文档库 最新最全的文档下载
当前位置:文档库 › 七年级数学下学期全等三角形辅助线的做法

七年级数学下学期全等三角形辅助线的做法

七年级数学下学期全等三角形辅助线的做法
七年级数学下学期全等三角形辅助线的做法

D C

B

A

E

D F C

B A

全等三角形辅助线的做法

在证明几何题目的过程中,常常需要通过全等三角形,研究两条线段(角)的相等关系,或者转移线段或角。而有些时候,这样的全等三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造全等三角形,进而证明所需的结论。

常见辅助线的作法有以下几种:

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.

2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全

等变换中的“旋转”.这种方法也是常说的“倍长中线法”

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中

的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4)图形变换

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使

之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

一、倍长中线(线段)造全等

1:(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

3:如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.

E D C

B

A

及时应用

(09崇文二模)以A B C ?的两边AB 、AC 为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.

(1)如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;

(2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转?

θ(0<θ<90)后,如图②所示,(1)问中得到的两

个结论是否发生改变?并说明理由.

二、截长补短

1.如图,A B C ?中,AB=2AC ,AD 平分B A C ∠,且AD=BD ,求证:CD ⊥AC

C

D

B

A

C

B

A

C

C

B

A

2:如图,AD ∥BC ,EA,EB 分别平分∠BAD ∠CBA ,CD 过点E ,求证;AB =AD+BC

3:如图,已知在A B C 内,0

60BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是B A C ∠,

A B C ∠的角平分线。求证:BQ+AQ=AB+BP

4:如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证:0180=∠+∠C A

5:如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC

F

E

D C

B

A

中考应用 (08海淀一模)

三、图形变换 轴对称

1.AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .

平移

2:如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

E

D C

B

A

旋转

1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.

C

B

2.如图,A B C ?是边长为3的等边三角形,B D C ?是等腰三角形,且0120BDC ∠=,以D 为顶点做一个

60角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则A M N ?的周长为 ;

B

C

四、

借助角平分线造对称型全等

1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD

2:(06郑州市中考题)如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.

E

D

G

F

C

B

A

3、如图,已知OP 平分∠AOB ,C ,D 分别在OA 、OB 上,若∠PCO+∠PDO=180°, 求证:PC=PD.

O

4、 已知PA 、PC 分别是△ABC 的外角∠DAC 、∠ECA 的平分线,

PM ⊥BD ,PN ⊥BE ,垂足分别为M 、N ,那么PM 与PN 的关系是()

A.PM >PN

B.PM =PN

C.PM <PN

D.无法确定

及时应用

(06北京中考)如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等

三角形。请你参考这个作全等三角形的方法,解答下列问题:

(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,

AD 、CE 相交于点F 。请你判断并写出FE 与FD 之间的数量关系; (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结

论是否仍然成立?若成立,请证明;若不成立,请说明理由。

及时应用

(07佳木斯)已知四边形A B C D 中,AB AD ⊥,BC C D ⊥,A B B C =,120ABC = ∠,60MBN =

∠,

M B N ∠绕B 点旋转,它的两边分别交A D D C ,(或它们的延长线)于E F ,.

当M B N ∠绕B 点旋转到A E C F =时(如图1),易证A E C F E F +=.

当M B N ∠绕B 点旋转到A E C F ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段A E C F ,,E F 又有怎样的数量关系?请写出你的猜想,不需证明.

O

P A

M

N

E

B C

D

F A

C

E

F

B

D

图①

图② 图③

(图1) A

B

C

D

E

F

M

N

(图2) A

B

C

D

E F

M

N

(图3)

A

B C

D

E F M

N

D M A

B

C

N

P E

(西城09年一模)已知以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧. (1)如图,当∠APB=45°时,求AB 及PD 的长;

(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.

(09崇文一模)在等边ABC ?的两边AB 、AC 所在直线上分别有两点M 、N ,D 为A B C 外一点,且

?

=∠60MDN ,?

=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN

之间的数量关系及AMN ?的周长Q 与等边ABC ?的周长L 的关系.

