文档库 最新最全的文档下载
当前位置:文档库 › 等量同种、异种等量电荷电场强度及电势分布图演示教学

等量同种、异种等量电荷电场强度及电势分布图演示教学

等量同种、异种等量电荷电场强度及电势分布图演示教学
等量同种、异种等量电荷电场强度及电势分布图演示教学

等量同种、异种等量电荷电场强度及电势

分布图

精品文档

收集于网络,如有侵权请联系管理员删除

等量异种同种电荷总结

一.等量异种同种电荷产生电场电场线场强关系 1.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O 点等距离处各点的场强相等(O 为两点电荷连线中点). (3)在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功. (4) 等量异种点电荷连线上以中点O 场强最小,中垂线上以中点O 的场强为最大; (5)等量异种点电荷连线和中垂线上关于中点对称处的场强相同; 2.等量同种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线中点O 处场强为零,此处无电场线. (2)中点O 附近的电场线非常稀疏,但场强并不为零. (3)两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O (等量正电荷). (4)在中垂面(线)上从O 点到无穷远,电场线先变密后变疏,即场强先变强后变弱. (5)等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E ∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (6)等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. PS:等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律? (1)等量异种点电荷连线上以中点O 场强最小,中垂线上以中点O 的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E ∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. 二.等量异种同种电荷产生电场电势 等势面 1.等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图1-4-6所示.在从正电荷到负电荷的连线上电势逐渐降低,φA >φA ′;在中垂线上φB =φB ′. 2.等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA ′线上O 点电势最低;在中垂线上O 点电势最高,向两侧电势逐渐降低,A 、A ′和B 、B ′对称等势. -三、练习 1.如图所示,在真空中有两个固定的等量异种点电荷+Q 和-Q 。直线MN 是两点电荷连线的中垂线, O 是两点电荷连线与直线MN 的交点。a 、b 是两点电荷连线上关 于O 的对称点,c 、d 是直线MN 上的两个点。下列说法中正确的是( ) A .a 点的场强大于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先增大后减小 B .a 点的场强小于b 点的场强;将一检验电荷沿MN 由c 移 动到d ,所受电场力先减小后增大 C .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先增大后减小 D .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先减小后增大 2.等量异种点电荷的连线和其中垂线如图所示,现将一个带负电的检验电荷先从图中a 点沿直线移到 b 点,再从b 点沿直线移到 c 点.则( ) A .从a 点到b 点,电势逐渐增大 B .从a 点到b 点,检验电荷受电场力先增大后减小 C .从a 点到c 点,检验电荷所受电场力的方向始终不变 D .从a 点到c 点,检验电荷的电势能先不变后增大 3、某静电场的电场线分布如图所示,P 、Q 为该电场中的两点,下列说法正确的是 A .P 点场强大于Q 点场强 B .P 点电势低于Q 点电势 C .将电子从P 点移动到Q 点,电场力做正功 D .将电子从P 点移动到 Q 点,其电势能增大 4. 一对等量正点电荷电场的电场线(实线)和等势线 (虚线)如图 所示,

电场强度和电势

电场强度和电势 编稿:董炳伦审稿:李井军责编:郭金娟 目标认知 学习目标 1.理解静电场的存在,静电场的性质和研究静电场的方法。 2.理解场强的定义及它所描写的电场力的性质,并能结合电场线认识一些具体静电场的分布;能够熟练地运用电场强度计算电场力。 3.理解并能熟练地运用点电荷的场强和场强的叠加原理,弄清正、负两种电荷所产生电场的异同,以此为根据认识电荷系统激发的场。 4.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。 5.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点 1.用场强和电势以及电场线和等势面描写认识静电场分布。 2.熟练地进行电场力、电场力功的计算。 3.学会认识静电场的描写静电场的方法、手段。 学习难点 1.电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题复杂性。 2.用场强和电势以及它们的叠加原理认识电荷系统的静电场等。 知识要点梳理 知识点一:电场强度和电场线 要点诠释: 1.静电场及其特点 (1)电荷间的相互作用力是靠周围的电场产生的。 (2)电场是一种特殊物质,并非分子、原子组成,但客观存在。 (3)电场的基本性质是:对放入其中的电荷(不管是静止的还是运动的)有力的作用,电场具有能量。 2.静电场的性质 (1)电场强度的物理意义是描述电场的力性质的物理量,数值上等于单位电荷量的电荷在电场中受到的电场力,单位是N / C。 (2)电场力的二个性质:

