文档库 最新最全的文档下载
当前位置:文档库 › 反射式光纤位移传感器实验

反射式光纤位移传感器实验

反射式光纤位移传感器实验
反射式光纤位移传感器实验

反射式光纤位移传感器实验报告

一、实验内容

1、按照光路图搭建各类光学元件

2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用

FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑

料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。

3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调

棱镜支架的调节旋钮使出射的光路与导轨平行。

4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜,

调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示

的功率接近0值。

5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan

转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数

据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感

器应用。

二、实验结果

三、实验分析

如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

光纤位移传感器的动态实验一.

光纤位移传感器的动态实验一 (一) 实验目的 了解光纤位移传感器的动态应用。 (二) 实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器) (三) 实验内容 1. 了解激振线圈在实验仪上所在位置及激振线圈的符号。 2. 在静态实验的电路中接入低通滤波器和示波器,如图1接线。 图1 3. 将测微头与振动台的台面脱离,测微头远离振动台。将光纤探头与振动台反射面的距离调整在光纤传感器工作点即线形段中点上(利用静态特性实验中得到的特性曲线,选择线形中点的位置为工作点,目测振动台的反射面与光纤探头端面之间的相对距离即线性区△X 的中点)。 4. 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的频率与幅度旋钮,使振动台振动且振动幅度适中。 5. 保持低频振荡器输出的p p V -幅度值不变,改变低频振荡器的频率(用示波器观察低频振荡器输出的p p V -值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮值p p V -相同),将频率和示波器上所测的峰峰值(此时的峰峰值p p V -是指经低通后的p p V -)填入表格中,并作出幅频特性图。 6. 关闭主、副电源,把所有旋钮复原到原始最小位置。

(四)数据表格 光纤位移传感器的动态实验二 (一)实验目的 了解光纤位移传感器的测速应用。 (二)实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:电机控制、差动放大器、小电机、电压表、光纤位移传感器、直流稳压电源、主、副电源、示波器) (三)实验内容 1.了解电机在实验仪上所在的位置及控制单元。 2.按图2接线,将差动放大器的增益置最大,电压表的切换开关置2V,开启主、副电源。 图2 3.将光纤探头移至电机上方对准电机上的反光纸,调节光纤传感器的高度,使电压表显示 最大。再用手稍微转动电机,让反光面避开光纤探头。调节差动放大器的调零,使电压表显示接近零。 4.旋动电机控制电位器,使电机运转。

反射式光纤位移传感系统《专业综合训练》报告

燕山大学 专业综合训练报告 题目:反射式光纤位移传感系统 学院(系):信息科学与工程技术学院年级专业: 09级光电子一班 学号: 0901******** 学生姓名:侯兴怀 指导教师:毕卫红

1 训练概况 1.1 训练目的 根据本专业的培养方向:电子科学与技术专业的学生应掌握电子学和光子学的基本理论、基本知识,要拥有光学技术、光传感等方面的专业知识。在大学本科阶段,注重培养学生的科学研究能力和实际工作能力,加强实践环节、加强基本技能训练。 专业综合训练是安排在大学四年级的一项教学实践环节,是在学生学习了本专业的全部专业基础课和部分专业课后安排的。通过理论与实践的结合,可使学生加深对所学知识的理解,并为后续的学习指引方向。同时使学生初步了解光电系统的设计、制作、调试过程,为将来走上工作岗位奠定基础。 本次训练应达到的目标是: 1.了解光电技术的应用情况; 2.了解光纤传感器的制作、光参数的设计与实现方法; 3.了解电子电路的系统设计、焊接、制版,组装等工艺过程; 4.了解光电系统的安装、调试过程;学习分析、排除故障的方法; 5.掌握反射式光纤位移传感器工作原理、传感系统测量位移的方法及仪器的标定方 法。 1.2 训练内容 训练内容: 光纤位移传感系统,属于强度调制光纤传感器是利用待测物理量引起光强变化,通过检测光强的变化实现对待测物理量的测量,如位移、压力、振动、表面粗糙度等。 1.3 时间安排 第1周: 周一:《专业综合训练》总体内容讲解,领取《专业综合训练》任务; 周二~周四:查阅资料,设计电路、了解其光学原理; 周五:对设计文件进行验收; 第2周: 元器件分选、电路焊接与调试、光纤组件制作; 地点:信息馆212 第3周: 进行电路仿真、程序编写调试 地点:信息馆201 第4周: 样机调试、位移传感系统测试数据提交、验收答辩; 总结并撰写训练报告 地点:信息馆212、201

