文档库 最新最全的文档下载
当前位置:文档库 › 实验五反射式光纤位移传感器实验

实验五反射式光纤位移传感器实验

实验五反射式光纤位移传感器实验
实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器

一、实验目的

了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。

二、基本原理

反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。

图5-1 反射式光纤位移传感器示意图

传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。

接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为:

]]

)/(1[exp[])/(1[)(2

2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数,

c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。

reflector

图5-2 反射式强度调制光纤传感原理

三、实验仪器

光纤传感实验仪主机,Y 型光纤传感器,三维调节架。

四、实验步骤

1.根据图5-3示意安装光纤位移传感器,发射光纤插入实验仪的LED 孔上,接收光纤插入PIN 孔。Y 形光纤耦合器的发射接收探头固定在三维微调架上的反射镜对应的位置处。

图5-3 反射式光纤传感实验图

2.调节光纤传感端面,使之与反射镜轻轻接触,记录此时z=0时的输出电压。

a.

b.

c.二维调节架

b.光纤传感实验仪主机

PIN 黑色 LED 绿色

a.发射接收光纤组件

3.增大光纤端面与反射镜之间的距离,每隔0.2mm记录1个数据,一直到z=1cm为止。

4.以上步骤完成后,从z=1cm开始,减小光纤端面与反射镜之间的间距,每隔0.2mm记录一次输出电压值,一直到z=0为止。

五、数据处理

根据测量数据画出实验曲线,计算测量曲线线性区的灵敏度。

六、思考题

1.光纤位移传感器测位移时对被测物体的表面有些什么要求?

2.本实验所使用的光纤是属于什么类型的光纤?

3.分析影响光纤位移传感器的输出光强的因素有哪些?

设计性实验:

实验六反射式光纤位移传感器测量液面高度

一、实验目的

学习使用反射式光纤位移传感器的测量方法,利用光纤位移传感器测量液面高度。二、实验原理

液面高度测量技术在工业应用中十分普及,例如石油、化工等企业均会有大量的储罐容器需要进行液位的测量。由于石油化工的易燃易爆有腐蚀性等原因,电传感器无法应用于这些场合,过去的液位测量多依靠人工完成,但随着光纤技术的发展,光纤位移传感器在液位测量领域中实现广泛的应用。

本实验利用实验五所用的的实验原理,将反射式光纤位移传感器应用于水面的液面高度测量。

三、实验仪器

光纤传感实验仪主机,反射式光纤位移传感器组件,光纤夹具和支架,升降台,烧杯。

四、实验内容

实验时学生自主设计,实验完成后补充。要求:1、根据反射式光纤位移传感器的原理定标出液面高度测量的曲线;2、根据曲线拟合线性函数,得到传感器的测量灵敏度和测量范围;3、根据定标曲线测量某个未知液面高度,测量方法体现位移传感器的意义。

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

光纤传感器的设计1

HARBIN ENGINEERING UNIVERSITY 物理实验报告 实验题目:光纤传感器的设计 姓名: 物理实验教学中心

实 验 报 告 一、实验题目:光纤传感器的设计 二、实验目的: 1.了解光纤传感器设计实验系统的基本构造和原理及应用; 2.了解光纤传感器设计实验系统的补偿机理,验证补偿效果; 3.设计光纤位移传感器,给出定标曲线。 三、实验仪器: 光纤传感设计实验系统主机、三光纤补偿式传感探头、精密机械调节架。 四、实验原理(原理图、公式推导和文字说明): 图1 在纤端出射光场的远场区,为简便计,可用接收光纤端面中心点处的光强来作为整个纤芯面上的平均光强。在这种近似下,得到在接收光纤终端所探测到的光强公式为 2 022(,)exp[](2)(2) SI d I x d x x πωω=?- (1) 考虑到光纤的本征损耗,光纤所接收到的反射光强可进一步表示为 00(,)(,)I x d I K KRf x d = 式中 I 0——注入光源光纤的光强; K 0,K ——光源光纤和反射接收光纤的本征损耗系数; R ——反射器的反射系数;

