文档库 最新最全的文档下载
当前位置:文档库 › 倍他环糊精特性及使用

倍他环糊精特性及使用

倍他环糊精特性及使用
倍他环糊精特性及使用

中文名:倍他环糊精(β-环状糊精)

英文名:β-Cyclodextrin

简称:β-CD

标准:《中国药典》2010年版、QB1613-92

CAS编码:7585-39-9

一、性能与特点

倍他环糊精(β—环状糊精,简称β—CD)是由环状糊精葡萄糖基转移酶作用于淀粉乳,经α—1.4糖甙键连接7个葡萄糖单位而成的环状结构的糊精。

其分子式为:(C6H10O5)7,分子量为1135。它是一种白色结晶状的粉末,无臭、微甜,溶于水及丙三醇中,但难溶于甲醇、乙醇、丙酮和乙醚等有机溶剂;结晶无一熔点,但加热到200℃时开始分解。

倍他环糊精的水溶解性是随温度上升而溶解度增高,不同温度的水溶解度详见下表。

倍他环糊精的溶解度表

1、在医药行业中的应用

*增加药物的稳定性

*降低药物的刺激性、毒性、副作用,掩盖异味

*增加药物的溶解度

2、在食品工业中的应用

*香辣调料、食用香料、香精以及色素等物质的稳定剂、缓释剂

*防潮保湿、增强防腐、去苦去臭、增泡乳化、延长货架期

3、在日用化工方面的应用

*减小副作用,提高稳定性,延长留香

三、用法与用量

1、湿法包合法

例:饱和溶液法将环糊精产品加水加温溶解制成饱和溶液,然后加入客体分子化合物,充分搅拌混合制成包接络合物。

2、干法包合法

例:研磨法取环糊精和加入2~5倍的水,再加入客体分子化合物(必要时可添加适量的有机溶剂),在碾磨机中充分研磨混合,形成糊状物。其一可用水或适当的溶剂洗涤,干燥后,即得稳定的包接的络合物。其二也可将其糊状物冷冻干燥法,使成粉末,即得稳定的包接的络合物。

用量:

环糊精的使用量取决于客体化合物的分子的大小及极性,主分子对客分子的包接存在有一定的克分子比,一般约为1:1至2:1或更大。因包接过程受若干因素(温度、压力、浓度、速度、客分子结构等)的影响,在使用时根据包接和使用的效果而调节比例,需要做试验决定。

作为面粉的改良剂使用

1、增稠剂。在食品中有如下功效:(1)增强原料面粉中的蛋白质粘结力。(2)使淀粉粒子相互结合,分散渗透至蛋白质的网状结构中。(3)形成质地致密的面团,表面光滑而具有光泽。(4)形成稳定的面团胶体,防止可溶性淀粉渗出。(5)保水性强,使水分均匀保持于面团中,防止干燥。(6)提高面团的延展性。(7)使原料中的油脂成分稳定地分散至面团中。

2、作为电解质与蛋白质相互作用,改变蛋白质结构,增强食品的粘弹性,改善组织。

3、应用举例:面包、蛋糕、面条类、通心面、提高原材料利用率,改善口感和风味。用量0.05%。

四、倍他环糊精的质量标准

光电倍增管简介及使用特性

我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。 介绍 今天我们使用的光电器件中,光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。 当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。放大后的电子被阳极收集作为信号输出。 因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。光电倍增管还有快速响应、低本底、大面积阴极等特点。 下面将讲解光电倍增管结构的主要特点和基本使用特性。 结构 一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。 端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。