光纤位移传感器实验

光纤位移传感器实验 一、实验目的 1、了解光纤位移传感器工作原理及其特性; 2、了解并掌握光纤位移传感器测量位移的方法。 二、实验内容 1、光纤位移传感器输出信号处理实验; 2、光纤位移传感器输出信号误差补偿实验; 3、光纤位移传感器测距原理实验; 4、利用光纤位移传感器测量出光强随位移变化的函数关系; 5、实验误差测量。 三、实验仪器 1、光线位移传感器实验仪1台 2、反射式光纤1根 3、对射式光纤2根 4、连接导线若干 5、电源线1根 四、实验原理 本实验仪通过光纤位移传感器位移测量实验,熟悉光纤结构特点及光纤数值孔径的定义,掌握光纤位移的测量原理,熟悉光路调整方法。 本实验仪可以完成反射式和对射式光纤位移传感器实验,重点研究光纤位移传感器的工作原理及其应用电路设计。 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型称为传感 (或 型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使用单模光纤,它 在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器大制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。该光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高光纤位移传感器实位移测量器件,利用光纤传输光信号的功能,根据检测到的反射光的强度来测量被测反射表面的距离。 光纤位移传感器属于非功能型光纤传感器。 相关参数: 1、光源:高亮度白光LED,直径5mm 2、探测器:高灵敏度光敏三极管

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光纤光栅应变传感器实验讲义

实验光纤布拉格光栅(FBG )应变实验研究 【实验目的】 1) 了解光纤光栅传感器基本原理及FBG 应变测量的基本公式。 2) 了解飞机驾驶杆弹性元件的力学特性。 3) 学习光纤光栅应变测量的基本步骤和方法。 【实验原理】 1.光纤光栅传感器的基本原理及FBG 应变测量的基本公式 光纤布喇格光栅(Fiber Bragg grating, FBG )用于传感测量技术,主要是通过外界物理量的变化对光纤光栅中心波长的调制来获取传感信息,因此它是一种波长调制型的光纤传感器。FBG 传感原理如图1所示。 图1中,当一束入射光波进入FBG 时,根据光纤光栅模式耦合理论,当满足满足相位 匹配条件时,反射光波即为FBG 的布喇格波长λB ,λB 与有效折射率n eff 和光栅周期Λ的关系为 Λ2eff B n =λ(1) 由式(1)可以知:n eff 与Λ的改变均会引起光纤光栅波长的改变,而且n eff 与Λ的改变与应变和温度有关。应变和温度分别通过弹光效应与热光效应影响n eff ,通过长度改变和热膨胀效应影响周期Λ,进而使λB 发生移动。将耦合波长λB 视为温度T 和应变ε的函数,略去高次项,则由应变和温度波动引起的光纤光栅波长的漂移可表示为 Λ ?+?Λ=?eff eff B 22n n λ (2) I λ I 输入光波 反射光波 透射光波 图1 FBG 传感原理示意图

由式(2)可知光纤光栅中心波长漂移量?λ对轴向应变?ε和环境温度变化?T 比较敏感。通过测量FBG 中心波长的变化,就可测量外界物理量的变化值(如应变、温度等)。 光纤光栅轴向应变测量的一般公式为 ()ελλe B Bz 1p -=?,也是裸光纤光栅轴向应变测量的计 算公式。由上式可知,?λBz 和ε存在线性关系,因此通过解调装置检测出布拉格波长的偏移量?λ,就可以确定被测量ε的变化。 2. 飞机驾驶杆弹性元件的力学特性 杆力传感器弹性元件采用平行梁形式,其结构如图2所示。弹性元件由互相交叉90°的两对关联平行梁组成一个测力悬杆,其中一组感受纵向作用力,另一组感受横向作用力,上下部分连为一体,增加了梁的刚度,提高了梁的固有频率并具有良好的散热条件。对其中每一方向作用力,由于其侧向刚度大,于是侧向负载能力强,与施加力平行的一对平行梁轴向应变可以忽略不计,外加力主要使与作用方向垂直的一对平行梁变形。 杆力传感器弹性元件为方框平行梁结构,为便于分析和简化计算,将方框平行梁简化为 一超静定刚架,力学模型如图3(a)所示。 因为刚架计算通常忽略轴力对变形的影响,力学模型又可进一步简化为一个反对称载 荷作用的刚架,简化后的力学模型如图3(b)所示,其中P=1/2P 0。将受反对称载荷作用的刚 架沿水平对称轴截开,这时垂直梁的截面上有三对内力力,即一对剪力X 、一对轴力N 、一对弯矩M ,多余约束力如图3(c)所示。根据结构力学反对称结构对称的外力为零的理论,因 图2弹性元件结构简图 (纵向) ) 图3简化后的模型 (a)超静定刚架结构 P 0 h (c) 多余未知力图 P P (b) 简化后力学模型 P P a

