文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方法习题及解答

数学物理方法习题及解答

数学物理方法习题及解答
数学物理方法习题及解答

2. 试解方程:()0,04

4

>=+a a z

44424400000

,0,1,2,3

,,,,i k i

i

z a a e z ae

k ae z i i πππ

π

ωωωωω+=-=====--若令则

1.计算:

(1)

i

i

i i 524321-+

-+ (2)

y =

(3)

求复数2

12??

+ ? ???

的实部u 和虚部v 、模r 与幅角θ

(1) 原式=

()()()12342531081052

916

2525255

i i i i i i +?+-?+-++=+=-+--

(2) 3

32(

)10205

2(0,1,2,3,4)k i e k ππ+==原式

(3)

2

223

221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223

i i i e r π

πππππ

θπ??==+=+==- ?????=-===+=±±L

原式所以:,

3.试证下列函数在z 平面上解析,并分别求其导数.

(1)()()y i y y ie y y y x e x x sin cos sin cos ++-

3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u

e x y y y e y x u

e x y y y y y v

e y y x y e y y x v

e y y y x y y

u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'=

?证明:所以:。

由于在平面上可微

所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v

i e x y y y e y i e y y x y e y x x

?+=-++++?

由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=

解:

()()()()()()()222222222212,2,21

2,2,,,2112,

2211

1,0,1,1,,

221112.

222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ???

=-+==+==?

?=-++-++ ??

?而即所以由知带入上式,则则解析函数

2. ()21,3,,.i

i i i i i e ++试求

()(

)

(

(

(()()()2(2)Ln 144

(2)4

ln32Ln32ln32ln1222Ln 21cos sin ,0,1,2,

3cos(ln 3)sin(ln 3),0,1,2,i i k k i i

i i k i i k i i k i k i k i i i i i e

e

e

e

i k e e e e i k i e e

e

ππ

πππ

πππππππ??

??+ ?

?-+++???

?-++-+-??

??++-+ ?

????

?+====+=±±====+=±±===L L 解:()222,0,1,2,

cos1sin1.k i i k e e e e i π?? ???

+=±±=?=+L

3. 计算 2,:122

c dz

c z z z =++?

(

)2

22

2220110,1,1,11,220,0

22

z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算

221(1),21

c z z dz c z z -+=-?: ()

22

21

(2),21c

z z dz c z z -+=-?

(1)21

2(21)=4 z i z z i ππ==-+解:原式 (2)21

1

2(21)=2(41)

6z z i z z i z i πππ=='

=-+-=解:原式

. 计算2sin()

114,(1):1,(2):1,(3): 2.122

c z dz c z c z c z z π

+=-==-?其中

1

sin (1)sin 442.11c z z z z i i z z πππ=-??-??===??+-??

???解:(1)原式

1

sin (1)sin 442.112c z z z z i i z z πππ=??+??===??-+??

???(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆

1

222sin

sin

44.1122

c c z z

dz dz i i i z z π

π

=+=+=--?

?原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。

2

z z + ()()()1100

1211211121121,122333313

11,313,3

n

n

n n n n z z z z z z z z ∞∞

++==--??=-=-??=-=+- ?-++-??---<-<-<-∑∑解:其中,即此为级数的收敛范围。

1. 把()()

z z z f -=

11

展开成在下列区域收敛的罗朗(或泰勒)级数

(1) ,11<+z (2) ,211<++z (1);,11<+z

()()()()().112

1212112111

2

1

111111110100∑∑∑∞

=+∞=∞

=+???? ??-=??? ??+++-=+-

?

++--=-+=-=

n n

n n n

n n

z z z z z z z z z z f 解:

(2);,211<+

()()()().2111212111112111

2

11111

1

1

111110

101

00∑∑∑∑∞

=+∞=+∞=∞=+++=??? ??++??? ??++=+-?+

+-?

+=-+=-=

n n n n n n n n n z z z z z z z z z z z z z f 解:

(7).21>+z

()()()().1211121111111

2111

1

1

1111

1

111110

1

0100∑∑∑∑∞

=+∞=+∞=∞=+-+=??? ??+?+-+??? ??++=+-?+-+

+-?