d ——两光纤的间距; f (x ,d )——反射式特性调制函数。结合式(1),f (x ,d )由下式给出,即 22 022(,)exp[](2)(2) a d f x d x x πωω=?- 其中 3/2 00 ()[1()] x x a a ωξ =+ 为了避免光源起伏和光纤损耗变化等因素所带来的影响。采用了双路接收的主动补偿方式可有效地补偿光源强度的变化、反射体反射率的变化以及光纤损耗等因素所带来的影响。补偿式光纤传感器的结构由图1给出。由(1)式可知 1002 00(,)(,) (,2)(,2)I x d I K KRf x d I x d I K KRf x d =?? =? 则两路接收光纤接收光强之比为 ]) 2()2(exp[22 221x d d I I ω--= 通过实验建立两路接收光强的比值与位移的关系(标定)后,即可实现补 偿式位移测量。

光纤位移传感器的动态实验一.

光纤位移传感器的动态实验一 (一) 实验目的 了解光纤位移传感器的动态应用。 (二) 实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器) (三) 实验内容 1. 了解激振线圈在实验仪上所在位置及激振线圈的符号。 2. 在静态实验的电路中接入低通滤波器和示波器,如图1接线。 图1 3. 将测微头与振动台的台面脱离,测微头远离振动台。将光纤探头与振动台反射面的距离调整在光纤传感器工作点即线形段中点上(利用静态特性实验中得到的特性曲线,选择线形中点的位置为工作点,目测振动台的反射面与光纤探头端面之间的相对距离即线性区△X 的中点)。 4. 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的频率与幅度旋钮,使振动台振动且振动幅度适中。 5. 保持低频振荡器输出的p p V -幅度值不变,改变低频振荡器的频率(用示波器观察低频振荡器输出的p p V -值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮值p p V -相同),将频率和示波器上所测的峰峰值(此时的峰峰值p p V -是指经低通后的p p V -)填入表格中,并作出幅频特性图。 6. 关闭主、副电源,把所有旋钮复原到原始最小位置。

(四)数据表格 光纤位移传感器的动态实验二 (一)实验目的 了解光纤位移传感器的测速应用。 (二)实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:电机控制、差动放大器、小电机、电压表、光纤位移传感器、直流稳压电源、主、副电源、示波器) (三)实验内容 1.了解电机在实验仪上所在的位置及控制单元。 2.按图2接线,将差动放大器的增益置最大,电压表的切换开关置2V,开启主、副电源。 图2 3.将光纤探头移至电机上方对准电机上的反光纸,调节光纤传感器的高度,使电压表显示 最大。再用手稍微转动电机,让反光面避开光纤探头。调节差动放大器的调零,使电压表显示接近零。 4.旋动电机控制电位器,使电机运转。

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

光纤位移传感器实验

光纤位移传感器实验 一、实验目的 1、了解光纤位移传感器工作原理及其特性; 2、了解并掌握光纤位移传感器测量位移的方法。 二、实验内容 1、光纤位移传感器输出信号处理实验; 2、光纤位移传感器输出信号误差补偿实验; 3、光纤位移传感器测距原理实验; 4、利用光纤位移传感器测量出光强随位移变化的函数关系; 5、实验误差测量。 三、实验仪器 1、光线位移传感器实验仪1台 2、反射式光纤1根 3、对射式光纤2根 4、连接导线若干 5、电源线1根 四、实验原理 本实验仪通过光纤位移传感器位移测量实验,熟悉光纤结构特点及光纤数值孔径的定义,掌握光纤位移的测量原理,熟悉光路调整方法。 本实验仪可以完成反射式和对射式光纤位移传感器实验,重点研究光纤位移传感器的工作原理及其应用电路设计。 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型称为传感 (或 型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使用单模光纤,它 在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器大制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。该光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高光纤位移传感器实位移测量器件,利用光纤传输光信号的功能,根据检测到的反射光的强度来测量被测反射表面的距离。 光纤位移传感器属于非功能型光纤传感器。 相关参数: 1、光源:高亮度白光LED,直径5mm 2、探测器:高灵敏度光敏三极管

