的纳米晶体,要设法控制它的体积和表面,那是惊人的挑战。在过去的十年中,Alivisatos和他的研究小组,曾制造出半导体粉末的纳米晶体,并以满足挑战的手段探索改变生长条件的各种方法。 Alivisatos 第一个大的突破之一,是他和他的合作者Shimon Weiss 探索成功了为发射多种色光,而依赖于镉、硒为核,亚硫酸镉为壳的不同体积的球形纳米晶体,这一突破打开了许多潜在应用的大门,包括把这些球形核—壳纳米晶体作为高效荧光标签、标记用于附着特种蛋白的抗体上,当受到光子激发,就发出荧光或激发出色光,这需在共焦点的显微镜下观察。

纳米线的制备综述

现代材料制备技术 期末报告 姓名:翁小康 学号:12016001388 专业:材料工程 教师:朱进 2017年6月24日

Si纳米线的制备方法总结及其应用 摘要:Si纳米线是一种新型的一维纳米半导体材料,具有独特的电子输运特性、场发射特性和光学特性等。此外,硅纳米线在宽波段、宽入射角范围内有着优异的减反射性能以及在光电领域的巨大应用前景。传统器件已不满足更快更小的要求,因此纳米线器件成为研究的热点。关于硅纳米线阵列的制备方法,本文主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法等方法。最后介绍了Si纳米线在场效应晶体管、太阳能电池、传感器、锂电池负极材料等方面相关应用。 关键词:Si纳米线;阵列;制备方法;器件应用 0 引言 近年来,Si纳米线及其阵列的制备方法、结构表征、光电性质及其新型器件应用的研究,已成为Si基纳米材料科学与技术领域中一个新的热点课题。人们之所以对Si纳米线的研究广泛关注,是由于这种准一维纳米结构具有许多显著不同于其他低维半导体材料的电学、光学、磁学以及力学等新颖物理性质,从而使其在场发射器件、单电子存储器件、高效率激光器、纳米传感器以及高转换效率太阳电池等光电子器件中具有重要的实际应用[1]。 硅纳米线阵列( silicon nanowires arrays,简称SiNWs阵列) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:SiNWs阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。例如,对于波长300—800 nm的光,在正入射的情况下,硅薄膜的平均光吸收率为65% ,而SiNWs阵列的平均光吸收率在80% 以上;在光入射角为60°时,硅薄膜的平均光吸收率为45%,而SiNWs阵列的平均光吸收率达70%[2]。这对于硅材料在太阳能高效利用方面,具有十分重要的意义。本文将对国内外关于硅纳米线阵列的制备及其在光电领域应用的研究进展进行系统阐述。 1 Si纳米线阵列的制备方法 近年来,为制备有序的SiNWs阵列,研究者先后开发出多种制备方法,这些方法大体上可分为两类:“自下而上( bottom-up )”和“自上而下( topdown)”。前者是从原子或分子出发控制组装成SiNWs阵列;而后者则是从体硅(硅片)出发,经化学刻蚀制得。 1.1 自下而上 目前,“自下而上”的制备方法,主要是激光烧蚀沉积,化学气相沉积法( chemical vapor deposition,CVD)与有序排列技术相结合及热蒸发等。CVD法是利用气态或蒸气态物质在气相或气固界面上反应生长固态沉积物的方法。该法直