+=-+=-=

n n n n n n n

n n

z z z z z z z z z z z z z z z f 解:

2、计算积分 11

sin z dz z z =??

解:

()z

z z f sin 1

=

的奇点为),2,1,0(Λ±±==n n z π 在01==z z 内只有一个奇点

200

2000200010

11sin sin 0()1Re ()lim

lim ()sin sin sin cos cos cos sin lim lim sin 2sin cos lim 0

2cos 1

2Re ()0sin lim lim z z z z z z z z z z z

z z z z z f z d d z s f z z dz z z dz z z z z z z z z z z z

z

z dz i s f z z z π→→→→=→→→==?

==∴=??=?=????--+=====?Q ? 为的二阶极点 =

3.求解定解问题

2(0,0)(0,)0,(,)0(0)

(,0)sin ,(,0)sin

(0)

tt xx t u a u x l t u t u l t t x x

u x u x x l l l

ππ-<<>==≥==≤≤=0

解:

1

2222

1222211(,)()sin

()()sin 0()()0()cos sin (,)cos sin sin (,0)sin sin 1,0n n n n n n n n n n

n n n n n n x u x t T t l

n a n x T t T t l l n a n at n at

T t T t T t A B l l l n at n at n x u x t A B l l l n x x

u x A A A l l πππππππππππ∞

=∞

=∞

==??''+= ???''+==+?

?=+???

?=?=?==∑∑∑ 1

111

(1)

(,0)sin sin 1,0(1)

(,)(cos sin )sin

n t n n n n n a n x x a l

u x B B B B n l l l l a at l at x

u x t l a l l

πππππππππ∞

=∞

=≠=?=?=?==≠∴=+∑∑

1.试用分离变量法求解定解问题

(0,0)(0,),(,)0(0)

(,0)0,(,0)0(0)

tt xx t u u x l t u t E u l t t u x u x x l -<<>==≥==≤≤=0

其中E 为已知常数。

(,)(,)(,)(,)(1)(0,)(0,)(0,)(0,)0(1,)(1,)(1,)0(1,)0(,0)(,0)(,0)0(,0)(1)(,0)(,0)(,0tt tt tt tt xx xx xx xx

t t t v x t u x t w x t w x t x E v u w u v u w u v t u t w t E u t v t u t w t u t v x u x w x u x x E v x u x w x =+=-=+==+==+=?==+=?==+=?=--=+ 

 , (0)()0(1)()0

)0(,0)0(0,)0,(1,)0

(,0)(1)(,0)0

(,)()()(,)()()(,)()()

0102t tt xx

t xx tt X T t X T t u x u u u t u t u x x E u x u x t X x T t u x t X x T t u x t X x T t T X T X X T T X

X X T T X λ

λλ===?=====-=''''===''''

''''='''' ==-+= ()+= ()

12121212(0)0,(1)0310()(0)00 X(1)000()02)0()X X x C c e X C C C C e C C X x X x Ax B

λλ===+=?=?+====+ ()

)< +=

= =

0B A B =+= 

0)(X 0B A =?x ==

222220()(0)0(1)0()0,0sin 0

(1,2,3,)()sin 0()cos sin (,)(cos sin )sin 1,2,3,n n n n n n n X x A B X A X B X x B n n n X x B x

T a n T T t C n at D n at

u x t C n at D n at n x n λπλππππππππ>=+====≠≠====''+==+=+=L L = ()

1

1

(,)(cos sin )sin (,0)sin 00

n n n t n n n u x t C n at D n at n x

u x n aD n x D πππππ∞

=∞

==+==?=∑∑

1

(,0)sin (1)n n u x C n x x E π∞

===-∑

1

1

01

100102222(1)sin (1)cos 22(1)cos cos 222sin n E C x E n xdx x d n x n E E x n n xdx n n E E E n x n n n πππ

ππππππππ

=-=-

-=--+=-

+=-???