①矢量性:场强是矢量,其大小按定义式计算即可,其方向规定为正电荷在该点的受力方向。 ②唯一性:电场中某一点处的电场强度E的大小和方向是唯一的,其大小和方向取决于场源电荷及空间位置。 电场中某点的电场强度E是唯一的,是由电场本身的特性(形成电场的电荷及空间位置) 决定的,虽然,但场强E绝不是试探电荷所受的电场力,也不是单位正试探电荷所受的电场力,因为电场强度不是电场力,电场中某点的电场强度,既与试探电荷的电荷量q 无关,也与试探电荷的有无无关。因为即使无试探电荷存在,该点的电场强度依然是原有的值。 3.总电荷的电场强度 大小:,Q为场源点电荷,r为考察点与场源电荷的距离。 方向:正点电荷的场中某点的场强方向是沿着场源电荷Q与该点连线背离场源电荷;负的场源电荷在某点产生的场强方向则是指向场源电荷。 4.场强叠加原理 若在某一空间中有多个电荷,则空间中某点的场强等于所有电荷在该点产生的电场强度的矢量和。 说明: (1)点电荷的场强和场强的叠加原理是计算任何电荷系统产生场的理论基础,尽管对复杂的电荷系统计算是不易做到的。 (2)场强的叠加原理必须注意到它的矢量叠加的特点,必须用平行四边形法则计算。 5.关于电场线以及对它的理解 (1)电场线的意义及规定 电场线是形象地描述电场而引入的假想曲线,规定电场线上每点的场强方向沿该点的切线方向,也就是正电荷在该点受电场力产生的加速度的方向(负电荷受力方向相反)。 (2)电场线的疏密和场强的关系的常见情况 按照电场线的画法的规定,场强大的地方电场线密,场强小的地方电场线疏。在图中,E A>E B。 但若只给一条直电场线,如图所示,A、B两点的场强大小无法由疏密程度来确定,对

关于等量同种或者一种电荷场强分布

一.等量异种同种电荷产生电场电势等势面 1.等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图1-4-6所示.在从正电荷到负电荷的连线上电势逐渐降低,φA>φA′;在中垂线上φB=φB′. 2.等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA′线上O点电势最低;在中垂线上O点电势最高,向两侧电势逐渐降低,A、A′和B、B′对称等势. 二.等量异种同种电荷产生电场电场线场强关系 1.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线中点).

(3)在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功. (4) 等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大; (5)等量异种点电荷连线和中垂线上关于中点对称处的场强相同; 2.等量同种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线中点O处场强为零,此处无电场线. (2)中点O附近的电场线非常稀疏,但场强并不为零. (3)两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O(等量正电荷). (4)在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变强后变弱. (5)等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (6)等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. PS:等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律? (1)等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反.

异种不等量电荷电场线及电势线

第三单元过关检测卷 一、填一填。(每空1分,共20分) 1.在生活中,我们利用()、()和()能设计出许多美丽的图案。 2.旋转、平移这两种图形变换的共同点是图形的()和()不发 生变化。 3.从4时到9时,钟面上的时针()时针旋转了()°。 4.如右图所示,图①绕中心点()时针旋转()变换成图②;也可以用图③绕中心点()时针旋转()变换成图②;还可以用图④()时针

旋转()变换成图②。 5.如右图所示(指针绕点O旋转)。 ①指针从A开始,逆时针方向旋转90°到()。 ②指针从B开始,顺时针方向旋转90°到()。 ③指针从C到D,是()时针旋转了90°。 ④指针从B到A,是()时针旋转了90°。 6.如下图,A经过()得到B;B经过()得到C。1/ 8

原图和旋转90°,绕点将等腰直角三角形B顺时针旋转7.)。后的图形组成的图形是( ) 21分每题3分,共二、选一选。(所得的图形的面积与原图形的60°,1.把一个图形绕某点逆时针旋转。)(面积比是.不能确定DC.2∶1 2 1A.∶1 B.1∶ 如图所示,2. )°就可以和原图形重合。至少旋转(等边三角形绕点O180 .120