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料考试试题3

判断和填空 1由纳米薄膜的特殊性质,可分为两类:a、含有那么颗粒与原子团簇——基质薄膜。b、纳米尺寸厚度的薄膜,其厚度接近于电子自由程和Debye长度,可以利用其显著的量子特性和统计特性组装成新型功能器件。 2、.增强相为纳米颗粒、纳米晶须、纳米晶片、纳米纤维的复合材料称为纳米复合材料;纳米复合材料包括金属基、陶瓷基和高分子基纳米复合材料;复合方式有:晶内型、晶间型、晶内-晶间混合型、纳米-纳米型等 3、宏观量子隧道效应微粒具有贯穿势垒的能力称为隧道效应。微粒的磁化强度,量子相干器 件中的磁通量等,具有隧道效应、称为宏观的量子隧道效应。 4、纳米微粒反常现象原因:小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应。 举例:金属体为导体,但纳米金属微粒在低温由于量子尺寸效应会呈现电绝缘性。化学惰性的金属铂制成纳米微粒(铂黑)后却成为活性极好的催化剂。 5、非晶纳米微粒的晶化温度低于常规粉体。 6、超顺磁性纳米微粒尺寸小到一定临界值进入超顺磁状态,例如a-Fe Fe3O4和a-Fe2O3 粒径分别为5nm 16nm和20nm时变成顺磁体这时磁化率X不再服从居里-外斯定律。 7、超顺磁状态的起源:在小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定一个易磁化方向,易磁化方向作无规律的变化,结果导致超顺磁性的出现。不同种类的纳米微粒显现的超顺的临界尺寸是不同的。 8纳米微粒尺寸高于超顺磁临界尺寸时通常呈现高的矫顽力Hc 10矫顽力的起源两种解释一致转动模式和球链反转磁化模式。 11.居里温度Tc为物质磁性的重要参数与交换积分成正比,并与原子构型和间距有关。对于薄膜随着铁磁薄膜厚度的减小,居里温度下降。对于纳米微粒,由于小尺寸效应而导致纳米粒子的本征和内禀的磁性变化,因此具有较低的居里温度。 12,大块金属具有不不同颜色的光泽,表明对可见光各种颜色的反射和吸收能力不同。当尺寸减小到纳米级时各种金属纳米微粒几乎都呈黑色,它们对可见光的反射率极低。反射率:Pt为1%,Au小于10%。对可见光低反射率、强吸收率导致粒子变黑。 13、当纳米微粒的尺寸小到一定值时可在一定波长的光激发下发光。 14、物理法制备纳米粒子:粉碎法和构筑法。前者以大块固体为原料,将块状物质粉碎、细化,从而得到不同粒径范围的纳米粒子;构筑法是由小极限原子或分子的集合体人工合成超微粒子。 15、物料的基本粉碎方式:压碎、剪碎、冲击破碎和磨碎。 16、非晶纳米微粒的晶化温度低于常规粉体 17.原位复合法主要有:共晶定向凝固法、直接氧化法和反应合成法 18、纳米增强相和金属基体之间的界面类型三种:不反应不溶解;不反应但相互;相互反应生成界面反应物。界面结合方式有四种:机械结合;浸润与溶解结合;化学反应结合;混合结合。界面的溶解和析出是影响界面稳定性的物理因素,而界面反应是影响界面的化学因素。 19、使纳米增强相遇金属基体之间具有最佳界面结合状态的措施:应该使纳米增强相与金属基体之间具有良好的润湿后,互相间应发生一定程度的溶解;保持适当的界面结合力,提高复合材料的强韧性;并产生适当的界面反应,而界面反应产物层应质地均匀,无脆性异物,不能成为内部缺陷(裂纹源),界面反应可以控制等。措施:增强相表面改性(如涂覆);基体合金化(改性)。 20、原位复合法关键:在陶瓷基体中均匀加入可生成纳米第二相的元素或化合物,控制其反应生成条件,使其在陶瓷基体致密化过程中,在原位同时生长处纳米颗粒、晶须和纤维等,形成陶瓷基纳米复合材料。也可以利用陶瓷液相烧结时某些晶相生长成高长径比的习性,控制烧结工艺。也可以使基体中生长高长径比晶体,形成陶瓷基复合材料。优点:有利于制作形状复杂的结构件,成本低,同时还能有效地避免人体与晶须等地直接接触,减轻环境污染。 21、陶瓷基纳米复合材料的基体主要有:氧化铝、碳化硅、氮化硅和玻璃陶瓷。与纳米级第二相的界面粘结形式:机械粘结和化学粘结 22、纳米材料的三种结构缺陷:点缺陷(空位、空位对、空位团、溶质原子、杂质原子等)、线缺陷(位错、刃型位错、螺型位错、混合型位错等)、面缺陷(层错、相界、晶界、三叉晶界、