11

2(,)()cos sin 2(,)()cos sin (1)n n E

u x t n at n x n E

v x t n at n x x E n πππ

πππ

=∞

==-

=-

+-∑∑ 

2.求解定解问题

20(0,0)(0,)0,(,)0(0)

(,0)(0)

t xx u a u x l t u t u l t t u x

u x x l l

=<<>==≥=≤≤

解:

22212(,)()()(,)()()(,)()()

0(1)0(2)

(0,)(0)()0

(0)0,()0(3)(,)()()01)0,()(0xx t u x t X x T t u x t X x T t u x t X x T t T X T X a X T a T X

X X T a T u t X T t X X l u l t X l T t X x C C e X λλλλ'''==='''

'''===-''='+===?==?

==?<=+

12121212112121212222

)00()000()02)0()0

()0

03)0()sin (0)0,()0()0,0,sin 0(1,2,3,)C C X l C C e C C X x X x C x C C C C X x C C X x C C X C X l C X x C n n n λλππλ=?+==?+=≡==+=?

?=≡?+=?

>=+====≠≠====L

==

, 222

2

222

2

2

22

2

2

2

1

1()sin ()()0()(,)sin

(,0)sin n a t

l n n n n n a t

l n n n n l

n x

X x C l n a

T t T t T t A e l

n x

u x t A e

l u n x u x A x

l l ππππππ-∞

-=∞

=='+

=====∑∑

222

2

0020000001100002210122sin cos 22cos cos 222(1)sin (1)2(,)(1)sin

l l n l l n l n n a t

n l n u u n x l n x

A x dx xd l l l l n l u u n x n x x dx n l l n l l

u u u n x n n l n u

n x u x t e

n l

ππππππππππππ

ππ

++∞

-+==

=-?=-+=-+=-=-???∑

3.有一两端无界的枢轴,其初始温度为

1(1)(,0)0(1)x u x x ?

试求在枢轴上的温度分布为

22

2

sin (,)(cos )a t u x t x e d μμ

μμπ

μ

-=

?

解:定解问题为

21(1)(,0)()0(1)t xx u a u x u x x x ?=?

≥??

设 (,)()i x u x t T t e d μμμ∞

-∞

=

?

22

2

2

222211()()()()0()(,)C()1(1)(,0)()0(1)11()(,0)22112()i x

a t a t i x i i i i T t a T t e T t a T t T t Ce u x t e e d x u x x x C u x e d e d e e i μμμμμμμμμμξ

μξμμ

μμμμ

?μξξ

πππμ∞

-∞-∞

--∞∞---∞--'??+??

'+==∴=?

得 

22220

1sin 1sin 2sin (,)(cos )a t i x a t u x t e e d x e d μμμμπμ

μμ

μμμ

π

μπ

μ

∞∞---∞

?=??∴==??

4. 复数231i -的三角形式为3,3

sin 3cos ππ

πi e i --

5.复数5

cos 5sin π

πi +的三角形式为10

3,103sin 103cos π

ππi e i +,其指数形式

6. 复

的实部u =,虚部v =,模

r =,幅角

θ=

.

1,2u v =

=,

1,2(0,1,2,)3

r k k π

θπ==

+=±±L

7. 复数22i +-的实部=u ,虚部=v ,模=r ,幅角

=θ . 2,2=-=v u , ),2,1,0(24

3,2Λ±±=+=

=k k r ππ

θ

8. 014

=--i z 的解为

3,2,1,0(,24

284

==+k e

z k i

k π

π

9、

c x ie x e z f y y ++=cos sin )(

10.试证下列函数在z 平面上解析,并分别求其导数.

y ie y e z f x

x cos sin )(-=

证明: y e y x u x sin ),(=, y e y x v x

cos ),(-=

y e y

u

y e x

u

x x cos ,sin =??=??, y e y

v

y e x

v

x x sin ,cos =??-=?? 平面上解析在平面上可微在平面上连续在z z f z y x v y x u z y

v x v y u x u x v y u y v x u )(),(),,(,,,,∴∴??????????-=????=??∴

Θ z x x x ie y y i ie y ie y e x

v

i x u z f -=+-=-=??+?

?=

')cos sin (cos sin )(

4 6. 积分

?