环糊精在医药中的应用

糊精定义: 淀粉在受到加热、酸或淀粉酶作用下发生分解和水解时,将大分子的淀粉首先转化成为小分子的中间物质,这时的中间小分子物质,人们就把它叫做糊精。 β-环糊精(简称β-CD)是一种新型的药物包合材料,具环状中空筒型、环外亲水、环疏水的特殊结构和性质。由于其特殊的空间结构和性质,能与许多物质、特别是脂溶性物质形成包合物,目前被广泛应用于医药业和食品业, 环糊精的成分与作用: 环糊精是环糊精转葡萄糖基酶(CGTase)作用于淀粉的产物,是由六个以上葡萄糖以α—1,4—糖苷键连结的环状寡聚糖,其中最常见、研究最多的是α-环糊精(α-cyclodextrin)、β-环糊精(β-cyclodextrin)、γ-环糊精(γ-cyclodextrin),分别由六个、七个和八个葡萄糖分子构成,是相对大和相对柔性的分子。经X射线衍射和核磁共振研究,证明环糊精分子成锥柱状或圆锥状花环,有许多可旋转的键和羟基,有一个空腔,表观外型类似于接导管的橡胶塞。空腔部排列着配糖氧桥原子,氧原子的非键电子对指向中心,使空腔部具有很高的电子密度,表现出部分路易斯碱的性质。分子构型为葡萄糖的C-1椅式构型,在它的圆筒部有-CH-葡萄糖苷结合的O原子,故呈疏水性。葡萄糖的2位和3位的-OH基在圆筒的一端开口处,6位的-OH基在圆筒的另一端开口处,所以圆筒的二端开口处都呈亲水性,这样,环糊精的筒形体的部上层、中层、下层由不同的基团组成. 环糊精的性质有点类似淀粉,可以贮存多年不变质。在强碱性溶液中也可稳定存在,在酸性溶液中则部分水解成葡萄糖和非环麦芽糖。由于环糊精没有还原性末端,总的来说,其反应活性是比较低的,只有少数的酶能是它明显水解。环糊精在室温下的的溶解

二极管种类及应用

二极管 一、二极管的种类 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。下面以用途为例,介绍不同种类二极管的特性。 1.整流二极管 整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。 因为整流二极管正向工作电流较大,工艺上多采用面接触结构。南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。 整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。 由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封 装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。常见整流二极管的外形如图2所示。 选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N 系列、2CZ系列、RLR系列等)即可。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、

光电倍增管综述

光电倍增管综述

光电倍增管综述 摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。本文将从结构,特性,应用及发展前景几方面做阐述。 一结构 光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。下图所示为端窗型光电倍增管的剖面结构图。 其主要工作过程如下:当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。 二特性 一光谱响应 光电倍增管由阴极收入射光子的能量并将其转换为光子,其转换效率(阴极灵敏度)随入射光的波长而变。这种光阴极灵敏度与入射光波长之间的关系叫做光谱响应特性。 一般情况下,光谱响应特性的长波段取决于光阴极材料,短波段则取决于入射窗材料。光电倍增管的阴极一般都采用具有低逸出功能的碱金属材料所形成的光电发射面。光电倍增管的窗材料通常由硼硅玻璃、透紫玻璃(UV玻璃)、合成石英玻璃和氟化镁(或镁氟化物)玻璃制成。硼硅玻璃窗材料可以透过近红外至300nm垢可见入射光,而其它3种玻璃材料则可用于对紫外区不可见光的探测。