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

机电系统控制实验报告

穿销单元工件穿销实验报告 一、前言 模块化柔性制造综合实训系统最大特点是以机器人技术为核心的技术综合性和系统性,又兼顾模块化特征。综合性体现在机器人技术、机械技术、微电子技术、电工电子技术、传感测试技术、接口技术、PLC工控技术、信息变换技术、网络通信技术等多种技术的有机结合,并综合应用到生产设备中;而系统性指的是,生产线的传感检测、传输与处理、控制、执行与驱动等机构在微处理单元的控制下协调有序地工作,有机地融合在一起。 系统模块化结构,各工作单元是相对独立的模块,并具有较强的互换性。可根据实训需要或工作任务的不同进行不同的组合、安装和调试,达到模拟生产性功能和整合学习功能的目标,十分适合教学实训考核或技能竞赛的需要。 通过该系统,学生经过实验了解生产实训系统的基本组成和基本原理,为学生提供一个开放性的,创新性的和可参与性的实验平台,让学生全面掌握机电一体化技术的应用开发和集成技术,帮助学生从系统整体角度去认识系统各组成部分,从而掌握机电控制系统的组成、功能及控制原理。可以促进学生在掌握PLC技术及PLC网络技术、机械设计、电气自动化、自动控制、机器人技术、计算机技术、传感器技术等方面的学习,并对电机驱动及控制技术、PLC控制系统的设计与应用、计算机网络通信技术和高级语言编程等技能得到实际的训练,激发学生的学习兴趣,使学生在机电一体化系统的设计、装配、调试能力等方面能得到综合提高。体现整体柔性系统教学的先进性。 二、实验目的 1、了解PLC的工作原理; 2、掌握PLC编程与操作方法; 3、了解气缸传感器的使用方法; 4、掌握PLC进行简单装配控制的方法。 三、实验设备 1、模块化柔性制造综合实训系统一套; 2、安装西门子编程软件STEP7-MicroWIN SP6的计算机一台; 3、西门子S7-200 PLC编程电缆一条。 四、实验原理 学生可通过实验验证工业现场中如何使用PLC对控制对象进行控制,我公司提供PLC源程序,学生可在源程序的基础上进行进一步编程,将编写好的程序通过编

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

光纤传感器-位移测量

实验四光纤传感器————位移测量 实验目的 1、光纤位移传感器的结构与工作原理。 2、光纤传感器的输出特性曲线。 实验原理 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。图2所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图1 反射式位移传感器原理 图2 反射式光纤位移传感器的输出特性

实验所需部件: 光纤(光电转换器)、光电传感器模块、{光纤光电传感器实验模块}、支架、电压表示波器、螺旋测微仪、反射镜片 实验步骤: 1、观察光纤结构:本实验仪所配的光纤探头为半圆型结构,由数百根导光纤维组成,一半为光源光纤,一半为接收光纤。 2、连接主机与实验模块电源线及光纤变换器探头接口,光纤探头装上通用支架(原装电涡流探头),{探头支架},探头垂直对准反射片中央(镀铬圆铁片),螺旋测微仪装上支架,以带动反射镜片位移。 3、开启主机电源,光电变换器V 端接电压表,首先旋动测微仪使探头紧贴反射镜片(如 两表面不平行可稍许扳动光纤探头角度使两平面吻合),此时V 输出≈0,然后旋动测微仪,使反射镜片离开探头,每隔0.2mm记录一数值并记入下表: Xm m 0 0. 2 0. 4 0. 6 0. 8 1 1. 2 1. 4 1. 6 1. 8 2 2. 2 2. 4 2. 6 2. 8 3 3. 2 3. 4 3. 6 3. 8 4 V 位移距离如再加大,就可观察到光纤传感器输出特性曲线的前坡与后坡波形,作出V-X 曲线,通常测量用的是线性较好的前坡范围。 注意事项: 1、光纤请勿成锐角曲折,以免造成内部断裂,端面尤要注意保护,否则会光通量衰耗加 大造成灵敏度下降。 2、实验时注意增益调节,输出最大信号以3V左右为宜,避免过强的背景光照射。 3、双支光纤三端面均经过精密光学抛光,其端面的光洁度直接会影响光源损耗的大小,需 仔细保护。禁止使用硬物、尖锐物体碰触,遇脏可用镜头纸擦拭。如非必要,最好不要自行拆卸,观察光纤结构一定要在实验老师的指导下进行。