D60 B.C.90 A. )。(.右图是由通过运动得到的,下面说法错误的是3 A.可以通过平移得到B.可以通过旋转得到D.可以通过旋转和轴对称得到C.可以通过轴对称得到 所得图形一定与原90°将下列图形绕其对角线的交点逆时针旋转,4. / 28 图形重合的是()。 A.平行四边形B.长方形C.正六边形D.正方形 5.能通过框中箭头旋转得到的是()。

6.一种俄罗斯方块(如下图),每次顺时针旋转90°,问如果这样旋转10次,将会是下面的()号图形。 A.①B.②C.③D.④ 7.如图,三角形ABC绕点B旋转时,以()边为参照边确定三角形 的位置是不可以的。 A.AC B.AB C.BC

两等量同种(异种)电荷场强分布特点

两等量同种(异种)电荷场强分布特点 等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q ,两电荷连线AB 长度为L,中点为O. 一、 等量异种电荷 1、 两电荷连线上 如图1所示,在两电荷连线上任取一点G ,设AG 长度为x , 则G 点场强E G 为两点电荷分别在该点的场强E A 、E B 的矢量和,方向从A 指向B (由正电荷指向负电荷一侧),由点电荷场强公式知: E G = E A + E B =()[] ()[]2 22 22)(x L x x x L L kQ x L kQ x kQ ---=-+ ∵x+(L-x)等于定值L ,∴当x=(L-x),即x= 2 L 时,x 与 (L-x)乘积最大, E G 有最小值,即在两电荷连线中点O 处场强最小,从O 点向两侧逐渐增大,数值关于O 点对称。 2、 中垂线上 如图2所示,在中垂线上,任取一点H ,设OH=x ,根据对称性知:E H 沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。 H 点的场强E H = 2 3 2222 22 22 22222cos 22??? ?????+??? ??= +?? ? ??? +?? ? ??= ?+?? ? ??x L kQL x L L x L kQ x L kQ θ, ∴在O 点,即x=0处,E H 最大,x 越大,即距O 点越远E H 越小,两侧电场强度数值关于O 点对称。 图 G O B 图 θx E H O B A E

高考复习等量同种电荷和等量异种电荷模型专题突破(有答案)

[方法点拨] (1)两点电荷电场中各点的电场是两点电荷独自产生的电场强度矢量叠加.(2)注意两点电荷连线及连线的中垂线上场强、电势分布规律. 1.(电场叠加)(多选)如图1,真空中a 、b 、c 、d 四点共线且等距.先在a 点固定一点电荷+Q ,测得b 点场强大小为E .若再将另一等量异种电荷-Q 放在d 点,则( ) 图1 A .b 点场强大小为34 E B .c 点场强大小为54E C .b 点场强方向向右 D .c 点电势比b 点电势高 2.(功能关系)如图2所示,O 、O ′两点放置两个等量正电荷,在OO ′直线上有A 、B 、C 三个点,且OA =O ′B =O ′C ,一点电荷q (q >0)沿路径Ⅰ从B 运动 到C 电场力所做的功为W 1,沿路径Ⅱ从B 运动到C 电场力所做的功 为W 2,同一点电荷从A 沿直线运动到C 电场力所做的功为W 3,则 下列说法正确的是( ) 图2 A .W 1大于W 2 B .W 1为负值 C .W 1大于W 3 D .W 1等于W 3 3.(电场综合分析)如图3所示,Q 1、Q 2为两个等量同种的正点电荷, 在Q 1、Q 2产生的电场中有M 、N 和O 三点,其中M 和O 在Q 1、Q 2 的连线上,O 为连线的中点,N 为Q 1、Q 2垂直平分线上的一点,ON =d .下列说法正确的是( ) 图3 A .在M 、N 和O 三点中,O 点电势最低 B .在M 、N 和O 三点中,O 点电场强度最小 C .若O 、N 间的电势差为U ,则N 点的电场强度为U d D .若O 、N 间的电势差为U ,将一个带电荷量为q 的正点电荷从N 点移到O 点,电场力做功为qU

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平+ 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场 线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立的 负点电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。