二光照灵敏度 由于测量光电倍增管的光谱响应特性需要精密的测试系统和很长的时间,因此,要为用户提 供每一支光电倍增管的光谱响应特性曲线是不现实的,所以,一般是为用户提供阴极和阳极 的光照灵敏度。 阴极光照灵敏度,是指使用钨灯产生的2856K色温光测试的每单位通量入射光产生的阴极光 电子电流。阳极光照灵敏度是每单位阴极上的入射光能量产生的阳极输出电流(即经过二次 发射极倍增的输出电流)。 三增益 光阴极发射出来的光电子被电场加速后撞击到第一倍增极上将产生二次电子发射,以便产生 多于光电子数目的电子流,这些二次发射的电子流又被加速撞击到下一个倍增极,以产生又 一次的二次电子发射,连续地重复这一过程,直到最末倍增极的二次电子发射被阳极收集, 这样就达到了电流放大的目的。这时光电倍增管阴极产生的很小的光电子电流即被放大成较 大的阳极输出电流。一般的光电倍增管有9~12个倍增极。 三应用 光电倍增管应用用下表简单表示。 光电倍增管的应用领域 光谱学----- 利用光吸收原理 应用领域光电倍增管特性适用管紫外/可见/近红外分光光度计 光通过物质时使物质的电子状态发生变化,而失去部分能量,叫做吸收。利用吸收进行定量分析。为确定样品物质的量,采用连续的光谱对物质进行扫描,并利用光电倍增管检测光通过被测物质前后的强度,即可得到被测物质程度,计算出物质的量。1.宽光谱响应 2.高稳定性 3.低暗电流 4.高量子效率 5.低滞后效应 6.较好偏光特性 R212 R6356,R6 R928,R955,R14 R1463 R374,R3 CR114,CR131 原子吸收分光光度计 广泛地应用于微量金属元素的分析。对应于分析的各种元素,需要专用 的元素灯,照射燃烧并雾化分离成原子状态的被测物质上,用光电倍增 管检测光被吸收的强度,并与预先得到的标准样品比较。 R928,R955 CR1 生物技术 应用领域光电倍增管特性适用管 细胞分类 细胞分类仪是利用荧光物质对细胞标定后,用激光照射,细胞的荧光、散乱光用光电倍增管进行观察,对特定的细胞进行选别的装置。1.高量子效率 2.高稳定性 3.低暗电流 4.高电流增益 5.好的偏振特性 R6353,R6357,R R928,R1477,R3 R2368 CR131 荧光计 细胞分类的最终目的是分离细胞,为此,有一种用于对细胞、化学物质进行解析的装置,它称为荧光计。它对细胞、染色体发出的荧光、散乱

环糊精的作用主要有哪些

环糊精在许多的大型行业中被适量使用。其中在食品、香料、医药、化合物拆分等方面有着很关键的作用,同时也可以模拟酶研究。由于在各个行业中起的作用不同,需要结合实际的应用行业来分析。 环糊精耐热,熔点高,加热到约200℃开始分解,有较好的热稳定性;无吸湿性,但容易形成各种稳定的水合物,所以对于一些食品或者药品起到了的固定和乳化的作用。因此我们的各个行业中也是离不开环糊精,同时也在不断研究环糊精的应用前景。 它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。 1、在食品饮料中,还可以起到乳化剂的作用,使香料油形成包结复合物,直接引入水溶液中使用,使食品内不相容的成份均匀混合,对着色剂可起到保护作用,免受日光、紫外光、气体、氧化、热冲击等彩响,大大延长褪色时间。此外对改进在食品系统中的加工工艺复合成分的传递性能以及改变固体食品的

质地及密度、改善食品口感等方面均有显著功效。 2、在医药行业:环糊精能有效地增加一些水溶性不良的药物在水中的溶解度和溶解速度,提高药物的稳定性和生物利用度;减少药物的不良气味或苦味;降低药物的刺激和毒副作用;以及使药物缓释和改善剂型。 3、在分析化学上: 环糊精是手性化合物,它对有机分子有进行识别和选择的能力,已成功地应用于各种色谱与电泳方法中,以分离各种异构体和对映体;在环保上:环糊精在环保上的应用是基于其能与污染物形成稳定的包络物,从而减少环境污染。 水溶性环糊精衍生物具有更强的增溶能力,对于不溶性香料、亲脂性农药有非常好的增溶效果;不溶性环糊精衍生物可应用于环境监测和废水处理等环保方面,如将农药包结于不溶性环糊精聚合物中,在施用后就不会随雨水流失;环糊精交联聚合物能吸附水样中的微污染物。农业上用改性环糊精浸种可能会改变作物生长特性和产量。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