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、实验内容 用传光型光纤测位移。 三、实验仪器 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。 四、实验原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 五、实验注意事项 1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。 2、实验前应用纸巾擦拭反射面,以保证反射效果。 六、实验步骤 1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图9-1 光纤传感器安装示意图 2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图 3、调节测微头,使探头与反射面圆平板接触。 4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。 5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。每旋转0.05mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传 感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案) 6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。 七、实验报告 在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、 波形等)并结合原始记录进一步理解实验原理。 八、实验思考题 根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。 答:由光源发出的光经发射光纤传输后入射到被测物表面,经反射体反射后再经接收光 纤接收并传输至光敏元件。由于光纤有一定的数值孔径,当光纤探头紧贴反射体时,发射光 纤中的光不能发射到接收光纤中,因此接收光纤中无光信号;当光纤探头逐渐远离被测体时, 接收光纤中的光强越来越大,当整个接收光纤被全部照亮时,接收光强达到峰值;当反射体 继续远离时,将有部分反射光没有反射进Y型光纤束,接收到的光强逐渐减小。位移特性 如下图所示。

光纤光栅压力传感器

The research of FBG pressure sensing on the application of engineering ABSTRACT Fiber grating is one of the most rapid passive optical fiber components in recent years. Since 1978, the year when K.O.Hill and others first used the standing wave writing way in the germanium-doped fiber and make the world's first fiber grating, because of its’ many unique advantages, the use of the fiber grating in optical fiber communications Fields and fiber optic sensor Fields are broad prospected. With fiber grating manufacturing technology continues to improve, and the outcome of the application increasing, the fiber grating has been one of the most promising and representative optical passive components. The emergence of fiber grating makes many of the complex all-fiber communications and sensor networks possible, which greatly widened the scope of application of optical fiber technology. As sensor component, fiber grating also possesses other special functions. For example, high ability of resisting electromagnetism disturb, small size and weight, high temperature-proof, high ability of multiplex, being liable to connect with fiber, low loss, good spectrum characteristic, erosion-proof, high sensitivity, being liable to deform and so on. At present, the sensor that adopts FBG (fiber Bragg grating) as sensor components has become the main stream of development and cultivation. Pressure is the direct cause of the drifting of the Bragg wavelength of the grating, so research on the FBG pressure sensing character in-depth is important to the FBG sensing technology. The design is on the basis of understanding of FBG sensing elements; explore the using of FBG pressure character, so research on the FBG pressure sensing character in-depth is important to the FBG sensing technology. Bring forward a package project that can be used and the text.

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

光纤光栅传感器及其发展趋势

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

光纤光栅应变传感器二维应变测量方法

龙源期刊网 https://www.wendangku.net/doc/8f9248264.html, 光纤光栅应变传感器二维应变测量方法 作者:李金娟 来源:《无线互联科技》2015年第02期 摘要:文章介绍了光纤光栅二维应力传感测量的试验台的准备、光纤光栅的制备、光纤 光栅的粘贴、实验仪器、实验过程、光纤光栅测量应变与电阻应变片的测量结果作对比。实验结果说明利用光纤光栅应变花可以得出与电阻应变花一致的结果。 关键词:光纤光栅;电阻应变片;应变;直角应变花 光纤光栅应变花进行二维平面应力测量是通过三个光纤光栅的中心波长的变化来测定应变的,电阻应变片应变花测出的应变值对光纤光栅中心波长进行标定。所以粘贴时尽可能保证光纤光栅与对应的电阻应变片的测量方位一致。 1 实验台的准备 由于本实验需要用多个光纤光栅进行二维应力测量,所以不能使用一般的等强度梁,而是用一个十字架形结构,实际上也是一种等强度梁,不过这种装置有两个等强度梁,分别作为十字架的X轴向和Y轴向,用来施加压力,如图1所示。 这是实验的被测表面的俯视图,表面是由我们用一块马口铁皮做成的。实验时在X轴、Y 轴方向分别悬挂砝码盘。砝码的重力通过试验台的等悬梁臂结构拉伸X或者Y方向的铁皮,铁皮的应力的变化引起光纤光栅中心波长的变化,因此为了保证试验的效果,光纤光栅的粘贴必须使光栅光纤紧贴被测表面时同时发生应变。 2 光纤光栅的制备 实验台准备好后重要的是制备光纤光栅,本实验使用3只不同中心波长的光纤光栅,串联成直角应变花来测试动态应力的变化,因而需制备3只不同波长的光纤光栅。由于实验条件的限制,试验室中只有两块相位掩模板,在实验室中只能制备两只光纤光栅,另外一只光纤光栅是已经制备好的光纤光栅。三只光纤光栅的波长位置分别在:1532nm,1544nm,1548nm处附近。 根据实验条件,组建一个光纤光栅制作系统,制作方法采用目前最有效,也是最流行的相位掩模法,其实验系统如图2所示。 本实验用光纤,是载氢掺锗光敏光纤-普通光纤经过载氢处理(在室温下,压强为107Pa 的容器中,载氢两周左右),使得普通通信光纤的光敏性大大增加,达到写制光栅的要求。实验所用的光谱分析仪为国产AV6361,分辨率选择0.2nm,宽带光源使用LED。