光纤压力传感器实验

光纤压力传感器实验 一、实验目的 1、了解并掌握传导型光纤压力传感器工作原理及其应用 二、实验内容 l、传导型光纤压力传感光学系统组装调试实验; 2、发光二极管驱动及探测器接收实验; 3、传导型光纤压力传感器测压力原理实验。 三、实验仪器 1、光纤压力传感器实验仪1台 2、气压计1个 3、气压源l套 4、光纤1根 5、2#迭插头对若干 6、电源线1根 四、实验原理 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或 称为传感型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使 用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器的制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高。 本实验仪所用到的光纤压力传感器属于非功能型光纤传感器。 本实验仪重点研究传导型光纤压力传感器的工作原理及其应用电路设计。在传导型光纤压力传感器中,光纤本身作为信号的传输线,利用压力一电一光一光一电的转换来实现压力的测量。主要应用在恶劣环境中,用光纤代替普通电缆传送信号,可以大大提高压力测量系统的抗干扰能力,提高测量精度。 相关参数: l、光源 高亮度白光LED,直径5mm

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、实验内容 用传光型光纤测位移。 三、实验仪器 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。 四、实验原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 五、实验注意事项 1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。 2、实验前应用纸巾擦拭反射面,以保证反射效果。 六、实验步骤 1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图9-1 光纤传感器安装示意图 2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图 3、调节测微头,使探头与反射面圆平板接触。 4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。 5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。每旋转0.05mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传 感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案) 6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。 七、实验报告 在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、 波形等)并结合原始记录进一步理解实验原理。 八、实验思考题 根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。 答:由光源发出的光经发射光纤传输后入射到被测物表面,经反射体反射后再经接收光 纤接收并传输至光敏元件。由于光纤有一定的数值孔径,当光纤探头紧贴反射体时,发射光 纤中的光不能发射到接收光纤中,因此接收光纤中无光信号;当光纤探头逐渐远离被测体时, 接收光纤中的光强越来越大,当整个接收光纤被全部照亮时,接收光强达到峰值;当反射体 继续远离时,将有部分反射光没有反射进Y型光纤束,接收到的光强逐渐减小。位移特性 如下图所示。

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

光纤位移传感器

课程设计中期报告课题名称:光纤位移传感器 班级:2013级机电1班 组长:彭欢201307124101 组员:郑岩201307124123 马晓龙201307124117 张林201307124128

光纤位移传感器 重庆三峡学院机械工程学院机械电子专业2013级重庆万州 404000 摘要:光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量. 绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流、光纤传感器可用于位移、震动、转动、压力、弯曲、应变、速度、加速度、电流、磁场、电压、湿度、温度、声场、流量、浓度、PH值和应变等物理量的测量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。 关键字:位移光纤传感器 1引言 光纤传感器的基本工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,成为被调制的信号源,在经过光纤送入光探测器,经解调后,获得被测参数。 1.1光纤位移传感器的发展 光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。光纤传感器有70多种,大致上分成光纤自身传感器和利用光纤的传感器。 1.2光纤位移传感器的特性 一。灵敏度较高 二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件; 四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五。而且具有与光纤遥测技术的内在相容性。附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。

光纤位移传感器测位移特性实验(精)