环糊精包合原理

β环糊精及其衍生物包合原理与制药技术 资料来源:超星电子图书馆藏书\<药剂学>第四版\毕殿洲主编 第六章制剂新技术(P108-112)\陆彬编著 制剂新技术涉及范围广,内容多。本章仅对目前在制剂中应用较成熟,且能改变药物的物理性质或释放性能的新技术进行讨论,内容有包合技术、固体分散技术以及微型包囊技术。 包合技术在药剂学中的应用很广泛。包合技术系指一种分子被包嵌于另一种分子的空穴结构内,形成包合物(inClusion Compound)的技术。这种包合物是由主分子(host mo1eCule)和客分子(guest moleCule)两种组分加合组成,主分子具有较大的空穴结构,足以将客分子容纳在内,形成分子囊(mo1eCule Capsule)。药物作为客分子经包合后,溶解度增大,稳定性提高,液体药物可粉末化,可防止挥发性成分挥发,掩盖药物的不良气味或味道,调节释药速率,提高药物的生物利用度,降低药物的刺激性与毒副作用等。如难溶性药物前列腺素E 经包合后溶解度大大提高,并可制成粉针剂。盐酸雷尼替丁具有不良臭味,可制成包合物2 加以改善[1],可提高病人用药的顺从性。陈皮挥发油制成包合物后,可粉末化且可防止挥发[2]。诺氟沙星难溶于水,口服生物利用度低。制成诺氮沙星-β环糊精包合物胶囊[3],该胶囊起效快,相对生物利用度提高到141.6%。用研磨法制得维A酸-β环糊精包合物后[4],包合物稳定性明显提高,副作用的发生率明显降低。硝酸异山梨醇酯-二甲基β环糊精包合物片剂血药水平可维持相当长时间,说明包合物具有明显的缓释性。目前利用包合技术生产且已上市的产品有碘口含片、吡罗昔康片、螺内酯片以及可遮盖舌部麻木副作用的磷酸苯丙哌林片等。 包合物能否形成及其是否稳定,主要取决于主分子和客分子的立体结构和二者的极性:客分子必须和主分子的空穴形状和大小相适应,包合物的稳定性主要取决于两组分间的范德华力。包合过程是物理过程而不是化学反应。包合物中主分子和客分子的比例一般为非化学计量,这是由于客分子的最大填入量虽由客分子的大小和主分子的空穴数决定,但这些空穴并不一定完全被客分子占据,主、客分子数之比可在较大的范围内变动。客分子比例极大时的组成式可用(nH)(mG)表示*其中H和G分别表示主分子和客分子组分,n为每一个单位中H的分子数,m为每一个单位空穴所能容纳G分子的最大数目。 包合物根据主分子的构成可分为多分子包合物、单分子包合物和大分子包合物;根据主分子形成空穴的几何形状又分为管形包合物、笼形包合物和层状包合物。 溶剂化物与包合物虽有许多相似处,但溶剂化物受化学计量约束,也不存在包合物的空穴结构。 包合物中处于包合外层的主分子物质称为包合材料,通常可用环糊精、胆酸、淀粉、纤维素、蛋白质、核酸等作包合材料。制剂中目前常用的,也是本节介绍的是环糊精及其衍生物。 (一)环糊精 环彻精(CyClodextrin,CYD)系指淀粉用嗜碱性芽胞杆菌经培养得到的环糊精葡萄糖转位酶(CyClodextrin g1uCanotransferase)作用后形成的产物,是由6-12个D-葡萄糖分子以l,4-糖苷键连接的环状低聚糖化合物,为水溶性的非还原性白色结晶状粉末,结构为中空圆筒形,其俯视图如图6-1。对酸不太稳定,易发生酸解而破坏圆筒形结构。常见有α、β、γ三种。分别由6、7、8个葡萄糖分子构成。 经x射线衍射和核磁共振证实,α-CYD的立体结构如图6-2。由于2、3位上的-OH基排列在空穴的开口处或空穴的外部,而6位上的-OH基排列在空穴的另一端开口处,开口处呈亲水性。6位上的-CH2基以及葡萄糖苷结合的氧原子,则排列在空穴的内部呈疏水性。这表明CYD的上、中、下三层分别由不同的基团组成。