光纤光栅应力传感器工作原理

四、光纤光栅应力传感器工作原理 光纤光栅技术是利用紫外曝光技术在光纤芯中引起折射率的周期性变化而形成的。光纤光栅中折射率分布的周期性结构,导致某一特定波长光的反射,从而形成光纤光栅的反射谱。光纤光栅应力传感器通常是将光纤光栅附着在某一弹性体上,同时进行保护封装。反射光的波长对温度、应力和应变非常敏感,当弹性体受到压力时时, 光纤光栅与弹性体一起发生应变,导致光纤光栅反射光的峰值波长漂移,通过对波长漂移量的度量来实现对温度、应力和应变的感测。其工作原理如图1 图1给出了光纤光栅应力传感器与波长解调仪组成的应力测量系统。它主要 由四个部分组成,第一部分为宽带光源,第二部分为光纤光栅应力传感器, 光纤光栅传感测量系统由四个部分组成,第一部分为宽带光源,第二部分为光纤光栅应力传感器,第三部分为基于可调F-P 滤波器的波长解调仪,第四部分为计算机及软件分析处理系统。图中给出等间隔分布多个光纤光栅应力传感器,这些光纤光栅通常要进行串接。由宽带光源发出的宽带光信号经过隔离器和3dB 耦合器传输到串接的传感光栅上,经过这些光纤光栅的波长选择后,一组不同波长的窄带光被反射,反射光再次经过3dB 耦合器由波长解调仪接收,经过波长解调仪对这些波长进行识别,得到一组应力传感信息,当边坡内部应力发生变化时,通过光栅解调器检测出波长的变化即应力变化,之后输入到计算机进行数据分析处理,最后得到边坡受到压力的分布状况,根据监测对象内部变化情况,判断是否会产生塌方,起到报警作用。 计算机 波长解调仪 宽带光源 耦合器 光纤光栅应力传感器 图1测量系统光路示意图 光隔离器 扫描电压 抖动信号 可调F-P 滤波器 混合器 LP 滤波器

光纤位移传感器工作特性研究

大学物理实验学期论文光纤位移传感器工作特性研究 学院:信息科学与工程学院 班级:电信六班 学号:201300121078 姓名:李广鹏 日期:2014.4.28

摘要: 通过介绍关于光纤位移传感器工作特性研究的实验,了解光纤位移传感器的特性。并且以测量纸张的厚度为例,介绍光纤位移传感器在厚度测量上的应用。 关键词:光纤;传感器;纸张;厚度 1.光纤简介 光纤在通信、图像传输等方面的应用为人熟知。其实光纤传感器在工农业、科研等领域有着更为广泛的应用。 光纤床干起是利用光纤的转换功能或传输功能而研制的传感器。光纤的传输特性对某些外界条件的变化(如压力、应变、温度以及电磁场)较为敏感。 利用光纤的这些敏感反映可研制出相应的传感器,可用于温度、应力、应变、粗糙度等七十多种物理量的测量,被誉为“万能传感器”,具有其他传感器不可媲美的诸多优点。 单根光导纤维的结构如图所示,它由纤芯、包层及护套组成,纤芯为直径很小的圆柱形透明电解质纤维(某种玻璃或塑料)制成。环绕纤芯的是一层圆柱形套层,称为包层。它的折射率与纤芯略有不同的玻璃或塑料制成,然后,用一层护套将它们包覆。光纤的导光能力取决于纤芯和包层的性能,光纤的强度由护套来维持。