实验二十六 光纤位移传感器测位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能。 二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 光纤传感器主要分为两类:功能型光纤传感器及非功能型光纤传感器(也称为物性型和结构型)。功能型光纤传感器利用对外界信息具有敏感能力和检测功能的光纤,构成“传”和“感”合为一体的传感器。这里光纤不仅起传光的作用,而且还起敏感作用。工作时利用检测量去改变描述光束的一些基本参数,如光的强度、相位、偏振、频率等,它们的改变反映了被测量的变化。由于对光信号的检测通常使用光电二极管等光电元件,所以光的那些参数的变化,最终都要被光接收器接收并被转换成光强度及相位的变化。这些变化经信号处理后,就可得到被测的物理量。应用光纤传感器的这种特性可以实现力,压力、温度等物理参数的测量。非功能型光纤传感器主要是利用光纤对光的传输作用,由其他敏感元件与光纤信息传输回路组成测试系统,光纤在此仅起传输作用。 本实验采用的是传光型光纤位移传感器,它由两束光纤混合后,组成Y 形光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距d ,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,如图26—1所示。 发射光 接收光 (a)光纤测位移工作原理 (b)Y 形光纤 图26—1 Y 形光纤测位移工作原理图 传光型光纤传感器位移量测是根据传送光纤之光场与受讯光纤交叉地方视景做决定。当

光纤传感器实验报告

实验题目:光纤传感器 实验目的: 掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量, 加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。实验仪器: 激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调 整架,显微镜,光纤传感实验仪,CCD及显示器,等等 实验原理:(见预习报告) 实验数据: 1.光纤传感实验(室温:24.1℃) (1)升温过程 (2)降温过程

2.测量光纤的耦合效率 在光波长为633nm条件下,测得光功率计最大读数为712.3nw。数据处理: 一.测量光纤的耦合效率 在λ=633nW,光的输出功率P1=2mW情况下。在调节过程中测得最大 输出功率P2=712.3nW 代入耦合效率η的计算公式: 3.56×10-4 二.光纤传感实验 1.升温时 利用Origin作出拟合图像如下: B 温度/℃由上图可看出k=5.49±0.06

根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变 2π,则 Δφ=2π×m (m 为移动的条纹数) 故灵敏度即为 因l=29.0cm 故其灵敏度为±1.30)rad/℃ 2.降温时 利用Origin 作出拟合图像如下: -40 -20 A B 由上图可看出k=7.45±0.11 同上: 条纹数 温度/℃

灵敏度为 因l=29.0cm 故其灵敏度为±2.38)rad/℃ 由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。 思考题: 1.能否不用分束器做实验?替代方案是什么? 答:可以,只要用两个相同的相干波波源分别照射光纤即可,这样也可造成光的干涉。 2.温度改变1℃时,条纹的移动量与哪些因素有关? 答: (1)与光纤的温度灵敏度有关 (2)与光纤置于温度场的长度有关 3.实验中不可用ccd是否能有办法看到干涉条纹?替代方案是什么? 答:可以。可以用透镜将干涉条纹成像在光电探测器上进行测量。 实验小结: 1.光纤的功能层非常脆弱,光纤剥离过程中要使力均匀,不可用力过猛, 否则易造成光纤的断裂,必要时可分段进行剥离。 2.使用宝石刀进行切割时,要轻轻划一下,再将光纤弹断,直接切断会 造成光纤断面不平滑,导致测出的光纤耦合系数较低。 3.光纤传感实验时记录移动的条纹数时可自行在显示器上寻找参照点, 保证记录的准确即可。

光纤传感器位移特性实验

0.4 0.50.60.70.80.911.1光纤传感器位移特性曲线 光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y 型光纤传感器、测微头、反射面、直流电源、数显电压表。 三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理 图36-2 光纤位移传感器安装示意图 四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y 型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm 处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V 电源,打开实验台电源。 4.将模块输出“Uo ”接到直流电压表(20V 档),仔细调节电位器Rw 使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X (mm ) Uo(V) 2、用matlab 绘制的X-Uo 曲线图

相关文档
相关文档 最新文档