图1 图2 图3

(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时

=L

Q ;

(II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗?写出

你的猜想并加以证明; (III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= (用x 、L 表示).

D

C

B A

A 组

1. 如图,已知,AB=AD,CB=CD ,试证明:D B ∠=∠.

2.求证三角形一边的中线小于其他两边的一半。

3.已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.

4.已知?ABC 中,AB=AC,D 在AB 上,E 是AC 延长线上一点,且BD=CE ,DE 与BC 交于点F 。 求证:DF=EF

5.如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

E

D F C

B A

E

D C

B

A

6.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

7.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.

E

D C

B

A

8.如图,在△ABC中,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF

9.如图,在△ABC中,∠C=2∠B,∠1=∠2,试证明AB=AC+CD。

10.如图,已知△ABC中,边BC上的高为AD,且∠B=2∠C.求证:CD=AB+BD。

C

C

B

A

11.如图,A B C ?中,AB=2AC ,AD 平分B A C ∠,且AD=BD ,求证:CD ⊥AC

12.如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD

13.如图,已知在A B C 内,0

60BAC ∠=,0

40C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是B A C ∠,

A B C ∠的角平分线。求证:BQ+AQ=AB+BP

14.如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证:

C

D

B

A

B

A 0

180=∠+∠C A

15.如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC

16.如图,在四边形

ABCD 中,AD//BC ,点E 事AB 上一点,若∠DEC=?

60,判断AD+AE 与BC 的关系并证明你的结论。

17.已知,如图,在△ABC 中,BE 是角平分线,AD ⊥BE,垂足为D ,求证:∠BAD=∠DAC+∠C

B 组

1、如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )

(A ) ∠M=∠N (B ) AB=CD (C ) AM=CN (D ) AM ∥CN

2、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判断

△ABE ≌△ACD 的是( ) (A ) AD=AE

(B ) ∠AEB=∠ADC (C ) BE=CD (D ) AB=AC

3、已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。求证:AC ∥MP

4、 已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。

5、 已知,如图,AB 、CD 相交于点O ,△ACO ≌△BDO ,CE ∥DF 。求证:CE=DF 。

6、 已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。

F

E

A C

D

B

M

P

C

A

B

N

F

E

O

D C B

A

A

E

D

C B

C

N

M

A

B

D

E B

D

A

C

7、已知,如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交

点,求证:△BCF ≌△DCE

8、 如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另

一个为结论,推出一个正确的命题。 ① AB=AC ② BD=CD ③ BE=CF

9、 如图,EG ∥AF ,请你从下面三个条件中任选出两个作为已知条件,另一个作为结论,推出一个正确的

命题。

① AB=AC ② DE=DF ③ BE=CF

10、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以CG 为一边向正

方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。 求证:① △BCG ≌△DCE

② BH ⊥DE

11、如图,△ABC 中,AB=AC ,过A 作GB ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。

G

F

E

D C A B

D

C

B

F

E

D

C

A

B

G

F

E

D

C

A B

G H E

G

12、如图所示,己知AB ∥DE ,AB=DE ,AF=DC ,请问图中有哪几对全等三角形,并选其中一对给出证

明。

13、如图,AB=AD ,BC=CD ,AC 、BD 交于E ,由这些条件可以得出若干结论。请你写出其中三个正确

的结论(不要添加字母和辅助线)。

14、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是BC 上任一点,PE ⊥AB ,PF ⊥AC 垂足分别为

E 、

F ,

求证:① PE+PF=CD.

② PE – P F=CD.