2.实验目的: (1)了解光纤位移传感器的工作特性。 (2)学习Excel程序和计算器求斜率和相关系数。 (3)学习用光纤位移传感器测量微小长度量。 3.实验仪器: CSY998型传感器系统实验仪(右图), 塞尺,待测工件,导线等。 4.实验原理; 如图所示为光纤位移传感器测量原理图。一束多股光纤(光源光纤)将光源发出的光投射到被测物体表面上,另一束多股光纤(接收光纤)用于接受被测物表面反射的光,两股光纤汇合处用有机玻璃固封,称作光纤位移传感器的探头。反射光经接收光纤、光电转换元件转换成电压信号后输出。输出电压的强弱决定于反射光强的大小。当光纤传感器探头的端口紧贴反射面时,光源光纤的出光口被挡住,接收光纤接收不到反射光,因此无电压信号输出, 随着反射面逐渐远离光纤探头端口,反射面被光纤发出的光照亮的区域A越来越大,发光光锥与接收光锥重合的面积B1越来越大,如图所示,传输到光敏元件上的光强逐渐变大, 传感器输出的电压信号也随之,接受光纤变大。当反射面移到某一位置时,接受光纤的整个端口C被全部照亮,因而输出电压达到最大值,称为“光峰点”。此 后当反射面继续远离时,尽管接收光纤的整个端口C仍然被全部照亮,由于单位面积内反射光的强度在减小,因而随着距离的增大,传输到光敏元件上的光强越来越小,传感器输出的电压值也就越来越小。 输出电压与距离的关系如图所示。光峰点之前的区段称为上升沿,光峰点之后的区段称为下降沿。在上升沿和下降沿,各有一个区域,输出电压与位移成线性关系。但上升沿斜率比较大,意味着电压对位移的变化比较敏感,灵敏度高,故可

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

光纤位移传感器

课程设计中期报告课题名称:光纤位移传感器 班级:2013级机电1班 组长:彭欢201307124101 组员:郑岩201307124123 马晓龙201307124117 张林201307124128

光纤位移传感器 重庆三峡学院机械工程学院机械电子专业2013级重庆万州 404000 摘要:光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量. 绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流、光纤传感器可用于位移、震动、转动、压力、弯曲、应变、速度、加速度、电流、磁场、电压、湿度、温度、声场、流量、浓度、PH值和应变等物理量的测量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。 关键字:位移光纤传感器 1引言 光纤传感器的基本工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,成为被调制的信号源,在经过光纤送入光探测器,经解调后,获得被测参数。 1.1光纤位移传感器的发展 光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。光纤传感器有70多种,大致上分成光纤自身传感器和利用光纤的传感器。 1.2光纤位移传感器的特性 一。灵敏度较高 二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件; 四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五。而且具有与光纤遥测技术的内在相容性。附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。

光纤光栅应变传感器产品及监测实例

光纤光栅应变监测 监测原理 光纤光栅就是一段光纤,其纤芯中具有折射率周期性变化的结构。根据模耦合理论, Λ=n B 2λ的波长就被光纤光栅所反射回去(其中λ B 为光纤光栅的中心波长,Λ为光栅周 期,n 为纤芯的有效折射率)。 图1 光纤光栅的结构 反射的中心波长信号λB ,跟光栅周期Λ,纤芯的有效折射率n 有关,所以当外界的被测量引起光纤光栅温度、应力改变都会导致反射的中心波长的变化。也就是说光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况。当布喇格光纤光栅做探头测量外界的温度、压力或应力时,光栅自身的栅距发生变化,从而引起反射波长的变化,解调装置即通过检测波长的变化推导出外界被测温度、压力或应力。 性能指标

主要特点 ★可靠性好、抗干扰能力强 ★ 测量精度高 ★ 分布式测量,测量点多,测量范围大。 ★ 传感头结构简单、尺寸小 ★ 抗电磁干扰、抗腐蚀、适于恶劣的化学环境 下工作。 ★ 系统安装使用过程中无需定标,使用寿命可 达25年以上,适用于长期监测。 应用领域 航空航天器、石油化学工业设备、电力设备、船舶结构、建筑结构、桥梁结构、医疗器具、核反应堆结构等 工程实例