==

1

3cos z zdz z

7. 积分

=

?

b

a

dz z z 2cos )sin (sin 2

1

22a b -

级数学物理方法试题

数学物理方法试题A (100分) 2005级光电子专业 一、填空题 (40分) 1. 表示复数 z 的代数式是 ,指数式是 。 2. 设 (),u u x y =, 20u x y ?=?? 则 (),u u x y = 满足一个 方程,可解出 u = 。 3. 设 ()w f z =,w u iv =+,iy x z +=。 则方程 ?????????-=????=??x v y u y v x u 称为 。 如在 D 区域, x u ??、y u ??、x v ??、y v ?? 连续,且上述方程成立,则称复变函数 ()f z 为 D 区域上的 。 4. 11i i i i -+=- ,()()()() 3232i i i i +-=-+ 。

5. 设解析函数 ()222f z x y xyi =-+, 其共轭函数 ()f z *= , 其导数 ()f z '= 。 6. 42 1 1 2z z dz z iz =+=-? , 7. 复幂级数 k k k z c ∑∞ =1 的收敛区域通常为 , 圆的半径称为 。 8. δ 函数的主要定义是: , 。 9. 周期函数的定义是 ,付里叶级数的常见形式是 。 10. 现有两函数 ()1=x f ∞≤≤∞-x ()1=x f b x b ≤≤- 则二者的付里叶变换()F ω分别为 , 。 二、简答题 (20分)

1. 设复变函数 2 w z =,试将 z 平面上的曲线(以原点为圆心,以 2为半径,位于0y ≥区域的半圆)表示为w 平面上的曲线。 2. 对于复幂级数 k k k z c ∑∞ =1, 收敛半径 R 的取值共有几种情况?分别 列出。 3. 求复幂级数 1k k z k ∞ =∑、 1 2k k k z ∞ =∑的收敛半径 R 。 4. 试举出2个常见的数学物理方程,写出数学形式,简述其所代表的物理意义。 三、计算题 (40分) 1. 将 ()() 2 f z z a =- 沿圆心为 z a =,半径为r 的

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

数学物理方法试题

嘉应学院 物理 系 《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、什么是解析函数?其特征有哪些?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、写出复数2 3 1i +的三角形式和指数形式(8分) 7、求函数 2 ) 2)(1(--z z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) 9、计算实变函数定积分dx x x ?∞ ∞-++1 1 4 2(8分) 10、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 二、计算题(共30分) 1、试用分离变数法求解定解问题(14分) ?? ?????=-===><<=-====0, 2/100 ,000002t t t l x x x x xx tt u x u u u t l x u a u

2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分) ??? ? ? ???? ===-==?====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π 3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。(10分) 嘉应学院 物理 系 《数学物理方法》A 课程考试题 一、简答题(共70分) 1、什么是解析函数?其特征有哪些?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 7、求函数2 )2)(1(1 --z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) t e y y y -=-'+''32

北邮数学物理方法18-19期末试题B

北京邮电大学2018-2019学年第一学期 《数学物理方法》期末试题(B ) 注意:本试卷共5 道大题。答题时不必抄题,要注明题号,所有答案一律写在答题纸上,否则不计成绩。 一、 解答下列各题(每题6分,共36分) 1、 写出三类基本方程的最简单形式。 2、求解下列本征值问题的本征值和本征函数 ()()()()()() 02,2?λ??π??π?''Φ+Φ=???''Φ+=ΦΦ+=Φ??3、将Bessel 方程 222()0x y xy x m y λ'''++-= 化成Sturm-Liouville 型方程,并指出其核函数和权函数。 4、用达朗贝尔公式求下列定解问题的解 ()()()20,0,,0cos ,,0. tt xx x t u a u x t u x x u x e ?-=-∞<<∞>??==??5、设()f x 在区间[-1,1]上的有界且连续,并设 ()()()0Legendre n n n n f x f P x P x ∞ ==∑其中是多项式 试证明 ()()11 212n n n f P x f x dx -+= ?. 6、已知Bessel 函数的递推公式1[()]()m m m m d x J x x J x dx -=,试计算30()x J x dx ?。