15、已知,如图5,△ABC 中,AB=AC ,∠BAC=900,D 是AC 的中点,AF ⊥BD 于E ,交BC 于F ,连

结DF 。求证:∠ADB=∠CDF 。

F

E

D

C

A

3

N

1

M

B

2

M

F

E

D

C

A

3

1

B

2

F E

D

C

A

B

E

D A

B

F E

D

C

A G P

F E

D

C A

B

G

P

初中数学辅助线的添加方法

初中数学辅助线的添加方法 一、添辅助线有二种情况 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形: 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形:

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形: 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角: 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 二、基本图形的辅助线的画法

全等三角形中辅助线的添加

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1) △ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,连接BE

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

初中数学几何辅助线常用方法

第一章 中点模型的构造 当已知条件中出现一个中点时,你首先想到的辅助线的解题方法是什么?如果已知两个中点呢? 介绍以下方法: 1) 倍长中线或类中线(与中点有关的线段)构造全等三角形; 2) 三角形中位线定理; 3) 已知直角三角形斜边中点,可以考虑构造斜边中线; 4) 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”。 例1 在△ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求BC 的长. 例2 已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF=EF ,求证:AC=BE. 变式: 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF//AD 交CA 的延长线于点F ,交AB 于点G ,若AD 为△ABC 的角平分线,求证:BG=CF. B C A D D B C D E B C

例3 在Rt △ABC 中,∠BAC=90°,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED ⊥FD. 以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形,或者是钝角三角形? 例4 已知在△ABC 中,BE 、CF 分别为边AC 、AB 上的高,D 为BC 的中点,DM ⊥EF 于点M. 求证:FM=EM. 例5 已知:△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°. 如图,连接DE ,设M 为DE 的中点,连接MB 、MC. 求证:MB=MC. D B A D B A B D

几种证明全等三角形添加辅助线方法

全等三角形复习课 适用学科数学适用年级初中二年级 适用区域通用课时时长(分钟)120 知识点全等三角形的性质和判定方法 熟练掌握全等三角形的性质和判定方法,并学会用应用 教学目标 学会做辅助线证明三角形全等,常用的几种作辅助线的方法 教学重点 通过学习全等三角形,提高学生观察能力和分析能力 教学难点 教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1.如图1,AD是厶ABC的中线,求证:AB+ AC>2AD。 图1 图2 证明:延长AD至E,使AD= DE,连接CE如图2。??? AD是厶ABC的中线,二BD= CD。 又???/ 1 = Z 2,AD= DE, ???△ ABD^A ECD( SAS。AB= CE ???在△ ACE中,CE+ AC>AE, ??? AB+ AC> 2AD。 、沿角平分线翻折构造全等三角形

例 2.如图 3,在厶 ABC 中,/ 1 = / 2,/ ABC = 2/C 。求证:AB + BD = AC 。 A D 图3 ■ 3 ---- -- C 图4 证明:将厶ABD 沿AD 翻折,点B 落在AC 上的E 点处,即:在AC 上截取 AE = AB,连接EDb 如图4。 ???/ 1 = / 2, AD =AD , AB = AE, ???△ ABD^A AED ( SAS 。 ??? BD = ED,/ ABC =/ AED = 2/C 。 而/AED =/ C +/ EDC ???/ C =/ EDC 所以 EC = ED = BD 0 ??? AC = AE + EC,二 AB + BD = AG 三、作平行线构造全等三角形 例3.如图5,A ABC 中,AB = AG E 是AB 上异于A 、B 的任意一点,延长 AC 至U D , 使 CD = BE,连接 DE 交 BC 于 F 。求证:EF = FD 证明:过E 作EM // AC 交BC 于M ,如图6 则/ EMB =/ ACB / MEF =/ CDR ??? AB = AC,A / B =/ ACB ???/ B =/ EMB 。故 EM = BE ??? BE = CD,二 EM = CB 又???/ EFM=/ DFC / MEF =/ CDF

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”

托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。 六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。 如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。 有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想

初二数学辅助线常用做法及例题含答案)