采用光纤监测混凝土大管桩在施工过程中的应变结果分析 舟山万邦永跃船舶修造有限公司30万吨级舾装码头船坞应变监测 徐州矿务局张双楼煤矿主通风井冻法施工安全监测 内蒙古多伦电厂桩基静载测试 马来西亚宾城跨海大桥桩基承载力检测 深表土冻结外井壁光纤应力实测分析 监测点布置总体原则 为掌握竖井壁变形动态,并在今后继续发挥其安全预警作用,应布设较为全面完整的多方位监测体系,从而最大限度的发挥光纤光栅传感器的功能,经初步分析,井壁可能的变形主要包括:井壁受周围粘土挤压产生应变;应变引起井壁相对位移(井壁收敛);深度不同引起叠加位移等,另外因采用冻法施工,井壁壁后温度也是影响作业面及支护初期安全的重要要素,这些要素很有可能成为护壁破坏失稳、发生恶性事故的诱发条件。综上述,竖井监测系统设计的总体原则是: 采用多层、多向监测的方法,在关键点(层)布置光纤应变、温度传感器,监测内容包括:井壁应变监测、壁后温度监测。 现场工况较为潮湿,施工线路较多,监测设备应具有很好的防水、防电磁干扰性能; 现场采集数据难度大,应采用微机室内实时采集的方式(数据采集中心); 做好充足施工前准备工作,保证设备安装迅速,准确,不影响现场正常施工。 监测内容的确定 (1)应变监测:计划3层,分别位于170.0m、195.0m、220.0m(根据实际支模板时按照施工工艺做适当调整),每层布设监测点5个。监测点布置图见附图一,可与业主协商增加或减少监测层数、点数。 (2)温度监测:计划3层,分别位于170.0m、195.0m、220.0m(根据实际支模板时按照施工工艺做适当调整),每层布设监测点5个(与应变传感器处于同一位置靠外侧)。 (3)安装应变传感器时应考虑每层至少1个为竖井纵向方向安置。 (4)施工过程中可根据监测数据分析结果调整各阶段监测内容。 监测周期的确定 从前述本监测项目任务可以看到,本监测项目数据采集部分分为两个阶段,一为竖井开挖粘土层施工过程中的监测,二为粘土层通过后的监测。在施工过程中,为了做到全面掌握

传感器原理第九章 光纤传感器

第九章光纤传感器第一节光纤的传光原理与特性 一、光纤的结构 二、光纤的传光原理 三、光纤的传光特性 第二节传输光的调制技术 一、光强度调制 二、光相位调制 三、偏振调制 四、频率调制 第三节强度调制光纤传感器 一、光纤水深探测器 二、透射式光纤温度传感器 三、反射式光纤位移传感器 第四节相位调制光纤传感器 第五节偏振调制光纤电流传感器 第六节频率调制光纤血流传感器

第九章光纤传感器 1970年,美国康宁玻璃公司研制成功传输损耗为20db/km的光导纤维。光导纤维的诞生,是20世纪人类的重要发明。现已广泛应用于工程技术、及通讯技术。 光导纤维作为远距离传输光波信号的媒质,最早用于光通讯技术,但人们在实际光通讯过程中发现,光导纤维受到如压力,温度、电场、磁场等外界环境因素变化的影响时,将引起光纤传输的光波量,如光强、相位、频率、偏振态等的变化。若能测量光波量的变化,就可以知道导致这些光波量变化的压力、温度、电场、磁场等物理量的大小。于是,诞生了光导纤维传感器技术。 光纤传感器亦称光导纤维传感器,光纤传感器技术是70年代末发展起来的一门崭新技术,是传感器技术领域里的新成就。 光导纤维传感器技术是随着光导纤维的实用化和光通讯技术的发展而发展起来的,它与以电为基础的传感器相比有本质的区别。 光纤传感器是以光来作敏感信息的载体,用光导纤维作为传递敏感信息的媒质。

光导纤维传感器同时具有光导纤维及光学测量的一些宝贵的特点: 灵敏度高、结构简单、体积小、耗电量少、耐腐蚀、绝缘性好、光路可弯曲、抗电磁干扰、对被测场不产生影响、易实现对被测信号的远距离测控。 光纤传感器技术是一门多学科性科学,涉及到的知识面广泛,如光纤光学、光电技术、弹性力学、电磁学、电子技术、计算机应用等。本章重点介绍光纤传感器原理、分类、及典型应用。

相关文档
相关文档 最新文档