二、研究细杆上的热传导问题。设杆上的初始温度是均匀的为0,u 然后保持杆的一端的温度为不变的0,u 而另一端则有强度为恒定的热流0q 进入,即求解定解问题 22200000,,,.x x x l t u u a t x q u u u k u u ===???=?????==???=?? (25分) 三、 求解下列定解问题 ()222220001,0,0,,,0.b t t u u u a b t u u u u f t ρρρρρρρ====??????=+<

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数学物理方法典型习题

典型习题 一、填空题: 1 的值为 , , 。 2 、1-+的指数表示为_________ ,三角表示为 。 3、幂级数2 k k=1(k!)k z k ∞ ∑的收敛半径为 。 4、ln(5)-的值为 。 5、均匀介质球,半径为0R ,在其中心置一个点电荷Q 。已知球的介电常数为 ε,球外为真空,则电势所满足的泛定方程为 、 。 6、在单位圆的上半圆周,积分1 1||__________z dz -=?。 7、长为a 的两端固定弦的自由振动的定解问问题 。 8、具有轴对称性的拉普拉斯方程的通解为 。 9、对函数f(x)实施傅里叶变换的定义为 ,f (k )的傅里叶逆变换为 。 10、对函数f(x)实施拉普拉斯变换的定义为 。 二、简答题 1、已知()f z u iv =+是解析函数,其中22 v(x,y)=x y +xy -,求 (,)u x y 。 2、已知函数1w z = ,写出z 平面的直线Im 1z =在w 平面中的,u v 满足的方程。 3、将函数21()56f z z z =-+在环域2||3z <<及0|2|1z <-<内展开成洛朗级数. 4、长为L 的弹性杆,一端x=0固定,另一端沿杆的轴线方向被拉长p 后静止(在弹性限度内),突然放手后任其振动。试写出杆的泛定方程及定解条件。 三、计算积分: 1. ||22(1)(21)z zdz I z z ==-+? 2.||2sin (3)z zdz I z z ==+? 3.22202(1)x I dx x ∞ =+? 4.||1(31)(2) z zdz I z z ==++? 5. ||23cos z zdz I z ==? 6. 240x dx 1x I ∞=+? 7、0sin x dx x ∞ ? 8、20cos 1x dx x ∞+? 四、使用行波法求解下列方程的初值问题

北京航空航天大学 数学物理方法 模拟试题

数理试卷 1. 设有半径为a 的导体球壳被一过球心的水平绝缘层分割成两个半球壳,若上下各半球壳 各充电到V 1、V 2,则球壳内的电势所满足的定解问题是 2. 初值问题 U tt -a 2U xx =0(-∞<<=-===0|0||0) t l,x (0 sin 002t t l x x x x xx t U U U wt A U a U

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方法课程教学大纲

《数学物理方法》课程教学大纲 (供物理专业试用) 课程编码:140612090 学时:64 学分:4 开课学期:第五学期 课程类型:专业必修课 先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》 教学手段:(板演) 一、课程性质、任务 1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。 2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。可以在后续的选修课中加以介绍。 3.《数学物理方法》既是一门数学课程,又是一门物理课程。注重逻辑推理和具有一定的系统性和严谨性。但是,它与其它的数学课有所不同。本课程内容有很深广的物理背景,实用性很强。因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。

4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。二、课程基本内容及课时分配 第一篇复数函数论 第一章复变函数(10) 教学内容: §1.1.复数与复数运算。复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。 §1.2.复变函数。复变函数的概念,开、闭区域,几种常见的复变函数,复变函数的连续性。 §1.3.导数。导数,导数的运算,科希—里曼方程。 §1.4.解析函数。解析函数的概念,正交曲线族,调和函数。 §1.5.平面标量场。稳定场,标量场,复势。 第二章复变函数的积分(7) 教学内容: §2.1.复数函数的积分,路积分及其与实变函数曲线积分的联系。 §2.2.科希定理。科希定理的内容和应用,孤立奇点,单通区域,复通区域,回路积分。 §2.3.不定积分*。原函数。 §2.4.科希公式。科希公式的导出,高阶导数的积分表达式。(模数原理及刘维定理不作要求) 第三章幂级数展开(9) 教学内容:

数学物理方法复习题.doc

《数学物理方法》复习题 一、单项选择题 【 】 1、函数 f (z) 以 b 为中心的罗朗( Laurent )展开的系数公式为 1 A. C k 2 i 1 C. C k 2 i ? ? f ( ) d B. C k f (k ) (b) ( b) k 1 k ! f ( ) k ! f ( ) b d D . C k 2 i ? ( b)k 1 d 【 】 2、本征值问题 X ( x) X (x) 0, X (0) 0, X (l ) 0 的本征函数是 A .cos n x B .sin n x C . sin (2n 1) x D . cos (2n 1) x 】 3、点 z l l 2l 2l 【 是函数 cot z 的 A. 解析点 B. 孤立奇点 C. 非孤立奇点 D. 以上都不对 【 】 4、可以用分离变量法求解定解问题的必要条件是 A. 泛定方程和初始条件为齐次 B. 泛定方程和边界条件为齐次 C. 初始条件和边界条件为齐次 D. 泛定方程、初始条件和边界条件为齐次 【 】5、设函数 f ( z) 在单连通区域 D 内解析, C 为 D 内的分段光滑曲线, 端点为 A 和 B , 则积分 ( ) f z dz C A. 与积分路径及端点坐标有关 B. 与积分路径有关,但与端点坐标无关 C. 与积分路径及端点坐标无关 D. 与积分路径无关,但与端点坐标有关 【 】6、 条件 z 1 所确定的是一个 A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域 【 】 7、条件 0 z 1 2 所确定的是一个 A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域 【 】 8、 积分 ? zcosz 2dz |z| 1 A . 1 B . 1 C . 1 2 D . 0 2 【 】 9、函数 f ( z) 1 在 z 1 2 内展成 z 1 的级数为 1 z A . 2 n B 1 n 0 ( z 1) n 1 . n 0 z n 1 【 】 10 、 点 z 0 是函数 1 f ( z) sin z C . ( z 1)n D .z n n 0 2n 1 n 0 1 的

数学物理方法试卷答案

《数学物理方法》试卷答案 一、选择题(每题4分,共20分) 1.柯西问题指的是( B ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( D ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ??? ??=??=?Γ f n u u ,02 有解的必要条件是( C ) A .0=f . B .0=Γu . C . 0=?Γ dS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( B ) A .) cos , (2 x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2 x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2 x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( D ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u .

二、填空题(每题4分,共20分) 1.求定解问题??? ? ? ????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是(x t cos sin 2). 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( 0))(,(),(2))(,(22=++dx y x c dxdy y x b dy y x a ). 3.二阶常微分方程0)()43 41()(1)(2'''=-++x y x x y x x y 的任一特解=y ( )21 (2 3 x J 或0). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( r 1 ). 5.已知x x x J x x x J cos 2 )( ,sin 2)(2 12 1ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( )s i n )(1(2)cos sin 1(223 x x dx d x x x x x x ππ-=- ). 三、(15分)用分离变量法求解如下定解问题 222220 00, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???? ???==>? ????==≤≤?? 解:第一步:分离变量 (4分) 设)()(),(t T x X t x u =,代入方程可得

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

数理方程试题

2013-2014 1 数学物理方程(A ) 数理学院 信计101-2、应数 (答案写在答题纸上,写在试题纸上无效) 一.填空题(每小题3分,共15分) 1.已知非齐次波动方程22 222(,)(0,0) (0,)(,)0 (0)(,0)(,0)0(0) u u a f x t t x l t x u u t l t t x x u u x x x l t ???=+><? ????? ==<<? ??? ?? ==<