电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量 同种 电场大部分是曲线,起于正电荷,终止于无穷远;有两条

异种不等量电荷的电场线及电势线

.问题分析: 研究双电荷静电系统的电力线和等势线的分布,设在(-a ,0)处有一正电荷q 1,在(a ,0)处有一负电荷q 2,则在电荷所在平面内任意一点(坐标为(x ,y ))的电势和场强分别为: 1 212(,)44q q V x y r r πεπε=+, E V =-? . 其中:r1=y a x 22+ +)( r2=y a -x 2 2+)( 二.问题解决: 为简化模型,可令1 14πε=,a=3, MatlAB 语言描述如下: clear all clc close all q1=input('请输入q1: '); q2=input('请输入q2: '); a=3; [X,Y]=meshgrid(-10:0.7:10,-10:0.7:10); rm=sqrt((X-a).^2+Y .^2); rp=sqrt((X+a).^2+Y .^2); V=q1*(1./rp)+q2*(1./rm); [Ex,Ey]=gradient(-V); E=sqrt(Ex.^2+Ey .^2); Ex=Ex./E; Ey=Ey ./E; cv=linspace(min(min(V)),max(max(V)),100); contour(X,Y ,V ,cv , 'r-');%用红线画等势线; hold on quiver(X,Y ,Ex,Ey ,1,'b');%用蓝线画电场线; title('\fontname{宋体}\fontsize{15}双电荷静电系统的电场线和电势线') hold off

(1)请输入q1: 5 请输入q2: -1此时绘出图形为: (2)请输入q1: 3 请输入q2: -1此时绘出图形为:

等量异种同种电荷总结word版本

等量异种同种电荷总 结

一.等量异种同种电荷产生电场电场线场强关系 1.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线中点). (3)在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功. (4) 等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大; (5)等量异种点电荷连线和中垂线上关于中点对称处的场强相同; 2.等量同种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线中点O处场强为零,此处无电场线. (2)中点O附近的电场线非常稀疏,但场强并不为零. (3)两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O(等量正电荷). (4)在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变强后变弱. (5)等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (6)等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. PS:等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律? (1)等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. 二.等量异种同种电荷产生电场电势等势面 1.等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图1-4-6所示.在从正电荷到负电荷的连线上电势逐渐降低,φA>φA′;在中垂线上φB=φB′. 2.等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA′线上O点电势最低;在中垂线上O点电势最高,向两侧电势逐渐降低,A、A′和B、B′对称等势. -三、练习 1.如图所示,在真空中有两个固定的等量异种点电荷+Q和-Q。直线MN是两点电荷连线的中垂线, O是两点电荷连线与直线MN的交点。a、b是两点电荷连线上关 于O的对称点,c、d是直线MN上的两个点。下列说法中正确的 是() A.a点的场强大于b点的场强;将一检验电荷沿MN由c移 动到d,所受电场力先增大后减小 B.a点的场强小于b点的场强;将一检验电荷沿MN由c移 动到d,所受电场力先减小后增大 C.a点的场强等于b点的场强;将一检验电荷沿MN由c移 动到d,所受电场力先增大后减小 D.a点的场强等于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先减小后增大2.等量异种点电荷的连线和其中垂线如图所示,现将一个带负电的检验电荷先从图中a点沿直线移到 b点,再从b点沿直线移到c点.则() A.从a点到b点,电势逐渐增大 B.从a点到b点,检验电荷受电场力先增大后减小 C.从a点到c点,检验电荷所受电场力的方向始终不变 D.从a点到c点,检验电荷的电势能先不变后增大 3、某静电场的电场线分布如图所示,P、Q为该电场中的两点,下列说法正确的 是 A.P点场强大于Q点场强B.P点电势低于Q点电势 C.将电子从P点移动到Q点,电场力做正功 D.将电子从P点移动到Q点,其电势能增大 4. 一对等量正点电荷电场的电场线(实线)和等势线(虚线)如图所示,图中A、B两点电场强度分别是 分别是 E A、E B,电势分别是ΦA、ΦB,负电荷q在A、B时的电势能 E PA、E PB,下列判断正确的是() A.E A>E B,ΦA>ΦB,E PAE B,ΦA<ΦB,E PA