金属纳米微粒晶体结构的稳定性及其结合能

万方数据

万方数据

万方数据

万方数据

万方数据

548中固有色金属学报2009年3月降低,随着微粒尺寸的增加趋近于块体结合能。 2)在一定形状下,在一定的临界尺寸时纳米微粒 bcc结构的结合能和fee结构的结合能相等。当微粒尺 寸大于该临界尺寸时,bee结构更稳定,小于该尺寸 时,fee结构更稳定。 3)球形和正四面体形可以看作近正多面体形的 两个极限,多面体形微粒发生结构转变的临界尺寸也 介于两个极限尺寸之间,这和v、Cr、Nb、Mo、Ta、 W和Fe元素纳米微粒在文献中报道的结果一致。 REFERENCES 【2]【3】【4】[5】【6】【7】【8】【9】9CHATTOPADHYAYPP'PABISK.MANNAI.Ametastable allotropictransformation inNbinducedby planetaryball milling[J].MaterSciEngA,2001.304/306:424-428. MANNAI。CHATTOP_ADHYAYPP’BANHARTF'FECHTHJ Formationofface--centered—?cubiczirconiumbymechanical attrition[J].AppliedPhysicsLetters,2002,81(22):4136—4138. KIT八KAMIO.SATOH.SHIⅣ【ADAY.Sizeeffectonthe crystalphaseofcobaltfineparticles[J].PhysicsReviewB,1997, 56(211:13849—13854. HANEDAkZHOUZX,MOR刚SHAH.Low-temperature stablenanometer-sizefcc—Feparticleswithnomagnetic ordering[J].PhysicsReviewB,1992,46(21):13832—13837. HUHSH,KIMHK.PARKJW.LEEGH.Criticalclustersize ofmetallicCrandMonanoclusters[J].PhysicsReviewB,2000, 62(4):2937—2943. TESSIER凡BRENNECKEF,STADTHERRA.Reliablephase stabilityanalysis forexcessGibbsenergymodels[J].Chemical EngineeringScience,2000,55:1 785—1796. MENGQ。zHOUN,RONGY,CHENS,HSUTYxuZu-yao. Sizeeffect00theFenanoerystallinephasetransformation[J]. ActaMaterialia,2002.50:4563—4570. QIWH.Size,shapeandstructuredependentcohesiveenergy andphasestabilityofmetallicnanocrystals[J].SolidState ComratmicatiOIlS,2006,l37:536--539. ToMA7NEKD,MIⅨHEluEES。BENNERMANNKH- 【lO】 【12] 【13】 【14】 Simpletheoryfortheelectronicandatomicstructureofsmall clusters[J].PhysicsReviewB,1983,28(2):665-673. SUNCQ,WANGYTAYBkLIS,HUANGH,ZHANGY Correlationbetweenthemeltingpointofananosolidandthe cohesiveenergyofasurfaceatom[J].JournalofPhysics ChemicalB,2002,106(41):10701—10705. .RANGQ,LIJC,CHIBQ.Size-dependentcohesiveenergyof nanocrystals[J].ChemicalPhysicsl捌[1ct2002,366(5/6): 55l-554. NANDAKI(,SAHUSN.BEHERASN.Liquid?dropmodel forthesize?dependentmeltingoflow?dimensionalsystems[j]. PhysicsReviewA,2002,66(1):013208-013209. QIWH,WANGMP'XUGYTheparticlesizedependenceof cohesiveenergyofmetallicnanoparticles[J].ChemicalPhysical Letter,2003,376(3/4):538—538. ⅪMHK,HUHSH,PARKJWTheclustersizedependenceof thermalstabilitiesofbothmolybdenumand tungsten nanoclusters[J].ChemicalPhysicsLetter,2002,354(1/2): 165-172. Q1wH,WANGMPSizeandshapedependentmelting temperatureofmetallicnanoparticles[J].MaterialsChemistry andPhysics。2004,88(2/3):280—284. NAHERU。BJRNHOLMS,FRAUENDORFS,GARCIASF' GUETF.Fissionofmetalclusters[J].PhysicsReports,1997, 285(6):245-320. }兀兀TGRENRDESAIDPD,HAWKINST'GLEISERM, KELLYKK,WAGMANKK.Electedvaluesofthe thermodynamicpropertiesoftheelements[M].Cleveland: AmericanSocietyofMetals,1973. PETTIFORDGTheoryofthecrystalstructuresoftransition metals[J].JournalPhysicsC,l970,3:367—377. 张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科 学中的应用【M】.长沙:湖南大学出版社,2002:249-260. ZHANG Bang?wei,HUWang—yu,SHUXiao—lin.Theoryof embeddedatommethodanditsapplicationtOmaterials[M]. Changsha:HunanUniversity,2002:249—260. (编辑龙?际中) 珂 q 刀 明 卅 【  万方数据