二极管的特性与应用及英文代码含义

二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2. 反向特性。

实验七 光电倍增管的特性与特性参数测试

实验七光电倍增管的特性与特性参数测试 1. 实验目的: 光电倍增管是最灵敏的光电器件。它的暗电流、噪声、灵敏度大范围可调和时间响应等特性都具有独特的特点,因此,光电倍增管是非常优秀的光电器件。掌握光电倍增管的主要特性参数,及其它的供电电路对于正确应用光电倍增管解决微弱辐射的测量技术是非常重要的。 2. 实验仪器: 1)GDS-Ⅱ型光电综合实验平台主机; 1)GDBS-Ⅰ型光电倍增管实验装置; 3. 实验内容: 1、光电倍增管阳极暗电流I D的测量; 2、光电倍增管阳极光照灵敏度S a的测量;光电倍增管的灵敏度S a与电源电压U bb 的关系; 3、测量光电倍增管的增益G; 4. 实验原理 1)光电倍增管工作原理 光电倍增管是真空光电器件,它主要由光入射窗、光电阴极面、电子聚焦系统、倍增电极和阳极等5部分构成。其工作原理如“光电技术”教材第4章所讲述,分下面5部分: (1)光子透过入射窗口玻璃入射到玻璃内层光电阴极上,窗口玻璃的透过 率满足光电倍增管的光谱响应特性; (2)进入到光电阴极上的光子使光电阴极材料产生外光电效应,激发出电 子,并飞离表面到真空中,称其为光电子; (3)光电子通过电场加速,并在电子聚焦系统的作用下射入到第一倍增极 D1上,倍增极D1将发射出比入射光电子数目增多δ倍,这些二次电子又在电场 作用下射入到下一增极; (4)入射电子经N级倍增后,电子数就被放大δN倍; (5)经过电子倍增后的二次电子由阳极收集起来,形成阳极电流,在负载上产生压降,输出电压信号U o。 2)光电倍增管的基本特性参数 光电倍增管的特性参数包括光电灵敏度、电流增益、光电特性、阳极特性、暗电流特性与时间响应等特性。 ①光电灵敏度 光电灵敏度是光电倍增管探测光信号能力的一个重要标致,光电灵敏度通常分为阴极灵

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

光电倍增管使用特性

页眉内容 光电倍增管简介及使用特性 我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。 介绍 今天我们使用的光电器件中,光电倍增管(PMT )是一种具有极高灵敏度和超快时间响应的光探测器件。典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。 当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。放大后的电子被阳极收集作为信号输出。 因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。光电倍增管还有快速响应、低本底、大面积阴极等特点。 下面将讲解光电倍增管结构的主要特点和基本使用特性。

结构 一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。 端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。 电子倍增系统 光电倍增管的优异的灵敏度(高电流放大和高信噪比)得益于基于多个排列的二次电子发射系统的使用,它使电子低噪声的条件下得

环糊精在医药中的应用

环糊精在医药中的应用 Modified by JACK on the afternoon of December 26, 2020

糊精定义: 淀粉在受到加热、酸或淀粉酶作用下发生分解和水解时,将大分子的淀粉首先转化成为小分子的中间物质,这时的中间小分子物质,人们就把它叫做糊精。 β-环糊精(简称β-CD)是一种新型的药物包合材料,具环状中空筒型、环外亲水、环内疏水的特殊结构和性质。由于其特殊的空间结构和性质,能与许多物质、特别是脂溶性物质形成包合物,目前被广泛应用于业和食品业, 环糊精的成分与作用: 环糊精是环糊精转葡萄糖基酶(CGTase)作用于淀粉的产物,是由六个以上葡萄糖以α—1,4—糖苷键连结的环状寡聚糖,其中最常见、研究最多的是α-环糊精(α-cyclodextrin)、β-环糊精(β-cyclodextrin)、γ-环糊精(γ-cyclodextrin),分别由六个、七个和八个葡萄糖分子构成,是相对大和相对柔性的分子。经X射线衍射和核磁共振研究,证明环糊精分子成锥柱状或圆锥状花环,有许多可旋转的键和羟基,内有一个空腔,表观外型类似于接导管的橡胶塞。空腔内部排列着配糖氧桥原子,氧原子的非键电子对指向中心,使空腔内部具有很高的电子密度,表现出部分路易斯碱的性质。分子构型为葡萄糖的C-1椅式构型,在它的圆筒内部有-CH-葡萄糖苷结合的O原子,故呈疏水性。葡萄糖的2位和3位的-OH基在圆筒的一端开口处,6位的-OH基在圆筒的另一端开口处,所以圆筒的二端开口处都呈亲水性,这样,环糊精的筒形体的内部上层、中层、下层由不同的基团组成. 环糊精的性质有点类似淀粉,可以贮存多年不变质。在强碱性溶液中也可稳定存在,在酸性溶液中则部分水解成葡萄糖和非环麦芽糖。由于环糊精没有还原性末端,总的来说,其反应活性是比较低的,只有少数的酶能是它明显水解。环糊精在室温下的的溶解度从-25.6克不等,水溶液具有旋光性。环糊精的稳定性一般,200摄氏度左右时分解。 医药行业中糊精可作为药用糖的增稠剂和稳定剂也可作为片剂或冲剂的赋形剂和填充剂。 β—环状糊精及其应用 一、性能与特点: 倍他环糊精(β—环状糊精)是葡萄糖基转移酶作用于淀粉的产物,是白色结晶性粉末,是由7个葡萄糖单位经α糖键连接成环形结构的糊精。分子中间形成一个穴洞,穴洞具有独特的包接功能,能与许多种物质形