电场等量同种电荷及等量异种电荷专题

电场等量同种电荷及等量异种电荷专题 等量电荷专题 一、单选题 1.如图所示,在AB 两处固定等量异种点电荷,其中Q A 带正电,MNKL 为一矩形,O 为AB 连线中点,且MO =NO ,则关于M 、N 、K 、L 四点场强大小及电势说法正确的是( ) A .E M >E N ;φM < φN B .E M >E L ;φM >φL C .E K =E L ;φK >φL D . E K >E N ;φK > φN 2.一对等量点电荷位于平面直角坐标系xOy 的一个轴上,它们激发的电场沿x 、y 轴方向上的场强和电动势随坐标的变化情况如图中甲、乙所示,甲图为y 轴上各点场强随坐标变化的E ?y 图象,且沿y 轴正向场强为正.乙图为x 轴上各点电势随坐标变化的φ?x 图象,且以无穷远处电势为零.图中a 、b 、c 、d 为轴上关于原点O 的对称点,根据图象可判断下列有关描述正确的是 A .是一对关于原点O 对称的等量负点电荷所激发的电场,电荷位于y 轴上 B .是一对关于原点O 对称的等量异种点电荷所激发的电场,电荷位于x 轴上 C .将一个+q 从y 轴上a 点由静止释放,它会在aOb 间往复运动 D .将一个+q 从x 轴上c 点由静止释放,它会在cOd 间往复运动 3.如图所示,M 点固定一负电荷,N 点固定一正电荷,两者所带的电荷量相等、相距为L ,以N 点为圆心、2 L 为半径画圆,a 、b 、c 、d 是圆周上的四点,其中a 、b 两点在直线MN 上,c 、d 两点的连线过N 点,且垂直于MN ,一带正电的试探电荷沿圆周移动。 下列说法正确的是( )

等量异种同种电荷总结

斯克教育电场练习题 一.等量异种同种电荷产生电场电场线场强关系 1.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线中点). (3)在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功. (4) 等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大; (5)等量异种点电荷连线和中垂线上关于中点对称处的场强相同; 2.等量同种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线中点O处场强为零,此处无电场线. (2)中点O附近的电场线非常稀疏,但场强并不为零. (3)两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O(等量正电荷). (4)在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变强后变弱. (5)等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (6)等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. PS:等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律? (1)等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. 二.等量异种同种电荷产生电场电势等势面

(完整版)两电荷电场强度电势图像

一、两个等量异种点电荷电场 1.电场特征 (1)两个等量异种点电荷电场电场线的特征是:电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线.如图16所示. 图16 (2)在两电荷连线上,连线的中点电场强度最小但是不等于零;连线上关于中点对称的任意两点场强大小相等,方向相同,都是由正电荷指向负电荷; 图17 由连线的一端到另一端,电场强度先减小再增大.以两电荷连线为x轴,关于x=0对称分布的两个等量异种点电荷的E-x图象是关于E轴(纵轴)对称的U形图线,如图17所示. (3)在两电荷连线的中垂线上,电场强度以中点处最大;中垂线上关于中点对称的任意两点处场强大小相等,方向相同,都是与中垂线垂直,由正电荷指向负电荷;由中点至无穷远处,

图18 电场强度逐渐减小.以两电荷连线中垂线为y轴,关于y=0对称分布的两个等量异种点电荷在中垂线上的E-y图 象是关于E轴(纵轴)对称的形图线,如图18所示. 2.电势特征 (1)沿电场线,由正电荷到负电荷电势逐渐降低,其等势面如图19所示.若取无穷远处电势为零,在两电荷连线上的中点处电势为零.

图19 (2)中垂面是一个等势面,由于中垂面可以延伸到无限远处,所以若取无穷远处电势为零,则在中垂面上电势为零. (3)若将两电荷连线的中点作为坐标原点,两电荷连线作为x轴,则两个等量异种点电荷的电势φ随x变化的图象如图20所示. 图20 二、两个等量同种点电荷电场 1.电场特征 (1)电场线大部分是曲线,起于正电荷,终止于无穷远;只有两条电场线是直线.(如图22所示) 图22 (2)在两电荷连线上的中点电场强度最小为零;连线上关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,电场强度先减小到零再增大. (3)若以两电荷连线中点作为坐标原点,沿两电荷连线作为x轴建立直角坐标系,则关于坐标原点对称分布的两个等量同种点电荷在连线方向上的E-x图象是关于坐标原点对称的图线,两个等量正点电荷的E-x图象如图23所示的曲线.