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

济南大学数学物理方法试题

济南大学2009 ~2010 学年第一学期课程考试试卷(补考卷) 课 程 数学物理方法 授课教师 任妙娟 考试时间 2010 年 月 日 考试班级 学 号 姓 名 一、 判断题(每小题2分,共20分) [对者画√,错者画×] [ ] 1.在复数域内,负数也有对数。 [ ]2.可去奇点的留数一定是零。 [ ]3.复变指数函数z e 是无界的周期函数。 [ ]4.实部和虚部都是调和函数的复变函数一定是解析函数。 [ ]5.定义在区域G 上的函数()(,)(,)f z u x y iv x y =+,若 ,u v v u x y x y ????==-???? ,则()f z 是G 上的解析函数。 [ ]6.()n J x 在0x =的值总是零。 [ ]7.格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。 [ ]8.函数2 ()(0,)f x x l =,因为2x 是偶函数,所以只能开拓为周期性偶函数, 展开为Fourier 余弦级数。 [ ]9.只有齐次边界条件才能和相应的方程构成本征值问题。 [ ]10.行波法适用于无界区域的波动方程。 二、选择题(每小题3分,共30分) [ ]1. 复数i 25 8-2516z =的辐角为 A . arctan 21 B .-arctan 21 C .π-arctan 21 D .π+arctan 21 [ ]2.设z=cosi ,则[ ] A .Imz=0 B .Rez=π C .|z|=0 D .argz=π [ ]3. 设C 为正向圆周|z+1|=2,n 为正整数,则积分? +-c n i z dz 1)(等于 A . 1 B .2πi C .0 D .i π21 [ ]4. 3z π=是函数f(z)= π π-3z )3-sin(z 的 A 一阶极点 B .可去奇点 C .一阶零点 D .本性奇点 [ ]5.方程0u 2=?-u a t 是 A 波动方程 B .输运方程 C .分布方程 D .以上都不是 [ ]6.可以用分离变量法求解的必要条件是: A 泛定方程和初始条件为齐次 B .泛定方程和边界条件为齐次 C .边界条件和初始条件为齐次 D .泛定方程、边界条件和初始条件均为齐次 [ ]7. 级数的收敛半径是 A . 2 B. k C k 2 D. 1 [ ]8.本征值问题?? ? ??===+==00' 0' 'l x x X X X X λ 的本征函数是 A . x l n π)21(cos + B. x l n π)21(sin + C x l n πsin D. x l n πcos [ ]9.00=x 是方程02 ''=+y w y 的 A 常点 B .正则奇点 C .非正则奇点 D .以上都不是 …………………………………………装…………………………订…………………………线………………………………………… …… … … … 答 ……… …… 题…… … … …不…… … …… 要 ………… … 超 …… … ……过…………… 此………… …线… … …… ……

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数学物理方法试题汇总

12届真题 1. 求下列各小题(2*5=10分): (1)用几何图形表示0arg(1)4z π<-< ; (2)给出序列(1/)sin 6 n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解; (4)给出二阶偏微分方程的基本类型; (5)给出解析函数所满足的柯西-黎曼方程。 2.按给定路径计算下列积分(5*2=10分): (1)320Re i zdz +?,积分路径为线段[0,3]和[3,3+2i]组成的折线; (2 )11,==?积分路径由z=1出发的。 3.利用留数定理计算下列积分(5*2=10分): (1)2 41x dx x +∞ -∞+?; (2)3||1z z e dz z =?。 4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。 5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y ??-=-??(15分)。 6.利用分离变量法求解:(20分) 2222000 (),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====???-=-?????==????==??? 7.用拉普拉斯变换方法求解半无解问题(20分)

220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0. x u u x t t x u t u x t t u x x κ→∞???-=>>?????=>??=>??? 有界,

2005级 一、填空(请写在答题纸上,每题6分,共计48分) 1. 三维泊松方程是______________________________ 2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。 3. 极坐标下的二维拉普拉斯方程为__________________________。 4. 定解问题20 02||0tt xx t t t u u x u x u ===-∞<<+∞???==??, ,的解__________________________。 5. 三维拉普拉斯方程的牛曼内问题为______________________________; 其解存在的必要条件为____________。 6. 写出4阶贝塞尔方程的标准形式_____________________________。 7. 设2()J x 为2阶贝塞尔函数,则22()d x J kx dx ????=__________________。 8. 设弦一端在0x =处固定,另一端在x l =处做自由运动。则弦振动问题的边界条件为: 二、(10分)求解定解问题: 200(0)()00()0.t xx x x u a u x l t u t u l t t u x x x l ?=<<>?==≥??=≤≤? , ,,,,, , ,0,

相关文档