二极管特性及应用实验

姓名班级________学号____ 实验日期__节次教师签字成绩 二极管的特性研究及其应用一.实验目的 1.通过二极管的伏安特性的绘制,加强对二极管单向导通特性的理解; 2.了解二极管在电路中的一些应用; 3,学习自主设计并分析实验 二.实验内容: 1.二极管伏安特性曲线绘制; 2.交流条件下二极管电压波形仿真; 3.二极管应用电路 三.实验仪器 稳压电源RIGOL DS5102CA FLUKE190型测试仪;1N4001二极管若干; 函数信号发生器 TFG2020G ;电阻若干; 四.实验步骤 1.二极管伏安特性曲线绘制; 二极管测试电路

(1)创建电路二极管测试电路; (2)调整V1电源的电压值,记录二极管的电流与电压并填入表1; (3)调整V2电源的电压值,记录二极管的电流与电压并填入表2; (4)根据实验结果,绘制二极管的伏安特性。 表一 V1 200mv 300mv 400mv 500mv 600mv 700mv 800mv 1v 2v 3v ID VD 表二 V1 I D V D 绘制U—I图: 2.交流条件下二极管电压波形仿真;

D1 1N4001GP R1 100Ω V16 Vpk 100 Hz 0° XSC1 A B C D G T 2 1 仿真电路图 仿真结果

3.二极管应用电路 (1)桥式整流电路 D1 1N4001 D2 1N4001 D3 1N4001 D4 1N4001 V115 Vpk 60 Hz 0° R1100Ω 1 3 45 用示波器测量R1两端波形,并记录

桥式整流电路仿真 D1 1N4001 D21N4001 D3 1N4001 D41N4001 V115 Vpk 60 Hz 0° R12kΩ 4 XSC1 A B Ext Trig + + _ _ + _ 3 2 仿真结果

光电倍增管使用特性

- -- - . -考试文档- 光电倍增管简介及使用特性 我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我 在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。 介绍 今天我们使用的光电器件中,光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。 当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。放大后的电子被阳极收集作为信号输出。 因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。光电倍增管还有快速响应、低本底、大面积阴极等特点。

下面将讲解光电倍增管结构的主要特点和基本使用特性。 结构 一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。侧窗型的光电倍增管,从玻璃壳的侧面接收入射 光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度 测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在 较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端 窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。 端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。 - . -考试文档-