等量同种异种电荷电场分布

一.等量异种点电荷形成的电场中电场线的分布特点 1.两点电荷连线上各点,电场线方向从正电荷指向负电荷. 2.两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线中点). 3.在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功. 4.等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大; 5.等量异种点电荷连线和中垂线上关于中点对称处的场强相同; 二.等量同种点电荷形成的电场中电场线的分布特点 1.两点电荷连线中点O处场强为零,此处无电场线. 2.中点O附近的电场线非常稀疏,但场强并不为零. 3.两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O(等量正电荷). 4.在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变强后变弱. 5.等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. 6.等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反.

等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律? (1)等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值. (2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反. 三.等量异种同种电荷产生电场电势等势面 1.等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图-所示.在从正电荷到负电荷的连线上电势逐渐降低,φA>φA′;在中垂线上φB=φB′. 2.等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA′线上O点电势最低;在中垂线上O点电势最高,向两侧电势逐渐降低,A、A′和B、B′对称等势.

等量的点电荷形成的电场中的场强和电势特点

等量的点电荷形成的电场中的场强和电势特点 一. 等量的同种电荷形成的电场的特点 (以正电荷形成的场为例) 设两点电荷的带电量均为q,间距为R,向右为正方向 1.场强特点: 在两个等量正电荷的连线上,由A点向B点方向,电场强度的大小先减后增,即中点O处, 场强最小为0;场强的方向先向右再向左, 除中点O外,场强方向指向中点O 在两个等量正电荷连线的中垂线上,由O点向N(M)点方向,电场强度的大小先增后减;场强的方向由O点指向N(M)。 外推等量的两个负电荷形成的场 结论:在两个等量负电荷的连线上,由A点向B点方向,电场强度的大小先减后增,中点O处, 场强最小为零;场强的方向先向左再向右(除中点O外)。

在等量负电荷的连线的中垂线上,由O点向N(M)点方向,电场强度的大小先增后减,场强的方向由N(M)指向O点 2.电势特点: 在两个等量正电荷的连线上,由A点向B点方向,电势先减后增,中点O处, 电势最小,但电势总为正。 在两个等量正电荷的连线的中垂线上,由O点向N(M)点方向,电势一直减小且大于零,即O点最大,N(M)点为零 外推等量的两个负电荷形成的场 在两个等量负电荷连线上,由A点向B点方向,电势先增后减,在中点O处, 电势最大但电势总为负; 在两个等量负电荷连线的中垂线上,由O点向N(M)点方向,电势一直增大且小于零,即O点最小,N(M)点为零 二:等量的异种电荷形成的电场的特点 1.场强特点

在两个等量异种电荷的连线上,由A点向B点方向,电场强度的大小先减小后增大,中点O处场强最小;场强的方向指向负电荷在两个等量异种电荷的连线的中垂线上,由O点向N(M)点方向,电场强度的大小一直在减小;场强的方向平行于AB连线指向负电荷一端 2.电势特点: 在两个等量异种电荷的连线上,由A点向B点方向,电势一直在减小,中点O处电势为零,正电荷一侧为正势,负电荷一侧为负势。 等量异种电荷连线的中垂线上任意一点电势均为零即等量异种电荷的连线的中垂线(面)是零势线(面)

【专题】等量的同种、异种电荷周围电场、电势问题

【专题】等量的同种、异种电荷周围电场、电势问题 一.电场强度、电势比较 为零 最大 向外逐渐减小 1.(2008年江苏宿迁市 ) 如图所示的电场线,可能是下列哪种情况产生的 A .单个正点电荷 B .单个负点电荷 C .等量同种点电荷 D .等量异种点电荷 2.(2007年·山东理综·19·6分)如图所示,某区域电场线左右对称分布,M 、N 为对称线上两点。下列说法正确的是 A .M 点电势一定高于N 点电势 B .M 点场强一定大于N 点场强 C .正电荷在M 点的电势能大于在N 点的电势能 D .将电子从M 点移动到N 点,电场力做正功 3、一对等量正点电荷电场的电场线(实线)和等势线(虚线)如图所示,图中A 、B 两点电场强度分别是E A 、E B ,电势分别是ΦA 、ΦB ,负电荷q 在A 、B 时的电势能分别是E PA 、E PB ,下列判断正确的是 A .E A >E B ,ΦA >ΦB ,E PA E B ,ΦA <ΦB ,E PA ΦB ,E PA >E PB D . E A E PB 班级 姓名