D C B A 常见的辅助线的作法 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

全等三角形辅助线专题

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 八年级数学上册辅助线专题 教学目标:掌握各种类型的全等三角形的证明方法 教学重点:构造全等三角形 教学难点: 如何巧妙作辅助线 知识点: (一)截长补短型 (二)中点线段倍长问题 (三)蝴蝶形图案解决定值问题 (四)角平分线与轴对称 (五)等腰直角三角形,等边三角形 (六)双重直图案与全等三角形 典型例题讲练 重点例题: 一、截长补短型 如图,R T △CDA ≌RT △CDB, ①、若∠ACD=30°,∠MDN=60°,当∠MDN 绕点D 旋转时,AM 、MN 、BN 三条线段之间的关系式为______ ②、若∠ACD=45°,∠MDN=45°,AM 、MN 、BN 三条线段之间的数量关系式为:______ ③、由①②猜想:在上述条件下,当∠ACD 与∠MDN 满足什么条件时,上述关系式成立,证明你的结论。 B A C D M N ① B D A C M N ② A B C D M N ③

二、中点线段倍长问题 如图△ABC 中,点D 是BC 边中点,过点D 作直线交AB 、CA 延长线于点E 、F 。当AE=AF 时,求证BE=CF 。 三、蝴蝶形图案解决定值问题 1、如图,在R t △ACB 中,∠ACB=90°,CA=CB,D 是斜边AB 的中点,E 是DA 上一点,过点B 作BH ⊥CE 于点H ,交CD 于点F 。 (1) 求证:DE=DF.(2)若E 是线段BA 的延长线上一点,其它条件不 变,DE=DF 成立吗?画图说明。 2在△ABC 中,AB=AC,AD 和CE 是高,它们所在的直线相交于H 。 (1)如图1,若∠BAC=45°,求证:AH=2BD. (2)如图2,若∠BAC=135°,(1)中的结论是否依然成立?请你在图2中画出图形并加以证明。 3,如图,等腰直角三角形ABC 中,AB=AC,∠BAC=90°,BE 平分∠ABC 交AC 于E ,过C 作CD ⊥BE 于D.求证BE=2CD. A B C D E F A B C D E F H A B C D E H B A C

三角形中做辅助线的技巧

三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD 图1-2 D B C 图 1-4

(二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180 例2. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:∠BA C 的平分线也经过点P 。 练习: 1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA , 如果PC=4,则PD=( ) A 4 B 3 C 2 D 1 2.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。 3.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。求证CF=BH 。 图2-1 B 图2-3 A B C 图2-6 E C D 图 2-7 D B A

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

全等三角形辅助线经典做法习题

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

全等三角形辅助线画法

五种辅助线助你证全等 在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 二、中线倍长 三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路. 例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是(). 分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x. ∵AD是BC边上的中线,∴BD=CD ∠ADC=∠EDB(对顶角)∴△ADC≌△EDB ∴BE=AC=5 ∵在△ABE中AB-BE<AE<AB+BE 即7-5<2x<7+5∴1<x<6

初中数学全等三角形辅助线技巧范文

初中数学全等三角形辅助线技巧范文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。 解答过程: 证明:延长AD到E,使DE=AD,连接BE。 又因为AD是BC边上的中线,∴BD=DC 又∠BDE=∠CDA ΔBED≌ΔCAD, 故EB=AC,∠E=∠2, ∵AD是∠BAC的平分线 ∴∠1=∠2, ∴∠1=∠E, ∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。 解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。 (3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。 思路分析:

初中数学常见辅助线的添加方法

初中数学常见辅助线的 添加方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

中考数学复习专题 ——几何论证题中辅助线的添加方法 例1: ADBC 中AB ∥CD ,底角∠ABC=450 AC 、BD 交于点O ,且∠BOC=1200 分析:在已知条件中,底角∠ABC=450,有的同学想到延长两腰,出现一个等腰直角三角形。而在本题中这样添辅助线,反而增加解题困难,因为 ∠BOC=1200 的条件不能很好的运用。故本题添辅助线时,应考虑过上底顶点D (或A )作对角线的平行线,把梯形问题转化为平行四边形及顶角为1200的等腰三角形问题,而解等腰三角形时,常添的辅助线是作底上的高,这样不难求BC AD 的比值。 证明:过D 点作DF ∥AC 交BC 的延长线于F ,作DE ⊥BC 于E AD ∥BC AD=CF AC ∥DF ??ACFD 平行四边形 AC=DF 等腰梯形ABCD ? DB=AC ?BD=DF AC ∥DF ?∠BDF=∠BOC=1200 DE ⊥BF ∠BDE=600 ? BE=EF ?BE=EF=a 3 ∠BED=900 设a DE =