环糊精包合技术及其在中药药剂中的应用64

环糊精包合技术及其在中药药剂中的应用【摘要】目的:环糊精在我国制药行业中应用广泛,属于新型辅助材料的一种。在中药 药剂的制作中,环糊精包合技术能够改善药物口感、减少药物的刺激,提高药物的稳定性, 是提高药物使用效果、减少药物流失的主要制备方式。尤其中药制剂中,许多药物存在臭味、酸味等异位,通过环糊精包合技术能够有效掩盖气味,减少药物挥发对药效的影响。本文对 环糊精包合技术的技术原理、制备方法以及应用价值进行探讨,总结如下。 【关键词】环糊精包合技术;中药药剂;应用价值 环糊精是淀粉酶分解环合后产生的化合物,能够包合在其他材料和物质外作为“膜”,保 护物质成分。环糊精与19世纪发现,但一直应用在工业生产中,直到20世纪中旬,科学家 对环糊精包合的合理性、安全性进行研究,并将环糊精应用在可食用工业、食品业、医药业 当中,成为药物被膜应用在制药当中。环糊精的药用价值主要体现在对药物储存、制备成本 的降低,尤其对中药药剂的制备,传统中药制备方式的时间长、工艺复杂,但药物储存时间 相对较短,药效也无法得到有效的保障,尤其在挥发性成分保留、热敏成分的保留等领域中,传统药物制备方式无法满足制药需求。环糊精包合技术在中药制备中的应用能够有效解决上 述问题,本文对环糊精包合技术在中药药剂中的应用进行分析。 一、环糊精性质研究 环糊精属于淀粉酶分解、环合产生的化合物,环糊精的同系物较多,主要包括α-环糊精、β-环糊精以及γ-环糊精,上述三种环糊精都能够通过X射线、核磁共振检查观察到其分子结构,分子结构呈现出环形特点,上窄下宽的结构与环形结构共同组成中空的圆筒形,这三种 环糊精的差别在于中空直径的大小。在临床制药中,以β-环糊精的中空直径大小最适宜药物 的制备和存储,因此在制药工业中多使用此类环糊精,环糊精应用于制药的另一项优势在于,在常规条件下环糊精较为稳定,能够在常温环境中长时间保存药物不受氧化和挥发的影响。 但环糊精在酸性环境中的稳定性明显下降,能够保证在人体胃液中得到迅速的分解,使药物 迅速分散起效。此外,通过临床实验表明,环糊精在小鼠急性毒性实验中,微核发生率仅为0.8-1.4‰[1]。实验研究表明环糊精无生理毒性,因此在药物制备中的应用十分广泛。 二、环糊精包合技术制备方法 2.1饱和水溶液法 饱和水溶液法的原理,是在环糊精制备成饱和水溶液后,加入客分子药物制备呈包合物,再利用冷藏、浓缩、沉淀等方式析出包合物,最终达到制备药物的目的。中药临床上巴豆油 就是通过这种方式制备的[2]。 2.2 超声波法 超声波法首先也需要将客分子药物放置在环糊精饱和水溶液当中,并利用超声清洗仪将 溶液和客分子药物粉碎,粉碎过程中利用超声的震动搅拌二者至均匀,并将沉淀的包合物提 纯制成药物。 2.3冷冻干燥法 冷冻干燥法,顾名思义利用冷冻下环糊精包合物产生结晶的特性制备药物,在干燥、冷 冻的同时,观察环糊精包合物出现分解、变色,最终形成干粉,这一技术主要应用在中药粉 剂的制作中。 三、环糊精包合技术的应用价值

关于环糊精的研究状况剖析

关于环糊精的研究状况 摘要:本文综述了环糊精的发现过程,环糊精的理化性质,提出了环糊精的改性,阐述了环糊精在现阶段医药、食品、环境保护、电化学、以及化妆品等方面的广泛应用,特别是食品的应用,展望了其广泛的利用空间,提出了环糊精可能的应用领域。 Abstract:This paper reviews the discovery process cyclodextrin, physical and chemical properties ,put forward the modified cyclodextrin and use of cyclodextrin in medicine food,environmental protection ,electrochemical at present stage and cosmetics and so on are wide.Especially the application of food.The paper do not omly prospecte its extensive ues of space,but also show us the possibility application fields about cyclodextrins . 关键词:环糊精应用进展 Key words: cyclodextrin application progress 一环糊精的发现与发展 自1891年Villiers发现环糊精至今已逾百年,它已经发展成为超分子化学最重要的主题,其间包含着许多科学家和科技工作者的智慧和劳动。Villiers最早从芽孢杆菌属(Bacillus)淀粉杆菌(Bacillus amylobacter)的1kg淀粉消化液中分离出3g可以从水中重结晶的物质,确定其组成为(C6H10O5)2*3H2O,称其为—木粉。1903年,Schardingei用分离的菌株消化淀粉得到两种晶体化合物,确认他们与Villiers分离出的—木粉是同一物质,并用碘—碘化钾反应区别了a-环糊精(a-cyclodextrin)和b-环糊精(b-cyclodextrin),这种用碘液反应判断a-,b-环糊精的方法至今沿用。Schardinger成功的分离出春芽孢杆菌,取名软化芽孢杆菌(Bacillus macerans),至今仍然是生产和研究中经常使用的菌种。为了纪念他对建立环糊精化学基础的贡献,环糊精也曾经叫沙丁格糊精。继Schardinger之后在环糊精化学研究中起领导作用的是Pringsheim,他发现这种结晶性糊精和它的乙酰化产物能结合各种有机物生成复合体(complexes),由于使用不合适的冰点降低法确定分子量,以及许多推测缺乏事实依据,这一时期的研究工作进展很慢[1]。 从发现到20世纪初Schardinger发表他的第一篇关于α-CD和β-CD后,由Norman Haworth领导的英国环糊精研究小组详细的解释了组成环糊精的个小物质的大小和形成过程。直到1932年,环糊精和各种有机物形成复合物的性质已经被发现[2]。从20世纪30年代中期到60年代末是环糊精化学发展的第二阶段。Freudenberg最先得到纯环糊精,并和他的合作者根据乙酰溴和多甲基化反应产物的水解结果汇同文献报道的数据,提出Schardinger糊精是葡萄糖单元以麦芽糖方式结合的环状分子,分子内只含a-1,4糖苷键。