纳米药物晶体的制备技术介质碾磨法及nanocrystal技术

纳米药物晶体的制备技术——介质碾磨法及Nanocrystal技 术 介质碾磨法是一类典型的湿法碾磨技术(wet milling),20世纪前期已广泛用于食品、化工、冶金等行业。20世纪90年代初,NanoSystem公司(现为Elan公司)首先申请专利,将介质碾磨法用于纳米药物晶体的制备,称之为“纳米晶体技术(NanoCrystal technology)”。介质碾磨法的制备技术主要涉及碾磨机和碾磨介质。碾磨过程是将分散有药物粉末的液体与一定量碾磨介质置于封闭的碾磨室中,碾磨杆带动桨片高速转动,使药物粒子之间、药物粒子与碾磨介质及器壁之间发生持续的强烈撞击,从而制得纳米粒子。影响碾磨效果的因素除药物性质、稳定剂种类和用量外,还有接触点(contact point)数目和应力强度(stress intensity)等因素。碾磨介质按材料不同可分为玻璃珠、陶瓷珠(铈或钇稳定的氧化锆)、不锈钢珠和高交联度聚苯乙烯树脂包衣小球等。碾磨介质的粒径和用量对碾磨效果影响较大,通常采用粒径数百微米到数毫米不等的球形珠,用量约占整个碾磨室体积的 2/3。 研磨过程多采用循环模式,即初次碾磨后大颗粒药物和碾磨介质被截留在碾磨室,通过滤网的小粒子药物进入再循环室进行新一轮碾磨,直到粒径符合要求。碾磨介质粒径越小,

同等重量下数量和接触点越多,碰撞频率越高,碾磨效果越好。一般最终得到的药物粒子粒径与碾磨介质的粒径直接相关,约为后者的1/1 000,即若碾磨珠粒径200 μm,所得产物的平均粒径约为200 nm。 转速是碾磨机的重要参数之一,决定着整个体系的动能。转速越高,粒子运动越快,则碾磨效率越高。通常碾磨机中心杆转速达每分钟上千转,液面的圆周线速度为5~15 m/s。当介质粒径小于100 μm时,介质间隙起着过滤作用,将大粒子截留并打碎,因此能在低于4 m/s的圆周线速度下同样得到小粒径的粒子,这种改进的技术被称为柔和分散(mild dispersion)。 该法采用极小粒径的碾磨介质,利用多重柔和碰撞(multiple mild contacts)代替单次强烈碰撞,在不降低效率的前提下使碾磨过程更温和。此外,对于热不稳定药物,碾磨室内需装配冷却系统,防止碾磨时温度升高影响药物的稳定性。 碾磨分散过程涉及晶体的破裂、稳定剂在药物表面的吸附和解吸附、药物的溶解和重结晶、粒子的聚集和分散以及高分子胶束的形成等一系列复杂过程,需要设计周详的实验条件和参数,否则难以获得稳定性良好的纳米晶体。如某些高分子稳定剂的加入会增加碾磨体系的黏性,并在循环过程中堵塞滤网;一些玻璃珠属于碱石灰系列,不适于pH敏感型药物。

相关文档