4.如图1所示,真空中有两个电量相同的正电荷A 、B 相距L 放置,在AB 连线的中垂线上有a 、b 、c 三点,b 点在AB 连线的中点上,a 较c 离b 近一些,现若将A 、B 两电荷同时向两边扩大相同距离,设无穷远处电势为零,则有 A .两电荷间电势能将加大 B .b 点场强仍为零,a 、c 两点场强都变小 C .a 、b 、c 三点电势都升高 D .电场强度始终有 E a >E c >E b 5.如图所示,两个带等量的正电荷的小球A 、B (可视为点电荷),被固定在光滑的绝缘的水平面上,P 、N 是小球A 、B 的连线的水平中垂线上的两点,且PO =ON .现将一个电荷量很小的带负电的小球C (可视为质点),由P 点静止释放,在小球C 向N 点的运动的过程中,下列关于小球C 的速度图象中,可能正确的是 6.如图所示,两个带等量的负电荷的小球A 、B (可视为点电荷),被固定在光滑的绝缘水平面上,PN 是小球A 、B 的连线的水平中垂线上的两点,且PO=ON 。现将一个电荷量很小的带正电的小球C (可视为质点),由P 点释放,在小球C 向N 点运动的过程中,关于小球C 的说法可能正确的是 A .速度先增大,再减小 B .电势能先增大,再减小 C .加速度先增大,再减小,过O 点后,加速度先减小,再增大 D .加速度先减小,再增大 7.如图所示,A 、B 为两个固定的等量同号正电荷,在它们连线的中点处有一个可以自由运动的正电荷C ,现给电荷C 一个垂直于连线的初速度v 0,若不计C 所受的重力,则关于电荷C 以后的运动情况,下列说法正确的是 A .加速度始终增大 B .加速度先增大后减小 C .速度先增大后减小 D .速度始终增大 8.如图2所示,P 、Q 是电量相等的两个正电荷,它们的连线中点是O ,A 、B 是PQ 连线的中垂线上的两点,OA <OB ,用E A 、E B 、 φA 、φB 分别表示A 、B 两点的场强和电势,则 A .E A 一定大于E B ,φA 一定大于φB B .E A 不一定大于E B ,φA 一定大于φB C .E A 一定大于E B ,φA 不一定大于φB D . E A 不一定大于E B ,φA 不一定大于φB

等量同种和异种电荷的电场问题专题

等量同种和异种电荷电场专题 等量同种电荷电场的场强和电势分布特点 1. 场强分布具有对称性: 2. 电势变化具有对称性 1.(2011朝阳一模)如图所示,在真空中有两个固定的等量异种点电荷+Q 和-Q 。直线MN 是两点电荷连线的中垂线,O 是两点电荷连线与直线MN 的交点。a 、b 是两点电荷连线上关于O 的对称点,c 、d 是直线MN 上的两个点。下列说法中正确的是( ) A .a 点的场强大于b 点的场强;将一检验电荷沿MN 由c 移动 到d ,所受电场力先增大后减小 B .a 点的场强小于b 点的场强;将一检验电荷沿MN 由c 移动 到d ,所受电场力先减小后增大 C .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动 到d ,所受电场力先增大后减小 D .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动 到d ,所受电场力先减小后增大 2. (2011昌平二模)等量异种点电荷的连线和其中垂线如图所示, 现将一个带负电的检验电荷先从图中a 点沿直线移到b 点,再从b 点沿直线移到c 点.则( ) A .从a 点到b 点,电势逐渐增大 B .从a 点到b 点,检验电荷受电场力先增大后减小 C .从a 点到c 点,检验电荷所受电场力的方向始终不变 D .从a 点到c 点,检验电荷的电势能先不变后增大 3.(2011石景山一模)如图所示,在矩形ABCD 的AD 边和BC 边的中点M 和N 各放一个点电荷,它们分别带等量的异种电荷。E 、F 分别是AB 边和CD 边的中点,P 、Q 两点在MN 的连线上,且MP =QN 。在图中,电场强度相同、电势相等的两点是( ) A .E 和F B .P 和Q C .A 和C D .C 和D 等量异种电荷的等势面 等量同种电荷的等势面