光电倍增管简介

光电倍增管简介 1. 光电倍增管的结构和工作原理 由光阴极、次阴极(倍增电极)以及阳极三部分组成。光阴极是由半导体光电材料锑铯做成;次阴极是在镍或铜-铍的衬底上涂上锑铯材料而形成的,次阴极多的可达30级;阳极是最后用来收集电子 的,收集到的电子数是阴极发射电子数的105~106倍。即光电倍增管的放大倍数可达几万倍到几百万倍。光电倍增管的灵敏度就比普通光电管高几万倍到几百万倍。因此在很微弱的光照时,它就能产生很大的光电流。 2. 光电倍增管的主要参数 (1)倍增系数M 倍增系数M等于n个倍增电极的二次电子发射系数δ的乘积。如果n个倍增电极的δ都相同,则M=1因此,阳极电流I 为 i —光电阴极的光电流 光电倍增管的电流放大倍数β为 M与所加电压有关,M在105~108之间,稳定性为1%左右,加速电压稳定性要在0.1%以内。如果有波动,倍增系数也要波动,因此M具有一定的统计涨落。一般阳极和阴极之间的电压为1000~2500V,两个相邻的倍增电极的电位差为50~100V。对所加电压越稳越好,这样可以减小统计涨落,从而减小测量误差。

光电倍增管的特性曲线 (2)光电阴极灵敏度和光电倍增管总灵敏度 一个光子在阴极上能够打出的平均电子数叫做光电倍增管的阴极灵敏度。而一个光子在阳极上产生的平均电子数叫做光电倍增管的总灵敏度。 光电倍增管的最大灵敏度可达10A/lm,极间电压越高,灵敏度越高;但极间电压也不能太高,太高反而会使阳极电流不稳。 另外,由于光电倍增管的灵敏度很高,所以不能受强光照射,否则将会损坏。 (3)暗电流和本底脉冲 一般在使用光电倍增管时,必须把管子放在暗室里避光使用,使其只对入射光起作用;但是由于环境温度、热辐射和其它因素的影响,即使没有光信号输入,加上电压后阳极仍有电流,这种电流称为暗电流,这是热发射所致或场致发射造成的,这种暗电流通常可以用补偿电路消除。 如果光电倍增管与闪烁体放在一处,在完全蔽光情况下,出现的电流称为本底电流,其值大于暗电流。增加的部分是宇宙射线对闪烁体的照射而使其激发,被激发的闪烁体照射在光电倍增管上而造成的,本底电流具有脉冲形式。 (4)光电倍增管的光谱特性 光谱特性反应了光电倍增管的阳极输出电流与照射在光电阴极上的光通量之间的函数关系。对于较好的管子,在很宽的光通量范围之内,这个关系是线性的,即入射光通量小于10-4lm时,有较好的线性关系。光通量大,开始出现非线性,如图所示。

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

相关文档
相关文档 最新文档