DE ⊥BC a CE DE == a AD CF )13(-== ∠BCD=450 EF=a 3 a CE BE BC )13(+=+= PQ 是线段AB 的中垂线, OD ⊥BC OD 的中点 是线段AB 的中垂线,同学们肯定想到连结AC 运用线段中垂线性质,但证明此题这样的添线与其它已知条件的应用没有多大关系,这种添线不能解答本题,而图中出现“母子三角形”,使我们想到能否运用三角形相似及线段成比例来解本题。而要证CM ⊥AD ,从图中观察到如能证得∠1=∠A ,那么CM ⊥AD 即可成立;而∠A 除了在Rt △AON 中,它还在△AOD 中,若把∠1也放到与△AOD 相似的三角形中,结论就可成立。因此构筑一个与△AOD 相似的三角形是本题解答的关键。而已知条件M 是OD 的中点,想到增添中点(或添平行线)的方法,故取OC 的中点为G ,想法证明△AOD ∽ △CGM 。通过基本图形分析,发现∠2=∠3,故∠AOD=∠CGM 。因此证:GM CG OD AO =是本题又一关键。 证明:取OC 的中点为G ,连GM, ∵PQ 是AB 的中垂线, ∴∠BOC=900设OA=OB=a ,OD=b . ∵OD ⊥BC, ∴∠CDO=∠ODB=900

全等三角形辅助线技巧

注意全等三角形的构造方法 搞清了全等三角形的证题思路后, 还要注意一些较难的一些证明问题, 只要构造合适 的 全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了?下面举例说明几 种常见的构造方法,供同学们参考. 1 ?截长补短法 例1.如图(1)已知:正方形 ABCD 中, 求证:AB+BE=AC 由已知△ AEF ^A AEC, ???/ F=Z ACE=45), ??? BF=BE ?- AB+BE=AB+BF=AF=AC 解法(二)(截长法或分割法)在AC 上截取AG=AB,由已知 △ ABE BA AGE, ? EG=BE, / AGE=Z ABE,: / ACE=45o, ? CG=EG, ? AB+BE=AG+CG=AC 2 .平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对 Rt △,有时可作出斜边的中线. 例 2. △ ABC 中,/ BAC=60 , / C=40° AP 平分/ BAC 交 BC 于 P , BQ 平分/ ABC 交 AC 于 Q , 求证:AB+BP=BQ+AQ 证明:如图(1),过 O 作 OD// BC 交 AB 于 D , ?/ ADO=/ ABC =180 ° - 60°- 40 ° =80°,又???/ AQO=/ C+/ QBC=80°, ???/ ADO=/ AQO ,又I/ DAO=/ QAO , OA=AO, ? △ ADO BA AQO ,「. OD=OQ , AD=AQ ,又T OD / BP, ? / PBO=/ DOB ,又 T/ PBO=/ DBO, ?/ DBO=/ DOB , ? BD=OD,「. AB+BP=AD+DB+BP 解法(一) (补短法或补全法)延长AB 至F 使AF=AC F

全等三角形常用辅助线做法

全等三角形常用辅助线做 法 This manuscript was revised on November 28, 2020

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC, CF=CD ∴AC=AF+CF=AE+CD. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。 求证:CD=AD+BC。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC,如图乙 ∴△FCE≌△BCE(SAS), ∴∠2=∠1。 又∵AD∥BC, ∴∠ADC+∠BCD=180°, ∴∠DCE+∠CDE=90°, ∴∠2+∠3=90°,∠1+∠4=90°, ∴∠3=∠4。 在△FDE与△ADE中, ∴△FDE≌△ADE(ASA), ∴DF=DA,

初中数学全等三角形辅助线技巧

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。 解答过程:

相关文档
相关文档 最新文档