几种典型电场线分布示意图及场强电势特点表

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平 + 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不 同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立 的 负点 电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量 同种 负点 电荷 电场线 大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。 电势 每点电势为负值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中 点;由连线的一端到另一端,先减小再增大。 电势 由连线的一端到另一端先升高再降低,中点电势最高不为零。

中 垂线上场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。电势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。 电势每点电势为正值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中 点;由连线的一端到另一端,先减小再增大。 电势由连线的一端到另一端先降低再升高,中点电势最低不为零。 中 垂 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂 线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。 电势 中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。 电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。 连 线 上 场强 以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由 正电荷指向负电荷;由连线的一端到另一端,先减小再增大。 电势由正电荷到负电荷逐渐降低,中点电势为零。 中 垂 线 上 场强 以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂 直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。 电势 中垂面是一个等势面,电势为零 例如图所示,三个同心圆是同一个点电荷周围的三个等势面,已知这三个圆的半径成等差数列。A、B、C分别是这三个等势面上的点,且这三点在同一条电场线上。A、C两点的电势依次为φA=10V和φC=2V,则B点的电势是 A.一定等于6V B.一定低于6V C.一定高于6V D.无法确定 解:由U=Ed,在d相同时,E越大,电压U也越大。因此U AB> U BC,选B 要牢记以下6种常见的电场的电场线和等势面: 注意电场线、等势面的特点和电场线与等势面间的关系: ①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。 ②电场线互不相交,等势面也互不相交。③电场线和等势面在相交处互相垂直。 ④电场线的方向是电势降低的方向,而且是降低最快的方向。 ⑤电场线密的地方等差等势面密;等差等势面密的地方电场线也密。 +

关于等量同种

关于等量同种、异种电荷形成电场的几个新问题 新课程改革后,高考对等量同种、异种电荷形成的电场考查越来越细,要求也越来越高。在过去的的高考中,高考对这两个电场只作一些直观的、定性的要求,根据电场线的疏密来判断场强的大小,根据沿电场线方向电势逐渐降低。但在近两年的高考中对这两个电场的描述 上升到图象和对称问题,图象是高考考查的重要内容,又是学生比较难理解的一部分。现在此对这两个电场的有关图象问题作如下总结。 1、等量异种电荷形成的电场 (1)根据等量异种电荷形成电场的电场线分布,关于两电荷连线的中点O 对称的 任意两点,场强大小相等,方向相同,越靠近两电荷的地方电场强度越大;在两电荷连线中,中点O 处场强最小,但不为零。关于某个电荷对称的两点,根据场强的叠加,在两电荷连线及延长线上,连线上的场强比延长线上的场强大,方向相反。由此,我们以两电荷连线的中点为坐标原点O ,连线为X 轴,连线的中垂线为纵轴,纵轴为场强E ,取X 轴方向为正方向,作出的E--x 图象如图1所示。 (2)在两点电荷连线的中垂线上,场强方向处 处相同,关于O 点对称的任意两点场强大小相 等,O 点场强最大,若以O 点为坐标原点,中 垂线为横轴y ,纵轴为电场强度E ,取上图中场 强向右为正方向,作出的E--y 图象如图2所示。 (3)等量异种电荷连线的中垂面上是一个等势面,若把这个面延伸到无限远处,该等势面电势为零。在两电荷连线上,关于O 点对称的两点电势不等,但电势的绝对值相等。 关于正电荷对称的两点,根据等势面图,延长线上的电势比连线上的电势高,关于负电荷对称的两点,延长线上的电势比连线上的电势低。再根据正电荷周围的电势大于零,负电荷周围的电势小于零。

相关文档
相关文档 最新文档